51
|
Gross C. Fil-lamin-ing in the Gap in Cortical Dysplasia. Epilepsy Curr 2020; 21:51-53. [PMID: 34025274 PMCID: PMC7863307 DOI: 10.1177/1535759720975741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[Box: see text]
Collapse
|
52
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: Dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 25:464-489. [PMID: 33143449 DOI: 10.1177/1362361320965074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.
Collapse
|
53
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
54
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
55
|
Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal 2020; 75:109746. [PMID: 32858122 DOI: 10.1016/j.cellsig.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022]
Abstract
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
56
|
Citrigno L, Muglia M, Qualtieri A, Spadafora P, Cavalcanti F, Pioggia G, Cerasa A. The Mitochondrial Dysfunction Hypothesis in Autism Spectrum Disorders: Current Status and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165785. [PMID: 32806635 PMCID: PMC7461038 DOI: 10.3390/ijms21165785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASDs) constitute a set of heterogeneous neurodevelopmental conditions, characterized by a wide genetic variability that has led to hypothesize a polygenic origin. The metabolic profiles of patients with ASD suggest a possible implication of mitochondrial pathways. Although different physiological and biochemical studies reported deficits in mitochondrial oxidative phosphorylation in subjects with ASD, the role of mitochondrial DNA variations has remained relatively unexplored. In this review, we report and discuss very recent evidence to demonstrate the key role of mitochondrial disorders in the development of ASD.
Collapse
Affiliation(s)
- Luigi Citrigno
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Maria Muglia
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 98164 Messina, Italy;
| | - Antonio Cerasa
- Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, 87050 Mangone CS, Italy; (L.C.); (M.M.); (A.Q.); (P.S.); (F.C.)
- S’Anna Institute and Research in Advanced Neurorehabilitation (RAN), 88100 Crotone, Italy
- Correspondence: ; Tel.: +39-333-9633511
| |
Collapse
|
57
|
Harich B, Klein M, Ockeloen CW, van der Voet M, Schimmel‐Naber M, de Leeuw N, Schenck A, Franke B. From man to fly - convergent evidence links FBXO25 to ADHD and comorbid psychiatric phenotypes. J Child Psychol Psychiatry 2020; 61:545-555. [PMID: 31849056 PMCID: PMC7217029 DOI: 10.1111/jcpp.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benjamin Harich
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marieke Klein
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Monique van der Voet
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marlies Schimmel‐Naber
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicole de Leeuw
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Annette Schenck
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
58
|
Zhang X, Spear E, Gennings C, Curtin PC, Just AC, Bragg JB, Stroustrup A. The association of prenatal exposure to intensive traffic with early preterm infant neurobehavioral development as reflected by the NICU Network Neurobehavioral Scale (NNNS). ENVIRONMENTAL RESEARCH 2020; 183:109204. [PMID: 32311904 PMCID: PMC7325861 DOI: 10.1016/j.envres.2020.109204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 05/14/2023]
Abstract
INTRODUCTION Traffic-related air pollution has been shown to be neurotoxic to the developing fetus and in term-born infants during early childhood. It is unknown whether there is an increased risk of adverse neurobehavioral outcome in preterm infants exposed to higher levels of air pollution during the fetal period. OBJECTIVE To assess the association between prenatal exposure to traffic-related air pollution on early preterm infant neurobehavior. METHODS Air pollution exposure was estimated by two methods: density of major roads and density of vehicle-miles traveled (VMT), each at multiple buffering areas around residential addresses. We examined the association between prenatal exposure to traffic-related air pollution and performance on the Neonate Intensive Care Unit (NICU) Network Behavioral Scale (NNNS), a measure of neurobehavioral outcome in infancy for 240 preterm neonates enrolled in the NICU-Hospital Exposures and Long-Term Health cohort. Linear regression analysis was conducted for exposure and individual NNNS subscales. Latent profile analysis (LPA) was applied to classify infants into distinct NNNS phenotypes. Multinomial logistic regression analysis was conducted between exposure and LPA groups. Covariates included gestational age, birth weight z-score, post-menstrual age at NNNS assessment, socioeconomic status, race, delivery type, maternal smoking status, and medical morbidities during the NICU stay. RESULTS Among all 13 NNNS subscales, hypotonia was significantly associated with VMT (104 vehicle-mile/km2) in 150 m (β = 0.01, P-value<0.001), 300 m (β = 0.01, P-value = 0.003), and 500 m (β = 0.01, P-value = 0.002) buffering areas, as well as with road density in a 500 m buffering area (β = 0.03, P-value = 0.03). We identified three NNNS phenotypes by LPA. Among them, high density of major roads within 150 m, 300 m, and 500 m buffers of the residential address was significantly associated with the same phenotype (P < 0.05). CONCLUSION Prenatal exposure to intensive air pollution emitted from major roads may impact early neurodevelopment of preterm infants. Motor development may be particularly sensitive to air pollution-related toxicity.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| | - Emily Spear
- Division of Newborn Medicine, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paul C Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jennifer B Bragg
- Division of Newborn Medicine, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Annemarie Stroustrup
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Division of Newborn Medicine, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
59
|
Fan C, Gao Y, Liang G, Huang L, Wang J, Yang X, Shi Y, Dräger UC, Zhong M, Gao TM, Yang X. Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, memory, and epilepsy. Mol Autism 2020; 11:13. [PMID: 32033586 PMCID: PMC7007694 DOI: 10.1186/s13229-020-0318-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neuronal developmental disorder with impaired social interaction and communication, often with abnormal intelligence and comorbidity with epilepsy. Disturbances in synaptic transmission, including the GABAergic, glutamatergic, and serotonergic systems, are known to be involved in the pathogenesis of this disorder, yet we do not know if there is a common molecular mechanism. As mutations in the GABAergic receptor subunit gene GABRA4 are reported in patients with ASD, we eliminated the Gabra4 gene in mice and found that the Gabra4 knockout mice showed autistic-like behavior, enhanced spatial memory, and attenuated susceptibility to pentylenetetrazol-induced seizures, a constellation of symptoms resembling human high-functioning autism. To search for potential molecular pathways involved in these phenotypes, we performed a hippocampal transcriptome profiling, constructed a hippocampal interactome network, and revealed an upregulation of the NMDAR system at the center of the converged pathways underlying high-functioning autism-like and anti-epilepsy phenotypes.
Collapse
Affiliation(s)
- Cuixia Fan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yue Gao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Guanmei Liang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Lang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxue Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiwu Shi
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ursula C Dräger
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China. .,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China.
| |
Collapse
|
60
|
Neurofibromatosis Type 1 Implicates Ras Pathways in the Genetic Architecture of Neurodevelopmental Disorders. Behav Genet 2020; 50:191-202. [DOI: 10.1007/s10519-020-09991-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/04/2020] [Indexed: 01/12/2023]
|
61
|
Pytka K, Dawson N, Tossell K, Ungless MA, Plevin R, Brett RR, Bushell TJ. Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing. Eur J Neurosci 2020; 52:2838-2852. [PMID: 31989721 DOI: 10.1111/ejn.14688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present.
Collapse
Affiliation(s)
- Karolina Pytka
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Neil Dawson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ros R Brett
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
62
|
Geoffray MM, Falissard B, Green J, Kerr B, Evans DG, Huson S, Burkitt-Wright E, Garg S. Autism Spectrum Disorder Symptom Profile Across the RASopathies. Front Psychiatry 2020; 11:585700. [PMID: 33519543 PMCID: PMC7843573 DOI: 10.3389/fpsyt.2020.585700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the Ras MAPK signaling pathway is implicated in the pathogenesis of autism spectrum disorder (ASD). The RASopathies, a group of disorders caused by mutations of the Ras/MAPK pathway genes, share many overlapping clinical features. Studies suggest a high prevalence of ASD in the RASopathies, but detailed characterization of the ASD profile is lacking. The aim of this study was to compare the ASD symptom profile of three distinct RASopathies associated with both gain-of-function and loss-of-function mutations: neurofibromatosis type 1 (NF1), Noonan syndrome (NS), and cardiofaciocutaneous syndrome (CFC). Participants were drawn from existing databases if they had a diagnosis of a RASopathy, met the criteria for ASD, and were able to communicate verbally. We compared the phenotypic profile of NF1 + ASD (n = 48), NS + ASD (n = 11), and CFC + ASD (n = 7) on the Autism Diagnostic Inventory (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS). We found subtle but non-significant group differences with higher levels of social impairments and lower restricted repetitive behaviors in the NF1 group as compared with the NS and CFC groups. We observed group differences in developmental milestones with most severe delays in CFC, followed by NS and NF1. Our results suggest that despite developmental differences, the ASD profile remains relatively consistent across the three RASopathies. Though our results need confirmation in larger samples, they suggest the possibility that treatment and mechanistic insights developed in the context of one RASopathy may be generalizable to others and possibly to non-syndromic ASD associated with dysregulation of Ras/MAPK pathway genes.
Collapse
Affiliation(s)
- Marie-Maude Geoffray
- Centre Hospitalier Le Vinatier, Bron, France.,Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Bruno Falissard
- CESP, INSERM U1018, Université Paris-Saclay, Villejuif, France
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Department of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Browyn Kerr
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - D Gareth Evans
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Division of Evolution and Genomic Science, Department of Genomic Medicine, St Mary's Hospital, University of Manchester, Manchester, United Kingdom
| | - Susan Huson
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma Burkitt-Wright
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Department of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
63
|
Afroz KF, Alviña K. Maternal elevated salt consumption and the development of autism spectrum disorder in the offspring. J Neuroinflammation 2019; 16:265. [PMID: 31837704 PMCID: PMC6911292 DOI: 10.1186/s12974-019-1666-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition with no known etiology or cure. Several possible contributing factors, both genetic and environmental, are being actively investigated. Amongst these, maternal immune dysregulation has been identified as potentially involved in promoting ASD in the offspring. Indeed, ASD-like behaviors have been observed in studies using the maternal immune activation mouse model. Furthermore, recent studies have shed light on maternal dietary habits and their impact on the gut microbiome as factors possibly facilitating ASD. However, most of these studies have been limited to the effects of high fat and/or high sugar. More recent data, however, have shown that elevated salt consumption has a significant effect on the immune system and gut microbiome, often resulting in gut dysbiosis and induction of pro-inflammatory pathways. Specifically, high salt alters the gut microbiome and induces the differentiation of T helper-17 cells that produce pro-inflammatory cytokines such as interleukin-17 and interleukin-23. Moreover, elevated salt can also reduce the differentiation of regulatory T cells that help maintaining a balanced immune system. While in the innate immune system, high salt can cause over activation of M1 pro-inflammatory macrophages and downregulation of M2 regulatory macrophages. These changes to the immune system are alarming because excessive consumption of salt is a documented worldwide problem. Thus, in this review, we discuss recent findings on high salt intake, gut microbiome, and immune system dysregulation while proposing a hypothesis to link maternal overconsumption of salt and children’s ASD.
Collapse
Affiliation(s)
- Kazi Farhana Afroz
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Room #05, Biology Building, Lubbock, TX, 79409, USA
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Room #05, Biology Building, Lubbock, TX, 79409, USA. .,Department of Neuroscience, University of Florida, 1149 Newell Drive, Room L1-100, Gainesville, FL, 32611, USA.
| |
Collapse
|
64
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
65
|
Duan W, Wang K, Duan Y, Chu X, Ma R, Hu P, Xiong B. Integrated Transcriptome Analyses Revealed Key Target Genes in Mouse Models of Autism. Autism Res 2019; 13:352-368. [PMID: 31743624 DOI: 10.1002/aur.2240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
Genetic mutations are the major pathogenic factor of Autism Spectrum Disorder (ASD). In recent years, more and more ASD risk genes have been revealed, among which there are a group of transcriptional regulators. Considering the similarity of the core clinical phenotypes, it is possible that these different factors may regulate the expression levels of certain key targets. Identification of these targets could facilitate the understanding of the etiology and developing of novel diagnostic and therapeutic methods. Therefore, we performed integrated transcriptome analyses of RNA-Seq and microarray data in multiple ASD mouse models and identified a number of common downstream genes in various brain regions, many of which are related to the structure and function of the synapse components or drug addiction. We then established protein-protein interaction networks of the overlapped targets and isolated the hub genes by 11 algorithms based on the topological structure of the networks, including Sdc4, Vegfa, and Cp in the Cortex-Adult subgroup, Gria1 in the Cortex-Juvenile subgroup, and Kdr, S1pr1, Ubc, Grm2, Grin2b, Nrxn1, Pdyn, Grin3a, Itgam, Grin2a, Gabra2, and Camk4 in the Hippocampus-Adult subgroup, many of which have been associated with ASD in previous studies. Finally, we cross compared our results with human brain transcriptional data sets and verified several key candidates, which may play important role in the pathology process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRIN2A, GABRA2, and CAMK4. In summary, by integrated bioinformatics analysis, we have identified a series of potentially important molecules for future ASD research. Autism Res 2020, 13: 352-368. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Abnormal transcriptional regulation accounts for a significant portion of Autism Spectrum Disorder. In this study, we performed transcriptome analyses of mouse models to identify common downstream targets of transcriptional regulators involved in ASD. We identified several recurrent target genes that are close related to the common pathological process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRM2, NRXN1, GRIN3A, ITGAM, GRIN2A, GABRA2, and CAMK4. These results provide potentially important targets for understanding the molecular mechanism of ASD.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruoyun Ma
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|