51
|
Muruganandan S, Dranse HJ, Rourke JL, McMullen NM, Sinal CJ. Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells 2013; 31:2172-82. [DOI: 10.1002/stem.1450] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Shanmugam Muruganandan
- Department of Pharmacology, Faculty of Medicine; Dalhousie University; Halifax Nova Scotia Canada
| | - Helen J. Dranse
- Department of Pharmacology, Faculty of Medicine; Dalhousie University; Halifax Nova Scotia Canada
| | - Jillian L. Rourke
- Department of Pharmacology, Faculty of Medicine; Dalhousie University; Halifax Nova Scotia Canada
| | - Nichole M. McMullen
- Department of Pharmacology, Faculty of Medicine; Dalhousie University; Halifax Nova Scotia Canada
| | - Christopher J. Sinal
- Department of Pharmacology, Faculty of Medicine; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
52
|
|
53
|
McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 2013; 228:1793-8. [PMID: 23389860 DOI: 10.1002/jcp.24340] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 12/31/2022]
Abstract
Osteoporosis can result from intestinal inflammation, as is seen with inflammatory bowel disease. Probiotics, microorganisms that provide a health benefit to the host when ingested in adequate amounts, can have anti-inflammatory properties and are currently being examined to treat inflammatory bowel disease. Here, we examined if treating healthy male mice with Lactobacillus reuteri ATCC PTA 6475 (a candidate probiotic with anti-TNFα activity) could affect intestinal TNFα levels and enhance bone density. Adult male mice were given L. reuteri 6475 orally by gavage for 3×/week for 4 weeks. Examination of jejunal and ileal RNA profiles indicates that L. reuteri suppressed basal TNFα mRNA levels in the jejunum and ileum in male mice, but surprisingly not in female mice. Next, we examined bone responses. Micro-computed tomography demonstrated that L. reuteri 6475 treatment increased male trabecular bone parameters (mineral density, bone volume fraction, trabecular number, and trabecular thickness) in the distal femur metaphyseal region as well as in the lumbar vertebrae. Cortical bone parameters were unaffected. Dynamic and static histomorphometry and serum remodeling parameters indicate that L. reuteri ingestion increases osteoblast serum markers and dynamic measures of bone formation in male mice. In contrast to male mice, L. reuteri had no effect on bone parameters in female mice. Taken together our studies indicate that femoral and vertebral bone formation increases in response to oral probiotic use, leading to increased trabecular bone volume in male mice.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
54
|
Sweeney E, Roberts D, Lin A, Guldberg R, Jacenko O. Defective endochondral ossification-derived matrix and bone cells alter the lymphopoietic niche in collagen X mouse models. Stem Cells Dev 2013; 22:2581-95. [PMID: 23656481 DOI: 10.1089/scd.2012.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.
Collapse
Affiliation(s)
- Elizabeth Sweeney
- 1 Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
55
|
Bidwell JP, Alvarez MB, Hood M, Childress P. Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr Osteoporos Rep 2013; 11:117-25. [PMID: 23471774 DOI: 10.1007/s11914-013-0139-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The skeleton is a high-renewal organ that undergoes ongoing cycles of remodeling. The regenerative bone formation arm ultimately declines in the aging, postmenopausal skeleton, but current therapies do not adequately address this deficit. Bone marrow is the primary source of the skeletal anabolic response and the mesenchymal stem cells (MSCs), which give rise to bone matrix-producing osteoblasts. The identity of these stem cells is emerging, but it now appears that the term 'MSC' has often been misapplied to the bone marrow stromal cell (BMSC), a progeny of the MSC. Nevertheless, the changes in BMSC phenotype associated with age and estrogen depletion likely contribute to the attenuated regenerative competence of the marrow and may reflect alterations in MSC phenotype. Here we summarize current concepts in bone marrow MSC identity, and within this context, review recent observations on changes in bone marrow population dynamics associated with aging and menopause.
Collapse
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine (IUSM), Medical Science Bldg 5035, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
56
|
Interaction among cells of bone, immune system, and solid tumors leads to bone metastases. Clin Dev Immunol 2013; 2013:315024. [PMID: 23710201 PMCID: PMC3655477 DOI: 10.1155/2013/315024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/08/2013] [Indexed: 01/05/2023]
Abstract
Bone metastases are a dismal consequence for different types of solid tumors, such as breast, prostate, lung, and kidney cancer. The mechanisms regulating the interactions among bone, immune system, and tumor cells have been deeply investigated, and many studies are ongoing to define the specific role of the different cells in the bone metastatic process. The affinity of some tumors to growth in bone results from the special microenvironment provided by bone. Moreover, immune system and bone have a bidirectional relationship: bone cells express surface molecules ruling the expansion of hemopoietic stem cells from which all cells of the mammalian immune system derive, and various immunoregulatory cytokines influence the fate of bone cells. The last findings allow to extend the concept of vicious cycle and add T cells as mediators of the tumor growth in bone.
Collapse
|
57
|
Boyce BF. Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res 2013; 28:711-22. [PMID: 23436579 PMCID: PMC3613781 DOI: 10.1002/jbmr.1885] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 01/06/2023]
Abstract
Osteoclasts are multinucleated myeloid lineage cells formed in response to macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by fusion of bone marrow-derived precursors that circulate in the blood and are attracted to sites of bone resorption in response to factors, such as sphingosine-1 phosphate signaling. Major advances in understanding of the molecular mechanisms regulating osteoclast functions have been made in the past 20 years, mainly from mouse and human genetic studies. These have revealed that osteoclasts express and respond to proinflammatory and anti-inflammatory cytokines. Some of these cytokines activate NF-κB and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling to induce osteoclast formation and activity and also regulate communication with neighboring cells through signaling proteins, including ephrins and semaphorins. Osteoclasts also positively and negatively regulate immune responses and osteoblastic bone formation. These advances have led to development of new inhibitors of bone resorption that are in clinical use or in clinical trials; and more should follow, based on these advances. This article reviews current understanding of how bone resorption is regulated both positively and negatively in normal and pathologic states.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
58
|
Deselm CJ, Zou W, Teitelbaum SL. Halofuginone prevents estrogen-deficient osteoporosis in mice. J Cell Biochem 2013; 113:3086-92. [PMID: 22581682 DOI: 10.1002/jcb.24185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Osteoporosis is characterized by enhanced activity of osteoclasts relative to that of osteoblasts. Thus, the principal means of treating the most common form of osteoporosis, namely that attending menopause, is inhibition of osteoclast formation or function. We have demonstrated that the inflammatory cytokine, IL-17, mediates estrogen-deficient osteoporosis, in mice, and that genetic blockade of its function prevents ovariectomy-induced bone loss. We herein report that the febrifugine derivative, halofuginone, a small molecule drug, reduces abundance of Th-17 cells in mice and prevents estrogen-deficient osteoporosis by diminishing bone resorption without impacting osteogenesis. In keeping with IL-17 mediating its osteoclastogenic effects by promoting RANK ligand expression by osteoblasts, halofuginone does not directly inhibit the bone resorptive cell. Thus, halofuginone, which is presently FDA-approved for treatment of scleroderma, is a candidate therapeutic for post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Carl J Deselm
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
59
|
Cain CJ, Manilay JO. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies. Exp Hematol 2013; 41:3-16. [DOI: 10.1016/j.exphem.2012.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/19/2022]
|
60
|
Abstract
As the population with HIV continues to age, specialists in HIV care are increasingly encountering chronic health conditions, which now include osteoporosis, osteopenia, and fragility fractures. The pathophysiology of the bone effects of HIV infection is complex and includes traditional risk factors for bone loss as well as specific effects due to the virus itself, chronic inflammation, and HAART. Examining risk factors for low bone density and screening of certain patients is suggested, and consideration should be given to treatment for those considered high risk for fracture.
Collapse
Affiliation(s)
- Micol S Rothman
- Department of Medicine, Endocrinology Diabetes and Metabolism, University of Colorado School of Medicine, Aurora, 80045, USA.
| | | |
Collapse
|
61
|
Ross FP. An ELIXIR for bone loss? J Bone Miner Res 2012; 27:2438-41. [PMID: 23165427 DOI: 10.1002/jbmr.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
62
|
DeSelm CJ, Takahata Y, Warren J, Chappel JC, Khan T, Li X, Liu C, Choi Y, Kim YF, Zou W, Teitelbaum SL. IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. J Cell Biochem 2012; 113:2895-902. [PMID: 22511335 DOI: 10.1002/jcb.24165] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Estrogen-deficient osteoporosis may be an inflammatory disorder and we therefore asked if IL-17 participates in its pathogenesis. Deletion of the principal IL-17 receptor (IL-17RA) protects mice from ovariectomy (OVX)-induced bone loss. Further supporting a central role of IL-17 in its pathogenesis, OVX-induced osteoporosis is prevented by a blocking antibody targeting the cytokine. IL-17 promotes osteoclastogenesis by stimulating RANK ligand (RANKL) expression by osteoblastic cells, mediated by the IL-17RA SEFIR/TILL domain. Estrogen deprivation, however does not enhance IL-17RA mRNA expression by osteoblasts or in bone, but augments that of Act1, an IL-17RA-interacting protein and signaling mediator. Similar to IL-17RA(-/-) mice, those lacking Act1 are protected from OVX-induced bone loss. Also mirroring IL-17RA-deficiency, absence of Act1 in osteoblasts, but not osteoclasts, impairs osteoclastogenesis via dampened RANKL expression. Transduction of WT Act1 into Act1(-/-) osteoblasts substantially rescues their osteoclastogenic capacity. The same construct, however, lacking its E3 ligase U-box or its SEFIR domain, which interacts with its counterpart in IL-17RA, fails to do so. Estrogen deprivation, therefore, promotes RANKL expression and bone resorption in association with upregulation of the IL-17 effector, Act1, supporting the concept that post-menopausal osteoporosis is a disorder of innate immunity.
Collapse
Affiliation(s)
- Carl J DeSelm
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol 2012; 10:655-66. [PMID: 22886237 DOI: 10.1038/nrmicro2848] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic immune activation is increased in HIV-infected individuals, even in the setting of virus suppression with antiretroviral therapy. Although numerous factors may contribute, microbial products have recently emerged as potential drivers of this immune activation. In this Review, we describe the intestinal damage that occurs in HIV infection, the evidence for translocation of microbial products into the systemic circulation and the pathways by which these products activate the immune system. We also discuss novel therapies that disrupt the translocation of microbial products and the downstream effects of microbial translocation.
Collapse
Affiliation(s)
- Netanya G Sandler
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
64
|
Vidal C, Bermeo S, Li W, Huang D, Kremer R, Duque G. Interferon gamma inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice. Stem Cells 2012; 30:1042-8. [PMID: 22331815 DOI: 10.1002/stem.1063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interferon gamma (IFNγ) has been reported to induce osteoblastogenesis from mesenchymal stem cells (MSCs) both in vitro and in vivo. With ageing, adipocytes outnumber osteoblasts within the bone microenvironment leading to a decrease in bone formation. Since both osteoblasts and adipocytes are of mesenchymal origin, we hypothesized that IFNγ treatment might negatively affect adipogenesis while stimulating osteoblastogenesis in human MSC. To test this hypothesis, human MSCs were induced to differentiate into adipocytes in the presence or absence of osteogenic doses of IFNγ (1, 10, and 100 ng/ml). IFNγ-treated MSC showed a decrease in adipocyte differentiation and lipid deposition when compared with vehicle-treated controls. Additionally, adipogenic markers were significantly decreased by IFNγ treatment at the same doses that have been reported to have a strong osteogenic effect in vitro. Furthermore, DNA binding of peroxisome proliferator-activated receptor gamma was significantly lower in IFNγ-treated differentiating MSC. Subsequently, ovariectomized C57BL6 mice were treated with osteogenic doses of IFNγ three times a week for 6 weeks. In distal femur, treated mice showed significantly higher hematopoiesis concomitant with lower levels of fat volume/total volume, adipocyte number, and expression of adipogenic markers when compared with the vehicle-treated mice. Together, these findings demonstrate that, at osteogenic doses, IFNγ also acts as an inhibitor of adipogenesis in vitro and prevents marrow fat infiltration while favors hematopoiesis in ovariectomized mice.
Collapse
Affiliation(s)
- Christopher Vidal
- Ageing Bone Research Program, Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia
| | | | | | | | | | | |
Collapse
|
65
|
Wolf M, Lossdörfer S, Abuduwali N, Jäger A. Potential role of high mobility group box protein 1 and intermittent PTH (1-34) in periodontal tissue repair following orthodontic tooth movement in rats. Clin Oral Investig 2012; 17:989-97. [PMID: 22777389 DOI: 10.1007/s00784-012-0777-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/21/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Recent studies indicate that high mobility group box protein 1 (HMGB1) can be released by necrotic and damaged cells and functions as an alarmin that is recognized by the innate immune system. Little is known about the role of HMGB1 within the periodontal ligament (PDL). Therefore, we examined HMGB1 expression by PDL cells in vitro and compared the findings to an in vivo model of orthodontically induced tooth root resorption. In addition, we addressed the question of whether a potentially anabolic intermittent administration of parathyroid hormone (iPTH) would modulate the expression of HMGB1. MATERIALS AND METHODS In confluent PDL cell cultures, HMGB1 messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction. In a rat model comprising 25 animals, mechanical loading for 5 days was followed by administration of either iPTH (1-34) systemically or sham injections for up to 56 days. HMGB1 expression was determined by means of immunohistochemistry and histomorphometry. RESULTS The in vitro experiments revealed an inhibitory effect of iPTH on basal HMGB1 mRNA expression in confluent PDL cells. In vivo, the mechanical force-induced enhanced HMGB1 protein expression declined time dependently. Intermittent PTH further inhibited HMGB1 expression. The significantly higher basal HMGB1 protein expression in the former compression side was followed by a more pronounced time- and iPTH-dependent decline in the same area. CONCLUSIONS These data indicate a major role for HMGB1 in the regulation of PDL wound healing following mechanical load-induced tissue injury. CLINICAL RELEVANCE The findings point to the potential benefit of iPTH in the attempt to support these immune-associated reparative processes.
Collapse
Affiliation(s)
- M Wolf
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | | | | | | |
Collapse
|
66
|
Marzano A, Trevisan V, Eller-Vainicher C, Cairoli E, Marchese L, Morelli V, Beck-Peccoz P, Crosti C, Chiodini I. Evidence for vitamin D deficiency and increased prevalence of fractures in autoimmune bullous skin diseases. Br J Dermatol 2012; 167:688-91. [DOI: 10.1111/j.1365-2133.2012.10982.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Cain CJ, Rueda R, McLelland B, Collette NM, Loots GG, Manilay JO. Absence of sclerostin adversely affects B-cell survival. J Bone Miner Res 2012; 27:1451-61. [PMID: 22434688 PMCID: PMC3377789 DOI: 10.1002/jbmr.1608] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased osteoblast activity in sclerostin-knockout (Sost(-/-)) mice results in generalized hyperostosis and bones with small bone marrow cavities resulting from hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B-cell development. In this study, we investigated whether high bone mass environments affect B-cell development via the utilization of Sost(-/-) mice, a model of sclerosteosis. We found the bone marrow of Sost(-/-) mice to be specifically depleted of B cells because of elevated apoptosis at all B-cell developmental stages. In contrast, B-cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B-cell defects in Sost(-/-) mice are non-cell autonomous, and this was confirmed by transplantation of wild-type (WT) bone marrow into lethally irradiated Sost(-/-) recipients. WT→Sost(-/-) chimeras displayed a reduction in B cells, whereas reciprocal Sost(-/-) →WT chimeras did not, supporting the idea that the Sost(-/-) bone environment cannot fully support normal B-cell development. Expression of the pre-B-cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost(-/-) mice, whereas the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells.
Collapse
Affiliation(s)
- Corey J Cain
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | | | | | | | | | | |
Collapse
|
68
|
T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One 2012; 7:e40044. [PMID: 22768215 PMCID: PMC3386936 DOI: 10.1371/journal.pone.0040044] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/31/2012] [Indexed: 12/19/2022] Open
Abstract
While it is well known that the presence of lymphocytes and cytokines are important for fracture healing, the exact role of the various cytokines expressed by cells of the immune system on osteoblast biology remains unclear. To study the role of inflammatory cytokines in fracture repair, we studied tibial bone healing in wild-type and Rag1(-/-) mice. Histological analysis, µCT stereology, biomechanical testing, calcein staining and quantitative RNA gene expression studies were performed on healing tibial fractures. These data provide support for Rag1(-/-) mice as a model of impaired fracture healing compared to wild-type. Moreover, the pro-inflammatory cytokine, IL-17F, was found to be a key mediator in the cellular response of the immune system in osteogenesis. In vitro studies showed that IL-17F alone stimulated osteoblast maturation. We propose a model in which the Th17 subset of T-lymphocytes produces IL-17F to stimulate bone healing. This is a pivotal link in advancing our current understanding of the molecular and cellular basis of fracture healing, which in turn may aid in optimizing fracture management and in the treatment of impaired bone healing.
Collapse
|
69
|
D'Amico L, Roato I. Cross-talk between T cells and osteoclasts in bone resorption. BONEKEY REPORTS 2012; 1:82. [PMID: 23951473 PMCID: PMC3727728 DOI: 10.1038/bonekey.2012.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/27/2012] [Indexed: 01/01/2023]
Abstract
Osteoclasts (OCs) are the exclusive bone resorptive cell, they derive from monocyte/macrophage precursors, which can circulate within the hematopoietic cell pool or be resident in a number of tissues. The maintenance of an adequate bone mass depends on the controlled and timely removal of old, damaged bone. The increase of OC activity is observed in many pathologies characterised by bone loss, such as osteoporosis, rheumatoid arthritis, bone metastasis, periprosthetic osteolysis in aseptic loosening of arthroplasty and also in pediatric diseases, such as phenilketonuria and 21-hydroxylase deficiency. During the bone resorption process there is an intense cross-talk between immune system cells and OCs. In particular, T cells release factors and cytokines, which rule osteoclastogenesis, and on the other hand, OCs produce factors that act on T cells. A primary mediator of osteoclastogenesis is the receptor activator of nuclear factor-κβ-RANK ligand-osteoprotegerin system, but also other cytokines promote OC activation according to the different pathologies. This review summarizes the main mechanisms promoting osteoclastogenesis in diseases characterised by bone loss, focusing on factors and cytokines involved in this process and on the interaction between OCs and T cells.
Collapse
Affiliation(s)
| | - Ilaria Roato
- CeRMS, A.O.U. San Giovanni Battista, Turin, Italy
| |
Collapse
|
70
|
Aversa A, Bruzziches R, Francomano D, Greco EA, Fornari R, Di Luigi L, Lenzi A, Migliaccio S. Effects of long-acting testosterone undecanoate on bone mineral density in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 36 months controlled study. Aging Male 2012; 15:96-102. [PMID: 22439807 DOI: 10.3109/13685538.2011.631230] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We evaluated the effects of long-term testosterone replacement therapy (TRT) on the bone mineral density (BMD) in obese patients with metabolic syndrome (MS) and late-onset hypogonadism (LOH). Sixty men (mean age 57 ± 10) with low serum testosterone (T < 320 ng/dL) and MS regardless the presence of osteoporosis were enrolled. Forty men received intramuscular T-undecanoate (TU) four times/year for 36 months and 20 age-matched hypogonadal men with MS in whom T treatment was contraindicated were used as controls. Hormonal, biochemical markers, vertebral and femoral BMD by dual-energy x-ray absorptiometry were measured. At baseline, overall patients had mild osteopenia (lumbar BMD= 0.891 ± 0.097 g/cm(2); femoral BMD= 0.847 ± 0.117 g/cm(2)). TU induced a significant improvement of bone mass after 36 months (lumbar BMD=1.053 ± 0.145 g/cm(2); p < 0.002; femoral BMD=0.989 ± 0.109; p < 0.003 g/cm(2)) with a 5%/year increase and a significant reduction in hs-CRP without changes in body mass index. A direct relationship between serum T and BMD increments at the lumbar (r(2) = 0.66, p < 0.0001) and femoral (r(2) =0.52, p < 0.0001) sites was demonstrated. Study adherence was 50% without serious side effects. Long-term TRT in middle-aged men with LOH and MS determines a significant increase in both vertebral and femoral BMD related to increased serum T levels, probably independently from estradiol modifications.
Collapse
Affiliation(s)
- Antonio Aversa
- Department of Experimental Medicine, Medical Pathophysiology, Food and Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Plasma and urinary levels of cytokines in patients with idiopathic hypercalciuria. Pediatr Nephrol 2012; 27:941-8. [PMID: 22223141 DOI: 10.1007/s00467-011-2094-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Recent studies suggest that cytokines modulate bone turnover. Idiopathic hypercalciuria (IH) seems to be associated with bone mineral loss. Therefore, the aim of this study was to assess cytokines involved in bone turnover in patients with IH. METHODS Plasma and spot-urine levels of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha (TNF-α), transforming growth factor β1 (TGF-β1), and monocyte chemoattractant protein (MCP-1) were measured in 70 children and adolescents with IH and in 37 healthy controls. Patients with IH were subdivided according to their calciuria at the time of sample collection: ≥4 mg/kg/day (persistent IH, n=27) and below 4 mg/kg/day (controlled IH, n=43). Cytokines were determined by enzyme-linked immunoassay. RESULTS Plasma and urinary concentrations of IL-1β, IL-6, IL-8, and TNF-α were undetectable in all groups. No differences were found between controlled and persistent hypercalciuria for plasma and urinary levels of MCP-1 and TGF-β1. On the other hand, MCP-1 levels were significantly higher in both subgroups of IH in comparison to healthy controls. Furthermore, urinary MCP-1 levels of IH patients correlated positively with bone mineral content (p=0.013). CONCLUSION Although cytokine measurements did not allow the differentiation between persistent and controlled IH, our findings suggest that MCP-1 might play a role in patients with IH.
Collapse
|
72
|
Zhao R. Immune regulation of osteoclast function in postmenopausal osteoporosis: a critical interdisciplinary perspective. Int J Med Sci 2012; 9:825-32. [PMID: 23136547 PMCID: PMC3491443 DOI: 10.7150/ijms.5180] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/15/2012] [Indexed: 01/11/2023] Open
Abstract
Extensive studies on cross talk between immune and skeletal systems in autoimmune diseases give rise to a new discipline of 'osteoimmunology', which explores the molecular regulation of osteoclasts by immune system. Postmenopausal osteoporosis is recognized as a cytokine driven disease, but the mechanism that how estrogen deficiency interplaying with cytokines to stimulate bone loss remains to be elucidated. Although the effect of individual cytokines on osteoclast formation is well characterized, the major challenge is to fit a multitude of redundant pathways and cytokines into a systemic model of postmenopausal osteoporosis. This review presents current findings and hypothesis to explain estrogen deficiency-stimulated bone loss in a critical interdisciplinary perspective. To better understand the interaction between osteoclasts and immune system in postmenopausal osteoporosis, many of the lessons have been explored in animal models.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Zhejiang, Jinhua, China.
| |
Collapse
|
73
|
Pacios S, Kang J, Galicia J, Gluck K, Patel H, Ovaydi-Mandel A, Petrov S, Alawi F, Graves DT. Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J 2011; 26:1423-30. [PMID: 22179526 DOI: 10.1096/fj.11-196279] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Periodontitis is the most common lytic bone disease and one of the first clinical manifestations of diabetes. Diabetes increases the risk of periodontitis. The aim of the present study was to examine mechanisms by which diabetes aggravates periodontitis. Ligature-induced periodontitis was examined in Goto-Kakizaki rats with type 2 diabetes. A tumor necrosis factor (TNF)-specific-inhibitor, pegsunercept, was applied to diabetic rats after the onset of periodontal disease. Interferon-γ (IFN-γ), TNF-α, interleukin-1 β (IL-1β), fibroblast growth factor-2 (FGF-2), transforming growth factor beta-1 (TGFβ-1), bone morphogenetic protein-2 (BMP-2), and BMP-6 were measured by real-time RT-PCR, and histological sections were examined for leukocyte infiltration and several parameters related to bone resorption and formation. Inflammation was prolonged in diabetic rats and was reversed by the TNF inhibitor, which reduced cytokine mRNA levels, leukocyte infiltration, and osteoclasts. In contrast, new bone and osteoid formation and osteoblast numbers were increased significantly vs. untreated diabetic animals. TNF inhibition in diabetic animals also reduced apoptosis, increased proliferation of bone-lining cells, and increased mRNA levels of FGF-2, TGFβ-1, BMP-2, and BMP-6. Thus, diabetes prolongs inflammation and osteoclastogenesis in periodontitis and through TNF limits the normal reparative process by negatively modulating factors that regulate bone.
Collapse
Affiliation(s)
- Sandra Pacios
- Department of Periodontics, University of Pennsylvania, 240 S. 40th St., Levy 122, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chen Y, Zheng X, Zou R, Wang J. Effects of cyclosporin-a on rat skeletal biomechanical properties. BMC Musculoskelet Disord 2011; 12:240. [PMID: 22024110 PMCID: PMC3213210 DOI: 10.1186/1471-2474-12-240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 10/24/2011] [Indexed: 12/02/2022] Open
Abstract
Background Cyclosprin A (CsA) has been widely used clinically to treat the patients who have undergone organ transplantation or acquired autoimmune disease. The purpose of this study is to determine the effects of three different doses of CsA (1.5, 7.5, 15 mg/kg body weight) on the skeletal biomechanical proprieties at different anatomic sites in rats. Methods Fifty-six male 3-month-old Wistar rats were divided into five groups. Eight rats were randomly chosen as the basal group, while the others were randomly distributed into four groups of 12 animals each. One group was used as controls and received daily subcutaneous injection of 1 ml of saline solution; another three experimental groups were injected subcutaneously with CsA in a daily dose of 1.5, 7.5, and 15 mg/kg body weight respectively for 60 days. The bone biomechanical proprieties, the bone mineral density, as well as the trabecular bone architecture were measured at different anatomic sites, i.e. the lumbar vertebra, the middle femur shaft, and the proximal femur. Results CsA therapy at 7.5 and 1.5 mg/kg can significantly reduce the ultimate force, the ultimate stress and the energy absorption per unit of bone volume of the lumbar vertebra, with no effect on the middle femur. CsA therapy at 7.5 mg/kg can significantly reduce the ultimate force, the ultimate stress and the Young's modulus of the femoral neck, but not CsA at 1.5 mg/kg. Furthermore, CsA therapy at 7.5 and 1.5 mg/kg can significantly reduce the bone mineral density of the lumber vertebra and the proximal femur, but have no effect on the middle femur. CsA therapy at 7.5 and 1.5 mg/kg can also significantly reduce the bone volume fraction of the proximal tibia and the lumber vertebra, but has no effect on the cortical thickness of the middle femoral shaft. In the 15 mg/kg CsA group only one rat survived, and the kidney and liver histology of the survived rat showed extensive tissue necrosis. Conclusion Long-term use of CsA can weaken the biomechanical properties and thus increase the fracture rate of the lumbar vertebra and the proximal femur. However, CsA therapy has less effect on the middle femur shaft. The effects of CsA on skeleton are site-specific.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Orthopedics, Drum Tower Hospital of Nanjing, affiliated to the Medical School of Nanjing University, Zhongshan North Road, No,381, 210008, Nanjing, Jiangsu Province, PR China.
| | | | | | | |
Collapse
|
75
|
Affiliation(s)
- Andrew E Horvai
- Department of Pathology, University of California, San Francisco, San Francisco, California 94402, USA.
| | | |
Collapse
|
76
|
Malet A, Bournaud E, Lan A, Mikogami T, Tomé D, Blais A. Bovine lactoferrin improves bone status of ovariectomized mice via immune function modulation. Bone 2011; 48:1028-35. [PMID: 21303707 DOI: 10.1016/j.bone.2011.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 02/02/2023]
Abstract
We have previously shown that bovine lactoferrin (bLF) supplementation can have a beneficial effect on postmenopausal bone loss by modulating bone formation and resorption. A direct effect of bLF on bone metabolism is support by its presence in mice blood. Moreover we know that LF plays a key role in innate immunity and recent studies have shown its ability to modulate adaptive immunity. In particular bLF ingestion prevents recruitment and activation of immune cells at inflammatory sites. We propose that LF through its ability to modulate maturation and differentiation of leucocytes can participate to abolish the deregulation induced by estrogen deficiency on T cells. This study evaluated the effects of bovine lactoferrin on immune function in ovariectomized mice. We investigated whether bLF ingestion could prevent bone loss via modulation of immune function. Three-month-old female C3H mice were either ovariectomized or sham-operated and fed for 1, 2 or 4 months with a control diet (AIN-93M) or the same diet including 10g bLF/kg diet. Bone mineral density was determined using a Lunar Piximus densitometer. The immune parameters were assessed by flow cytometry. In addition, Real-Time PCR was performed to quantify TNFα expression and plasma cytokines were measured at 4 months with Luminex. Ovariectomy induced significant changes on bone parameters and increased recruitment of macrophages, dendritic cells, and B and T cells associated with T lymphocyte activation in bone marrow. Compared to the control diet, ingestion of bLF-enriched diet for 2 months prevented T cell activation and restored dendritic and B cell populations in the bone micro-environment in ovariectomized mice. Furthermore, TNFα expression in bone was decreased by bLF supplementation after 2 and 4 months. Similarly, a decreased plasma level of TNFα was observed concomitantly to an increase of IL-10 level. In conclusion, these experiments suggest that bLF can mediate the prevention of lymphocyte activation and cytokine release in the bone micro-environment. Dietary bLF supplementation could have a beneficial effect on postmenopausal bone loss by modulating immune function.
Collapse
Affiliation(s)
- Arnaud Malet
- AgroParisTech, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | | | | | |
Collapse
|
77
|
Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011; 19:192-205. [PMID: 21295524 PMCID: PMC3040415 DOI: 10.1016/j.ccr.2010.12.022] [Citation(s) in RCA: 453] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/17/2010] [Accepted: 11/10/2010] [Indexed: 02/06/2023]
Abstract
Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway's contribution to metastasis remains unknown. Here, we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cytokine TGFβ that is released during bone destruction. Importantly, γ-secretase inhibitor treatment reduces Jagged1-mediated bone metastasis by disrupting the Notch pathway in stromal bone cells. These findings elucidate a stroma-dependent mechanism for Notch signaling in breast cancer and provide rationale for using γ-secretase inhibitors for the treatment of bone metastasis.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xudong Dai
- Merck Research Laboratories, Boston, MA 02115, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Breast Cancer Program, Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
78
|
Santos ACS, Lima EM, Oliveira EA, Simões e Silva AC. Bone disease and cytokines in idiopathic hypercalciuria: a review. J Pediatr Endocrinol Metab 2011; 24:405-10. [PMID: 21932573 DOI: 10.1515/jpem.2011.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone remodeling is a continuous and dynamic process of skeletal destruction and renewal. A complex regulatory mechanism with the participation of several cytokines precisely defines the role of osteoclasts in the chain of events leading to bone resorption. There are multiple mechanisms underlying the regulation of bone resorption, which can involve increased calcium excretion and decreased bone density in patients with idiopathic hypercalciuria (IH). However, the pathogenesis of bone mass reduction in IH remains uncertain. The purpose of this review is to summarize the recent published evidence on the possible mechanisms by which cytokines could be associated with the pathogenesis of IH.
Collapse
Affiliation(s)
- Augusto C S Santos
- Department of Pediatrics, Pediatric Nephrology Unit, Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
79
|
Horner KC, Troadec JD, Blanchard MP, Dallaporta M, Pio J. Receptors for leptin in the otic labyrinth and the cochlear-vestibular nerve of guinea pig are modified in hormone-induced anorexia. Hear Res 2010; 270:48-55. [PMID: 20875846 DOI: 10.1016/j.heares.2010.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 01/13/2023]
Abstract
Metabolic syndromic inner ear pathology is a recognized condition in clinical practice but the possible causes remain controversial. We have previously reported that chronically-implanted estrogen implants in guinea pig results in hyperprolactinemia and hearing loss together with otic bone dysmorphology. The animals also present with anorexia. The hormone leptin has major roles in the regulation of satiety as well as bone metabolism and so we hypothesized that leptin might contribute to pathology of the otic labyrinth. We employed immunohistochemistry to investigate leptin receptor (ObR) expression. In control animals, ObR immunolabeling was not detected in the bone of the otic capsule but immunolabeling was observed in the cochlear-vestibular nerve. The labeling was associated with the astrocytic glial dome area, which marks the transition between central and peripheral parts of the nerve. In estrogen-treated animals, positive-ObR immunolabeling was observed in osteoblasts in new bone of the otic capsule and the ObR labeling was reduced in the cochlear-vestibular nerve compared to controls. The data provide evidence that leptin may target the labyrinth - affecting the bone and the nerve - and so could contribute to ongoing protection of the inner ear. Leptin disturbance might contribute to metabolic syndromes involving the audiovestibular system.
Collapse
Affiliation(s)
- Kathleen C Horner
- CRN2M-Dept Physiologie Neurovégétative, Université Paul Cézanne, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France.
| | | | | | | | | |
Collapse
|