51
|
Vorkas PA, Poumpouridou N, Agelaki S, Kroupis C, Georgoulias V, Lianidou ES. PIK3CA hotspot mutation scanning by a novel and highly sensitive high-resolution small amplicon melting analysis method. J Mol Diagn 2010; 12:697-704. [PMID: 20616362 DOI: 10.2353/jmoldx.2010.100008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Somatic mutations in the PIK3CA gene have been discovered in many human cancers, and their presence correlates to therapy response. Three "hotspot" mutations within the PIK3CA gene are localized in exons 9 and 20. High-resolution melting analysis (HRMA) is a highly sensitive, robust, rapid, and cost-effective mutation analysis technique. We developed a novel methodology for the detection of hotspot mutations in exons 9 and 20 of the PIK3CA gene that is based on a combination of PCR and HRMA. The PIK3CA HRMA assay was evaluated by performing repeatability, sensitivity, and comparison with DNA sequencing studies and was further validated in 129 formalin-fixed paraffin-embedded breast tissue samples: 99 tumors, 20 noncancerous, and 10 fibroadenomas. The developed methodology was further applied in a selected group of 75 breast cancer patients who underwent Trastuzumab treatment. In sensitivity studies, the assay presented a capability to detect as low as 1% of mutated dsDNA in the presence of wtDNA for both exons. In the 99 tumor samples (validation group), 12/99 (12.1%) exon 9 mutations and 20/99 (20.2%) exon 20 mutations were found. No mutations were found in noncancerous tissues. In fibroadenomas, we report one PIK3CA mutation for the first time. In the selected group, 30/75 (40%) samples were detected as mutants. The PIK3CA HRMA assay is highly sensitive, reliable, cost-effective, and easy-to-perform, and therefore can be used as a screening test in a high-throughput pharmacodiagnostic setting.
Collapse
Affiliation(s)
- Panagiotis A Vorkas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
52
|
Montgomery JL, Sanford LN, Wittwer CT. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn 2010; 10:219-40. [PMID: 20214540 DOI: 10.1586/erm.09.84] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Among nucleic acid analytical methods, high-resolution melting analysis is gaining more and more attention. High-resolution melting provides simple, homogeneous solutions for variant scanning and genotyping, addressing the needs of today's overburdened laboratories with rapid turnaround times and minimal cost. The flexibility of the technique has allowed it to be adopted by a wide range of disciplines for a variety of applications. In this review we examine the broad use of high-resolution melting analysis, including gene scanning, genotyping (including small amplicon, unlabeled probe and snapback primers), sequence matching and methylation analysis. Four major application arenas are examined to demonstrate the methods and approaches commonly used in particular fields. The appropriate usage of high-resolution melting analysis is discussed in the context of known constraints, such as sample quality and quantity, with a particular focus placed on proper experimental design in order to produce successful results.
Collapse
Affiliation(s)
- Jesse L Montgomery
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
53
|
Dwyer S, Carroll L, Mantripragada KK, Owen MJ, O'Donovan MC, Williams NM. Mutation screening of the DTNBP1 exonic sequence in 669 schizophrenics and 710 controls using high-resolution melting analysis. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:766-74. [PMID: 19859905 DOI: 10.1002/ajmg.b.31045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large number of independent studies have reported evidence for association between the dysbindin gene (DTNBP1) and schizophrenia; however, specific risk alleles have been not been implicated as causal. In this study we set out to perform a comprehensive assessment of DNA variation within the exonic sequence of DTNBP1. To achieve this we optimized a high-resolution melting analysis (HRMA) protocol and applied it to screen all 11 DTNBP1 exons for DNA variants in a sample of 669 cases and 710 controls from the UK. Despite identifying seven exonic variants with a minor allele frequency (MAF) >0.01, none was significantly associated with schizophrenia (minimum P = 0.054), showing that the strong association we previously reported in this sample is not the result of association to a common functional variant located within the exonic sequence of any of the three major DTNBP1 transcripts. We also sought additional support for DTNBP1 as a susceptibility gene for schizophrenia by testing the hypothesis that rare exonic highly penetrant variants exist at the DTNBP1 locus. Our analysis failed to identify an enrichment of rare functional variants in the patients compared to the controls. Taken as a whole, this data demonstrate that if DTNBP1 is a risk gene for schizophrenia then risk is not conferred by mutations that affect the structure of the dysbindin protein.
Collapse
Affiliation(s)
- S Dwyer
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
54
|
Erali M, Wittwer CT. High resolution melting analysis for gene scanning. Methods 2010; 50:250-61. [PMID: 20085814 PMCID: PMC2836412 DOI: 10.1016/j.ymeth.2010.01.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/03/2010] [Accepted: 01/14/2010] [Indexed: 01/07/2023] Open
Abstract
High resolution melting is a new method of genotyping and variant scanning that can be seamlessly appended to PCR amplification. Limitations of genotyping by amplicon melting can be addressed by unlabeled probe or snapback primer analysis, all performed without labeled probes. High resolution melting can also be used to scan for rare sequence variants in large genes with multiple exons and is the focus of this article. With the simple addition of a heteroduplex-detecting dye before PCR, high resolution melting is performed without any additions, processing or separation steps. Heterozygous variants are identified by atypical melting curves of a different shape compared to wild-type homozygotes. Homozygous or hemizygous variants are detected by prior mixing with wild-type DNA. Design, optimization, and performance considerations for high resolution scanning assays are presented for rapid turnaround of gene scanning. Design concerns include primer selection and predicting melting profiles in silico. Optimization includes temperature gradient selection of the annealing temperature, random population screening for common variants, and batch preparation of primer plates with robotically deposited and dried primer pairs. Performance includes rapid DNA preparation, PCR, and scanning by high resolution melting that require, in total, only 3h when no variants are present. When variants are detected, they can be identified in an additional 3h by rapid cycle sequencing and capillary electrophoresis. For each step in the protocol, a general overview of principles is provided, followed by an in depth analysis of one example, scanning of CYBB, the gene that is mutated in X-linked chronic granulomatous disease.
Collapse
Affiliation(s)
- Maria Erali
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, 84108
| | - Carl T. Wittwer
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, 84108
- Department of Pathology, University of Utah Medical School, Salt Lake City, UT, 84132
| |
Collapse
|
55
|
SMITH BL, LU C, ALVARADO BREMER JR. High‐resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Mol Ecol Resour 2009; 10:193-6. [DOI: 10.1111/j.1755-0998.2009.02726.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. L. SMITH
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 210 Nagle Hall, TAMU 2258, College Station, TX 77843, USA
| | - C.‐P. LU
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 210 Nagle Hall, TAMU 2258, College Station, TX 77843, USA
| | - J. R. ALVARADO BREMER
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 210 Nagle Hall, TAMU 2258, College Station, TX 77843, USA
- Department of Marine Biology, Texas A&M University at Galveston, 5007 Ave. U, Galveston, TX 77551, USA
| |
Collapse
|
56
|
Dobrowolski SF, Hendrickx ATM, van den Bosch BJC, Smeets HJM, Gray J, Miller T, Sears M. Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM) profiling. Hum Mutat 2009; 30:891-8. [PMID: 19370763 DOI: 10.1002/humu.21003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Identifying mitochondrial DNA (mtDNA) sequence variants in human diseases is complicated. Many pathological mutations are heteroplasmic, with the mutant allele represented at highly variable percentages. High-resolution melt (HRM or HRMA) profiling was applied to comprehensive assessment of the mitochondrial genome and targeted assessment of recognized pathological mutations. The assay panel providing comprehensive coverage of the mitochondrial genome utilizes 36 overlapping fragments (301-658 bp) that employ a common PCR protocol. The comprehensive assay identified heteroplasmic mutation in 33 out of 33 patient specimens tested. Allele fraction among the specimens ranged from 1 to 100%. The comprehensive assay panel was also used to assess 125 mtDNA specimens from healthy donors, which identified 431 unique sequence variants. Utilizing the comprehensive mtDNA panel, the mitochondrial genome of a patient specimen may be assessed in less than 1 day using a single 384-well plate or two 96-well plates. Specific assays were used to identify the myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) mutation m.3243A>G, myoclonus epilepsy, ragged red fibers (MERRF) mutation m.8344A>G, and m.1555A>G associated with aminoglycoside hearing loss. These assays employ a calibrated, amplicon-based strategy that is exceedingly simple in design, utilization, and interpretation, yet provides sensitivity to detect variants at and below 10% heteroplasmy. Turnaround time for the genotyping tests is about 1 hr.
Collapse
|
57
|
Diagnostic method validation: High resolution melting (HRM) of small amplicons genotyping for the most common variants in the MTHFR gene. Clin Biochem 2009; 42:1308-16. [DOI: 10.1016/j.clinbiochem.2009.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/29/2009] [Accepted: 04/24/2009] [Indexed: 11/23/2022]
|
58
|
Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 2009; 19:383-90. [PMID: 19409785 DOI: 10.1016/j.nmd.2009.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 11/21/2022]
Abstract
Duchenne/Becker muscular dystrophy (DMD/BMD) is caused by large deletions or duplications in two-thirds of the cases. The remaining one-third DMD patients have small mutations in the DMD gene. Screening for such small mutations is a daunting and costly task. High resolution melting curve analysis (HR-MCA) followed by sequencing for amplicons with altered melting profiles can be used to scan DNA for small alterations. We first validated the technique as screening procedure for the DMD gene and then screened a group of unrelated 22 DMD/BMD patients and 11 females. We managed to identify all previously found mutations by means of HR-MCA, which provided its validation. Furthermore, 17 different pathogenic mutations were found in the screening group, of which 10 were novel. Our results provide validation of HR-MCA as a powerful and inexpensive pre-sequencing scanning method. This technology is now ready for routine diagnostic use on DMD/BMD patients and female carriers.
Collapse
|
59
|
Pietzka AT, Indra A, Stöger A, Zeinzinger J, Konrad M, Hasenberger P, Allerberger F, Ruppitsch W. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. J Antimicrob Chemother 2009; 63:1121-7. [PMID: 19369271 DOI: 10.1093/jac/dkp124] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) Mycobacterium tuberculosis poses a serious threat to the control of tuberculosis (TB) and constitutes an increasing public health problem. The availability of rapid in vitro susceptibility tests is a prerequisite for optimal patient treatment. Rifampicin resistance caused by diverse mutations in the rpoB gene is an established and widely used surrogate marker for MDR-TB. We used a high-resolution melting (HRM) curve analysis approach to scan for mutations in the rpoB gene. METHODS A total of 49 MDR-TB and 19 fully susceptible non-MDR-TB isolates, as determined by conventional drug susceptibility testing using the BACTEC-MGIT960 system, were used to evaluate the suitability of HRM curve analysis as a rapid and accurate screening system for rifampicin resistance. RESULTS HRM analysis of the rpoB cluster I site allowed the correct allocation of 44 of the 49 MDR-TB isolates and all non-MDR-TB isolates. Three of the five MDR-TB isolates (60%) falsely identified as non-MDR-TB harboured the V176F mutation that could be specifically detected by an additional HRM assay. The combined HRM analysis of all strains and isolates exhibited 95.9% sensitivity and 100% specificity. CONCLUSIONS With a positive predictive value of 100% and a negative predictive value of at least 99.9%, this combined HRM curve analysis is an ideal screening method for the TB laboratory, with minimal requirements of cost and time. The method is a closed-tube assay that can be performed in an interchangeable 96- or 384-well microplate format enabling a rapid, reliable, simple and cost-effective handling of even large sample numbers.
Collapse
|
60
|
Abstract
LightCycler technology combines rapid-cycle polymerase chain reaction with real-time fluorescent monitoring and melting curve analysis. Since its introduction in 1997, it is now used in many areas of molecular pathology, including oncology (solid tumors and hematopathology), inherited disease, and infectious disease. By monitoring product accumulation during rapid amplification, quantitative polymerase chain reaction in a closed-tube system is possible in 15 to 30 minutes. Furthermore, melting curve analysis of probes and/or amplicons provides genotyping and even haplotyping. Novel mutations are identified by unexpected melting temperature or curve shape changes. Melting probe designs include adjacent hybridization probes, single labeled probes, unlabeled probes, and snapback primers. High-resolution melting allows mutation scanning by detecting all heterozygous changes. This review describes the major advances throughout the last 15 years regarding LightCycler technology and its application in clinical laboratories.
Collapse
Affiliation(s)
- Elaine Lyon
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.
| | | |
Collapse
|
61
|
Palais R, Wittwer CT. Chapter 13 Mathematical Algorithms for High-Resolution DNA Melting Analysis. Methods Enzymol 2009; 454:323-43. [DOI: 10.1016/s0076-6879(08)03813-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
62
|
Arrington CB, Sower CT, Chuckwuk N, Stevens J, Leppert MF, Yetman AT, Bowles NE. Absence of TGFBR1 and TGFBR2 mutations in patients with bicuspid aortic valve and aortic dilation. Am J Cardiol 2008; 102:629-31. [PMID: 18721526 DOI: 10.1016/j.amjcard.2008.04.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/04/2008] [Accepted: 04/04/2008] [Indexed: 02/03/2023]
Abstract
Mutations in the genes encoding transforming growth factor-beta receptor types I and II (TGFBR1 and TGFBR2, respectively) are commonly identified in patients with Loeys-Dietz syndrome, as well as some patients with Marfan's syndrome or familial thoracic aortic aneurysms and dissections. This suggests that there is considerable phenotypic heterogeneity associated with mutations in these genes. Because bicuspid aortic valve (BAV) is a congenital heart defect in patients with Loeys-Dietz syndrome, this study was conducted to investigate whether variants in TGFBR1 or TGFBR2 are responsible for sporadic BAV. Analysis of these genes in 35 patients with BAVs identified only known single-nucleotide polymorphisms or novel synonymous or intronic substitutions. In conclusion, mutations in TGFBR1 and TGFBR2 rarely cause sporadic BAV.
Collapse
Affiliation(s)
- Cammon B Arrington
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Zhou L, Errigo RJ, Lu H, Poritz MA, Seipp MT, Wittwer CT. Snapback primer genotyping with saturating DNA dye and melting analysis. Clin Chem 2008; 54:1648-56. [PMID: 18676584 DOI: 10.1373/clinchem.2008.107615] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA hairpins have been used in molecular analysis of PCR products as self-probing amplicons. Either physical separation or fluorescent oligonucleotides with covalent modifications were previously necessary. METHODS We performed asymmetric PCR for 40-45 cycles in the presence of the saturating DNA dye, LCGreen Plus, with 1 primer including a 5' tail complementary to its extension product, but without any special covalent modifications. Samples were amplified either on a carousel LightCycler for speed or on a 96/384 block cycler for throughput. In addition to full-length amplicon duplexes, single-stranded hairpins were formed by the primer tail "snapping back" and hybridizing to its extension product. High-resolution melting was performed on a HR-1 (for capillaries) or a LightScanner (for plates). RESULTS PCR products amplified with a snapback primer showed both hairpin melting at lower temperature and full-length amplicon melting at higher temperature. The hairpin melting temperature was linearly related to the stem length (6-28 bp) and inversely related to the log of the loop size (17-135 bases). We easily genotyped heterozygous and homozygous variants within the stem, and 100 blinded clinical samples previously typed for F5 1691G>A (Leiden) were completely concordant by snapback genotyping. We distinguished 7 genotypes in 2 regions of CFTR exon 10 with symmetric PCR using 2 snapback primers followed by product dilution to favor intramolecular hybridization. CONCLUSIONS Snapback primer genotyping with saturating dyes provides the specificity of a probe with only 2 primers that are free of special covalent labels in a closed-tube system.
Collapse
Affiliation(s)
- Luming Zhou
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
64
|
Erali M, Voelkerding KV, Wittwer CT. High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 2008; 85:50-8. [PMID: 18502416 PMCID: PMC2606052 DOI: 10.1016/j.yexmp.2008.03.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/11/2008] [Indexed: 01/03/2023]
Abstract
Separation of the two strands of DNA with heat (melting) is a fundamental property of DNA that is conveniently monitored with fluorescence. Conventional melting is performed after PCR on any real-time instrument to monitor product purity (dsDNA dyes) and sequence (hybridization probes). Recent advances include high resolution instruments and saturating DNA dyes that distinguish many different species. For example, mutation scanning (identifying heterozygotes) by melting is closed-tube and has similar or superior sensitivity and specificity compared to methods that require physical separation. With high resolution melting, SNPs can be genotyped without probes and more complex regions can be typed with unlabeled hybridization probes. Highly polymorphic HLA loci can be melted to establish sequence identity for transplantation matching. Simultaneous genotyping with one or more unlabeled probes and mutation scanning of the entire amplicon can be performed at the same time in the same tube, vastly decreasing or eliminating the need for re-sequencing in genetic analysis. High resolution PCR product melting is homogeneous, closed-tube, rapid (1-5 min), non-destructive and does not require covalently-labeled fluorescent probes. In the clinical laboratory, it is an ideal format for in-house testing, with minimal cost and time requirements for new assay development.
Collapse
Affiliation(s)
- Maria Erali
- ARUP Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | |
Collapse
|
65
|
Liyanage KE, Hooper AJ, Defesche JC, Burnett JR, van Bockxmeer FM. High-resolution melting analysis for detection of familial ligand-defective apolipoprotein B-100 mutations. Ann Clin Biochem 2008; 45:170-6. [PMID: 18325181 DOI: 10.1258/acb.2007.007077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Familial ligand-defective apolipoprotein B-100 (FDB) is characterized by elevated plasma concentrations of LDL-cholesterol and apolipoprotein (apo) B, normal triglyceride and HDL-cholesterol levels, the presence of tendon xanthomas, and premature coronary artery disease. FDB cannot be clinically distinguished from heterozygous LDL-receptor-defective familial hypercholesterolaemia (FH) without genetic testing. METHODS Amplicons in exon 26 and exon 29 of the APOB gene were screened for established genetic variants including mutations and polymorphisms using high-resolution melting analysis. Six novel variants associated with FDB in hypercholesterolaemic Dutch patients (S3476L, S3488G, Y3533C, T3540M, I4350T, G4368D) were also studied. RESULTS All positive controls, a total of 10 mutations in exon 26 and four mutations in exon 29, were readily detectable by melting curve analysis. In addition, a patient previously not known to be heterozygous for the H3543Y mutation was identified in a screen of hypercholesterolaemic subjects. The method was validated by comparison of high-resolution melting analysis with DNA sequence data in a 'blinded' manner in 35 consecutive patients attending a lipid disorders clinic. These patients were classified as 'definite FH' by the Dutch Lipid Clinic Network criteria. Five patients were found to be heterozygous for the R3500Q and one for H3543Y. CONCLUSIONS We have established a novel, robust method of FDB mutation detection using high-resolution melting analysis in conjunction with DNA sequencing. Compared with existing methods it is not only more cost-effective, but is also capable of detecting new sequence changes and will have importance in cascade screening of affected subjects.
Collapse
|
66
|
Mackay JF, Wright CD, Bonfiglioli RG. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. PLANT METHODS 2008; 4:8. [PMID: 18489740 PMCID: PMC2396621 DOI: 10.1186/1746-4811-4-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/19/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microsatellites are popular molecular markers in many plant species due to their stable and highly polymorphic nature. A number of analysis methods have been described but analyses of these markers are typically performed on cumbersome polyacrylamide gels or more conveniently by capillary electrophoresis on automated sequencers. However post-PCR handling steps are still required. High resolution melting can now combine detailed sequence analysis with the closed-tube benefits of real-time PCR and is described here as a novel way to verify the identity of plant varieties such as grapevine and olive. RESULTS DNA melting profiles for various plant variety and rootstock samples were compared to profiles for certified reference samples. Two closely related grapevine rootstocks differing by as little as a single di-nucleotide repeat could be rapidly differentiated while there was high reproducibility of melting profiles for identical cultivars. CONCLUSION This novel microsatellite analysis method allows high sample throughput with greatly reduced time to results for varietal certification and is amenable to other microsatellite analyses.
Collapse
|
67
|
Kristensen LS, Dobrovic A. Direct genotyping of single nucleotide polymorphisms in methyl metabolism genes using probe-free high-resolution melting analysis. Cancer Epidemiol Biomarkers Prev 2008; 17:1240-7. [PMID: 18483346 DOI: 10.1158/1055-9965.epi-07-2531] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-resolution melting (HRM) shows great promise for high-throughput, rapid genotyping of individual polymorphic loci. We have developed HRM assays for genotyping single nucleotide polymorphisms (SNP) in several key genes that are involved in methyl metabolism and may directly or indirectly affect the methylation status of the DNA. The SNPs are in the 5,10-methylenetetrahydrofolate reductase (MTHFR; C677T and A1298C), methionine synthetase (MTR; 5-methyltetrahydrofolate-homocysteine methyltransferase; A2756G), and DNA methyltransferase 3b (DNMT3b; C46359T and C31721T) loci. The choice of short amplicons led to greater melting temperature (Tm) differences between the two homozygous genotypes, which allowed accurate genotyping without the use of probes or spiking with control DNA. In the case of MTHFR, there is a second rarer SNP (rs4846051) close to the A1298C SNP that may result in inaccurate genotyping. We masked this second SNP by placing the primer over it and choosing a base at the polymorphic position that was equally mismatched to both alleles. The HRM assays were done on HRM capable real-time PCR machines rather than stand-alone HRM machines. Monitoring the amplification allows ready identification of samples that may give rise to aberrant melting curves because of PCR abnormalities. We show that samples amplifying markedly late can give rise to shifted melting curves without alteration of shapes and potentially lead to misclassification of genotypes. In conclusion, rapid and high-throughput SNP analysis can be done with probe-free HRM if sufficient attention is paid to amplicon design and quality control to omit aberrantly amplifying samples.
Collapse
Affiliation(s)
- Lasse S Kristensen
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | |
Collapse
|
68
|
Gundry CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, Coyne T, Wall MD, Wittwer CT, Teng DHF. Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Res 2008; 36:3401-8. [PMID: 18448472 PMCID: PMC2425497 DOI: 10.1093/nar/gkn204] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genotyping by high-resolution melting analysis of small amplicons is homogeneous and simple. However, this approach can be limited by physical and chemical components of the system that contribute to intersample melting variation. It is challenging for this method to distinguish homozygous G::C from C::G or A::T from T::A base-pair neutral variants, which comprise ∼16% of all human single nucleotide polymorphisms (SNPs). We used internal oligonucleotide calibrators and custom analysis software to improve small amplicon (42–86 bp) genotyping on the LightScanner®. Three G/C (PAH c.1155C>G, CHK2 c.1-3850G>C and candidate gene BX647987 c.261+22,290C>G) and three T/A (CPS1 c.3405-29A>T, OTC c.299-8T>A and MSH2 c.1511-9A>T) human single nucleotide variants were analyzed. Calibration improved homozygote genotyping accuracy from 91.7 to 99.7% across 1105 amplicons from 141 samples for five of the six targets. The average Tm standard deviations of these targets decreased from 0.067°C before calibration to 0.022°C after calibration. We were unable to generate a small amplicon that could discriminate the BX647987 c.261+22,290C>G (rs1869458) SNP, despite reducing standard deviations from 0.086°C to 0.032°C. Two of the sites contained symmetric nearest neighbors adjacent to the SNPs. Unexpectedly, we were able to distinguish these homozygotes by Tm even though current nearest neighbor models predict that the two homozygous alleles would be identical.
Collapse
Affiliation(s)
- Cameron N Gundry
- Idaho Technology Inc., 390 Wakara Way and Department of Pathology, University of Utah School of Medicine, 50 North Medical Drive 5B426, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2008; 8:597-608. [PMID: 17559349 DOI: 10.2217/14622416.8.6.597] [Citation(s) in RCA: 456] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High-resolution melting of DNA is a simple solution for genotyping, mutation scanning and sequence matching. The melting profile of a PCR product depends on its GC content, length, sequence and heterozygosity and is best monitored with saturating dyes that fluoresce in the presence of double-stranded DNA. Genotyping of most variants is possible by the melting temperature of the PCR products, while all variants can be genotyped with unlabeled probes. Mutation scanning and sequence matching depend on sequence differences that result in heteroduplexes that change the shape of the melting curve. High-resolution DNA melting has several advantages over other genotyping and scanning methods, including an inexpensive closed tube format that is homogenous, accurate and rapid. Owing to its simplicity and speed, the method is a good fit for personalized medicine as a rapid, inexpensive method to predict therapeutic response.
Collapse
Affiliation(s)
- Gudrun H Reed
- Department of Pathology, University of Utah Medical Center, 5B418, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
70
|
Seipp MT, Pattison D, Durtschi JD, Jama M, Voelkerding KV, Wittwer CT. Quadruplex Genotyping of F5, F2, and MTHFR Variants in a Single Closed Tube by High-Resolution Amplicon Melting. Clin Chem 2008; 54:108-15. [PMID: 17981920 DOI: 10.1373/clinchem.2007.097121] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground: Multiplexed amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, asymmetric PCR, or allele-specific PCR; however, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) analysis requires high-resolution melting analysis and controlled reaction conditions.Methods: We designed 4 amplicons bracketing the F5 [coagulation factor V (proaccelerin, labile factor)] 1691G>A, MTHFR (NADPH) 1298A>C, MTHFR 677C>T, and F2 [coagulation factor II (thrombin)] 20210G>A gene variants to melt at different temperatures by varying amplicon length and adding GC- or AT-rich 5′ tails to selected primers. We used rapid-cycle PCRs with cycles of 19–23 s in the presence of a saturating DNA dye and temperature-correction controls and then conducted a high-resolution melting analysis. Heterozygotes were identified at each locus by curve shape, and homozygous genotypes were assigned by Tm. We blinded samples previously genotyped by other methods before analysis with the multiplex melting assay (n = 110).Results: All samples were correctly genotyped with the exception of 7 MTHFR 1298 samples with atypical melting profiles that could not be assigned. Sequencing revealed that these 5 heterozygotes and 2 homozygotes contained the unexpected sequence variant MTHFR 1317T>C. The use of temperature-correction controls decreased the Tm SD within homozygotes by a mean of 38%.Conclusion: Rapid-cycle PCR with high-resolution melting analysis allows simple and accurate multiplex genotyping to at least a factor of 4.
Collapse
Affiliation(s)
| | | | | | - Mohamed Jama
- ARUP Institute for Clinical and Experimental Pathology
| | - Karl V Voelkerding
- ARUP Institute for Clinical and Experimental Pathology
- Department of Pathology, University of Utah Medical School, 50 N Medical Drive, Salt Lake City, Utah 84132
| | - Carl T Wittwer
- ARUP Institute for Clinical and Experimental Pathology
- ARUP Laboratories, 500 Chipeta Way, Salt Lake City, Utah 84108, and
- Department of Pathology, University of Utah Medical School, 50 N Medical Drive, Salt Lake City, Utah 84132
| |
Collapse
|
71
|
Montgomery J, Wittwer CT, Kent JO, Zhou L. Scanning the Cystic Fibrosis Transmembrane Conductance Regulator Gene Using High-Resolution DNA Melting Analysis. Clin Chem 2007; 53:1891-8. [PMID: 17890437 DOI: 10.1373/clinchem.2007.092361] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Complete gene analysis of the cystic fibrosis transmembrane conductance regulator gene (CFTR) by scanning and/or sequencing is seldom performed because of the cost, time, and labor involved. High-resolution DNA melting analysis is a rapid, closed-tube alternative for gene scanning and genotyping.
Methods: The 27 exons of CFTR were amplified in 37 PCR products under identical conditions. Common variants in 96 blood donors were identified in each exon by high-resolution melting on a LightScanner®. We then performed a subsequent blinded study on 30 samples enriched for disease-causing variants, including all 23 variants recommended by the American College of Medical Genetics and 8 additional, well-characterized variants.
Results: We identified 22 different sequence variants in 96 blood donors, including 4 novel variants and the disease-causing p.F508del. In the blinded study, all 40 disease-causing heterozygotes (29 unique) were detected, including 1 new probable disease-causing variant (c.3500-2A>T). The number of false-positive amplicons was decreased 96% by considering the 6 most common heterozygotes. The melting patterns of most heterozygotes were unique (37 of 40 pairs within the same amplicon), the exceptions being p.F508del vs p.I507del, p.G551D vs p.R553X, and p.W1282X vs c.4002A>G. The homozygotes p.G542X, c.2789 + 5G>A, and c.3849 + 10kbC>T were directly identified, but homozygous p.F508del was not. Specific genotyping of these exceptions, as well as genotyping of the 5T allele of intron 8, was achieved by unlabeled-probe and small-amplicon melting assays.
Conclusions: High-resolution DNA melting methods provide a rapid and accurate alternative for complete CFTR analysis. False positives can be decreased by considering the melting profiles of common variants.
Collapse
Affiliation(s)
- Jesse Montgomery
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
72
|
Seipp MT, Durtschi JD, Liew MA, Williams J, Damjanovich K, Pont-Kingdon G, Lyon E, Voelkerding KV, Wittwer CT. Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting. J Mol Diagn 2007; 9:284-9. [PMID: 17591926 PMCID: PMC1899416 DOI: 10.2353/jmoldx.2007.060136] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
Collapse
Affiliation(s)
- Michael T Seipp
- ARUP Institute for Clinical and Experimental, Pathology, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Montgomery J, Wittwer CT, Palais R, Zhou L. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2007; 2:59-66. [PMID: 17401339 DOI: 10.1038/nprot.2007.10] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol permits the simultaneous mutation scanning and genotyping of PCR products by high-resolution DNA melting analysis. This is achieved using asymmetric PCR performed in the presence of a saturating fluorescent DNA dye and unlabeled oligonucleotide probes. Fluorescent melting curves of both PCR amplicons and amplicon-probe duplexes are analyzed. The shape of the PCR amplicon melting transition reveals the presence of heterozygotes, whereas specific genotyping is enabled by melting of the unlabeled probe-amplicon duplex. Unbiased hierarchal clustering of melting transitions automatically groups different sequence variants; this allows common variants to be easily recognized and genotyped. This technique may be used in both laboratory research and clinical settings to study single-nucleotide polymorphisms and small insertions and deletions, and to diagnose associated genetic disorders. High-resolution melting analysis accomplishes simultaneous gene scanning and mutation genotyping in a fraction of the time required when using traditional methods, while maintaining a closed-tube environment. The PCR requires <30 min (capillaries) or 1.5 h (96- or 384-well plates) and melting acquisition takes 1-2 min per capillary or 5 min per plate.
Collapse
Affiliation(s)
- Jesse Montgomery
- Department of Pathology, UUMC, 5B418, 50 N. Medical Drive, Salt Lake City, Utah 84105, USA
| | | | | | | |
Collapse
|
75
|
Abstract
Abstract
Background: In recent years, denaturing HPLC (DHPLC) has been widely used to screen the whole mitochondrial genome or specific regions of the genome for DNA mutations. The quantification and mathematical modeling of DHPLC results is, however, underexplored.
Methods: We generated site-directed mutants containing some common mutations in the mitochondrial DNA (mtDNA) tRNA(leu) region with different mutation loads and used PCR to amplify the gene segment of interest in these mutants. We then performed restriction digestion followed by slow reannealing to induce heteroduplex formation and analyzed the samples by use of DHPLC.
Results: We observed a quadratic relationship between the heteroduplex peak areas and mutant loads, consistent with the kinetics of heteroduplex formation reported by others. This was modeled mathematically and used to quantify mtDNA mutation load. The method was able to detect a mutation present in a concentration as low as 1% and gave reproducible measurements of the mutations in the range of 2.5%–97.5%.
Conclusion: The quantitative DHPLC assay is well suited for simultaneous detection and quantification of DNA mutations.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093-0935, USA.
| | | | | |
Collapse
|
76
|
Kennerson ML, Warburton T, Nelis E, Brewer M, Polly P, De Jonghe P, Timmerman V, Nicholson GA. Mutation scanning the GJB1 gene with high-resolution melting analysis: implications for mutation scanning of genes for Charcot-Marie-Tooth disease. Clin Chem 2007; 53:349-52. [PMID: 17200131 DOI: 10.1373/clinchem.2006.080010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND X-linked Charcot-Marie-Tooth type 1 disease has been associated with 280 mutations in the GJB1 [gap junction protein, beta 1, 32 kDa (connexin 32, Charcot-Marie-Tooth neuropathy, X-linked)] gene. High-resolution melting analysis with an automated instrument can be used to scan DNA for alterations, but its use in X-linked disorders has not been described. METHODS A 96-well LightScanner for high resolution melting analysis was used to scan amplicons of the GJB1 gene. All mutations reported in this study had been confirmed previously by sequence analysis. DNA samples were amplified with the double-stranded DNA-binding dye LC Green Plus. Melting curves were analyzed as fluorescence difference plots. The shift and curve shapes of melting profiles were used to distinguish controls from patient samples. RESULTS The method detected each of the 23 mutations used in this study. Eighteen known mutations provided validation of the high-resolution melting method and a further 5 mutations were identified in a blind study. Altered fluorescence difference curves for all the mutations were easily distinguished from the wild-type melting profile. CONCLUSION High-resolution melting analysis is a simple, sensitive, and cost-efficient alternative method to scan for gene mutations in the GJB1 gene. The technology has the potential to reduce sequencing burden and would be suitable for mutation screening of exons of large multiexon genes that have been discovered to be associated with Charcot Marie Tooth neuropathy.
Collapse
Affiliation(s)
- Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV. Amplicon DNA Melting Analysis for Mutation Scanning and Genotyping: Cross-Platform Comparison of Instruments and Dyes. Clin Chem 2006; 52:494-503. [PMID: 16423901 DOI: 10.1373/clinchem.2005.063438] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: DNA melting analysis for genotyping and mutation scanning of PCR products by use of high-resolution instruments with special “saturation” dyes has recently been reported. The comparative performance of other instruments and dyes has not been evaluated.
Methods: A 110-bp fragment of the β-globin gene including the sickle cell anemia locus (A17T) was amplified by PCR in the presence of either the saturating DNA dye, LCGreen Plus, or SYBR Green I. Amplicons of 3 different genotypes (wild-type, heterozygous, and homozygous mutants) were melted on 9 different instruments (ABI 7000 and 7900HT, Bio-Rad iCycler, Cepheid SmartCycler, Corbett Rotor-Gene 3000, Idaho Technology HR-1 and LightScanner, and the Roche LightCycler 1.2 and LightCycler 2.0) at a rate of 0.1 °C/s or as recommended by the manufacturer. The ability of each instrument/dye combination to genotype by melting temperature (Tm) and to scan for heterozygotes by curve shape was evaluated.
Results: Resolution varied greatly among instruments with a 15-fold difference in Tm SD (0.018 to 0.274 °C) and a 19-fold (LCGreen Plus) or 33-fold (SYBR Green I) difference in the signal-to-noise ratio. These factors limit the ability of most instruments to accurately genotype single-nucleotide polymorphisms by amplicon melting. Plate instruments (96-well) showed the greatest variance with spatial differences across the plates. Either SYBR Green I or LCGreen Plus could be used for genotyping by Tm, but only LCGreen Plus was useful for heterozygote scanning. However, LCGreen Plus could not be used on instruments with an argon laser because of spectral mismatch. All instruments compatible with LCGreen Plus were able to detect heterozygotes by altered melting curve shape. However, instruments specifically designed for high-resolution melting displayed the least variation, suggesting better scanning sensitivity and specificity.
Conclusion: Different instruments and dyes vary widely in their ability to genotype homozygous variants and scan for heterozygotes by whole-amplicon melting analysis.
Collapse
Affiliation(s)
- Mark G Herrmann
- Institute for Clinical and Experimental Pathology, ARUP, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|