51
|
Li Y, Xiao L, Wei D, Liu S, Zhang Z, Lian R, Wang L, Chen Y, Jiang J, Xiao Y, Liu C, Li Y, Zhao J. Injectable Biomimetic Hydrogel Guided Functional Bone Regeneration by Adapting Material Degradation to Tissue Healing. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202213047] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 01/06/2025]
Abstract
AbstractThe treatment of irregular bone defects remains a clinical challenge since the current biomaterials (e.g., calcium phosphate bone cement (CPC)) mainly act as inert substitutes, which are incapable of transforming into a regenerated host bone (termed functional bone regeneration). Ideally, the implant degradation rate should adapt to that of bone regeneration, therefore providing sufficient physicochemical support and giving space for bone growth. This study aims to develop an injectable biomaterial with bone regeneration‐adapted degradability, to reconstruct a biomimetic bone‐like structure that can timely transform into new bone, facilitating functional bone regeneration. To achieve this goal, a hybrid (LP‐CPC@gelatin, LC) hydrogel is synthesized via one‐step incorporation of laponite (LP) and CPC into gelatin hydrogel, and the LC gel degradation rate is controlled by adjusting the LP/CPC ratio to match the bone regeneration rate. Such an LC hydrogel shows good osteoinduction, osteoconduction, and angiogenesis effects, with complete implant‐to‐new bone transformation capacity. This 2D nanoclay‐based bionic hydrogel can induce ectopic bone regeneration and promote ligament graft osseointegration in vivo by inducing functional bone regeneration. Therefore, this study provides an advanced strategy for functional bone regeneration and an injectable biomimetic biomaterial for functional skeletal muscle repair in a minimally invasive therapy.
Collapse
Affiliation(s)
- Yamin Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering Centre for Biomedical Technologies Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane QLD 4059 Australia
| | - Daixu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Department of Life Sciences and Medicine Northwest University Xi'an 710069 China
| | - Shengyang Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Zeren Zhang
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Ruixian Lian
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Liren Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Yunsu Chen
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Jia Jiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering Centre for Biomedical Technologies Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane QLD 4059 Australia
- School of Medicine and Dentistry Griffith University Gold Coast QLD 4222 Australia
| | - Changsheng Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education School of Material Science and Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Jinzhong Zhao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
| |
Collapse
|
52
|
Olivier F, Drouet C, Marsan O, Sarou-Kanian V, Rekima S, Gautier N, Fayon F, Bonnamy S, Rochet N. Long-Term Fate and Efficacy of a Biomimetic (Sr)-Apatite-Coated Carbon Patch Used for Bone Reconstruction. J Funct Biomater 2023; 14:246. [PMID: 37233356 PMCID: PMC10218964 DOI: 10.3390/jfb14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Critical bone defect repair remains a major medical challenge. Developing biocompatible materials with bone-healing ability is a key field of research, and calcium-deficient apatites (CDA) are appealing bioactive candidates. We previously described a method to cover activated carbon cloths (ACC) with CDA or strontium-doped CDA coatings to generate bone patches. Our previous study in rats revealed that apposition of ACC or ACC/CDA patches on cortical bone defects accelerated bone repair in the short term. This study aimed to analyze in the medium term the reconstruction of cortical bone in the presence of ACC/CDA or ACC/10Sr-CDA patches corresponding to 6 at.% of strontium substitution. It also aimed to examine the behavior of these cloths in the medium and long term, in situ and at distance. Our results at day 26 confirm the particular efficacy of strontium-doped patches on bone reconstruction, leading to new thick bone with high bone quality as quantified by Raman microspectroscopy. At 6 months the biocompatibility and complete osteointegration of these carbon cloths and the absence of micrometric carbon debris, either out of the implantation site or within peripheral organs, was confirmed. These results demonstrate that these composite carbon patches are promising biomaterials to accelerate bone reconstruction.
Collapse
Affiliation(s)
- Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Vincent Sarou-Kanian
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Samah Rekima
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Franck Fayon
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| |
Collapse
|
53
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
54
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
55
|
Wei S, Wang Y, Sun Y, Gong L, Dai X, Meng H, Xu W, Ma J, Hu Q, Ma X, Peng J, Gu X. Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects. Int J Biol Macromol 2023; 235:123861. [PMID: 36870644 DOI: 10.1016/j.ijbiomac.2023.123861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Compared with most nondegradable or slowly degradable bone repair materials, bioactive biodegradable porous scaffolds with certain mechanical strengths can promote the regeneration of both new bone and vasculature while the cavity created by their degradation can be replaced by the infiltration of new bone tissue. Mineralized collagen (MC) is the basic structural unit of bone tissue, and silk fibroin (SF) is a natural polymer with adjustable degradation rates and superior mechanical properties. In this study, a three-dimensional porous biomimetic composite scaffold with a two-component SF-MC system was constructed based on the advantages of both materials. The spherical mineral agglomerates of the MC were uniformly distributed on the surface and inside the SF skeleton, which ensured good mechanical properties while regulating the degradation rate of the scaffold. Second, the SF-MC scaffold had good osteogenic induction of bone marrow mesenchymal stem cells (BMSCs) and preosteoblasts (MC3T3-E1) and also promoted the proliferation of MC3T3-E1 cells. Finally, in vivo 5 mm cranial defect repair experiments confirmed that the SF-MC scaffold stimulated vascular regeneration and promoted new bone regeneration in vivo by means of in situ regeneration. Overall, we believe that this low-cost biomimetic biodegradable SF-MC scaffold with many advantages has some clinical translation prospects.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China; Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China; Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China
| | - Haoye Meng
- Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenjing Xu
- Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China; Institute of Orthopedics, Tianjin Hospital Tianjin University, Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, No. 155 Munan Road, Heping District, Tianjin 300050, China
| | - Qian Hu
- Department of Geriatrics, The Second People's Hospital of Nantong, Affiliated Rehabilitation Hospital of Nantong University, No. 298 Xinhua Road, Chongchuan District, Nantong 226006, China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China; Institute of Orthopedics, Tianjin Hospital Tianjin University, Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, No. 155 Munan Road, Heping District, Tianjin 300050, China.
| | - Jiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China; Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China.
| |
Collapse
|
56
|
Kalbarczyk M, Szcześ A, Belcarz A, Kazimierczak P, May Z. Zn-doped Mono- and Biphasic Calcium Phosphate Materials Derived from Agriculture Waste and Their Potential Biomedical Applications: Part I. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1971. [PMID: 36903085 PMCID: PMC10003787 DOI: 10.3390/ma16051971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In this study, calcium phosphate materials were obtained via a simple, eco-friendly wet synthesis method using hen eggshells as a calcium source. It was shown that Zn ions were successfully incorporated into hydroxyapatite (HA). The obtained ceramic composition depends on the zinc content. When doped with 10 mol % of Zn, in addition to HA and Zn-doped HA, DCPD (dicalcium phosphate dihydrate) appeared and its content increased with the increase in Zn concentration. All doped HA materials exhibited antimicrobial activity against S. aureus and E. coli. Nevertheless, fabricated samples significantly decreased preosteoblast (MC3T3-E1 Subclone 4) viability in vitro, exerting a cytotoxic effect which probably resulted from their high ionic reactivity.
Collapse
Affiliation(s)
- Marta Kalbarczyk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
- Department of Electrical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Aleksandra Szcześ
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Zoltan May
- Plasma Chemistry Research Group, Institute of Materials and Environmental Sciences, Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
57
|
Haghani N, Hassanzadeh Nemati N, Khorasani MT, Bonakdar S. Fabrication of polycaprolactone/heparinized nano fluorohydroxyapatite scaffold for bone tissue engineering uses. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Nila Haghani
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
58
|
Romagnoli M, Casali M, Zaffagnini M, Cucurnia I, Raggi F, Reale D, Grassi A, Zaffagnini S. Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases. J Clin Med 2023; 12:jcm12051820. [PMID: 36902607 PMCID: PMC10003370 DOI: 10.3390/jcm12051820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
The use of tricalcium phosphate (TCP) as a bone substitute is gaining increasing interest to treat severe acetabular bone defects in revision total hip arthroplasty (rTHA). The aim of this study was to investigate the evidence regarding the efficacy of this material. A systematic review of the literature was performed according to the PRISMA and Cochrane guidelines. The study quality was assessed using the modified Coleman Methodology Score (mCMS) for all studies. A total of eight clinical studies (230 patients) were identified: six on TCP used as biphasic ceramics composed of TCP and hydroxyapatite (HA), and two as pure-phase ceramics consisting of TCP. The literature analysis showed eight retrospective case series, of which only two were comparative studies. The mCMS showed an overall poor methodology (mean score 39.5). While the number of studies and their methodology are still limited, the available evidence suggests safety and overall promising results. A total of 11 cases that underwent rTHA with a pure-phase ceramic presented satisfactory clinical and radiological outcomes at initial short-term follow-up. Further studies at long-term follow-up, involving a larger number of patients, are needed before drawing more definitive conclusions on the potential of TCP for the treatment of patients who undergo rTHA.
Collapse
Affiliation(s)
- Matteo Romagnoli
- Ortopedia e Traumatologia Rizzoli Argenta, 44011 Argenta, FE, Italy
| | - Marco Casali
- Ortopedia e Traumatologia Rizzoli Argenta, 44011 Argenta, FE, Italy
- Correspondence:
| | - Marco Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Ilaria Cucurnia
- Ortopedia e Traumatologia Rizzoli Argenta, 44011 Argenta, FE, Italy
| | - Federico Raggi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Davide Reale
- Ortopedia e Traumatologia Rizzoli Argenta, 44011 Argenta, FE, Italy
| | - Alberto Grassi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| |
Collapse
|
59
|
Jin P, Liu L, Cheng L, Chen X, Xi S, Jiang T. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Biomed Eng Online 2023; 22:12. [PMID: 36759894 PMCID: PMC9912630 DOI: 10.1186/s12938-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Calcium phosphate (Ca-P) bioceramics, including hydroxyapatite (HA), biphasic calcium phosphate (BCP), and beta-tricalcium phosphate (β-TCP), have been widely used in bone reconstruction. Many studies have focused on the osteoconductivity or osteoinductivity of Ca-P bioceramics, but the association between osteoconductivity and osteoinductivity is not well understood. In our study, the osteoconductivity of HA, BCP, and β-TCP was investigated based on the osteoblastic differentiation in vitro and in situ as well as calvarial defect repair in vivo, and osteoinductivity was evaluated by using pluripotent mesenchymal stem cells (MSCs) in vitro and heterotopic ossification in muscles in vivo. Our results showed that the cell viability, alkaline phosphatase activity, and expression of osteogenesis-related genes, including osteocalcin (Ocn), bone sialoprotein (Bsp), alpha-1 type I collagen (Col1a1), and runt-related transcription factor 2 (Runx2), of osteoblasts each ranked as BCP > β-TCP > HA, but the alkaline phosphatase activity and expression of osteogenic differentiation genes of MSCs each ranked as β-TCP > BCP > HA. Calvarial defect implantation of Ca-P bioceramics ranked as BCP > β-TCP ≥ HA, but intramuscular implantation ranked as β-TCP ≥ BCP > HA in vivo. Further investigation indicated that osteoconductivity and osteoinductivity are affected by the Ca/P ratio surrounding the Ca-P bioceramics. Thus, manipulating the appropriate calcium-to-phosphorus releasing ratio is a critical factor for determining the osteoinductivity of Ca-P bioceramics in bone tissue engineering.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and MinistryGuangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lei Liu
- Articular Surgery, The Second Nanning People's Hospital, Third Affiliated Hospital of Guangxi Medical University), Nanning, 530031, Guangxi, China
| | - Lin Cheng
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xichi Chen
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Shanshan Xi
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
60
|
Takabait F, Martínez-Martínez S, Mahtout L, Graba Z, Sánchez-Soto PJ, Pérez-Villarejo L. Effect of L-Glutamic Acid on the Composition and Morphology of Nanostructured Calcium Phosphate as Biomaterial. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1262. [PMID: 36770268 PMCID: PMC9920287 DOI: 10.3390/ma16031262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Calcium phosphate (CaP) with several chemical compositions and morphologies was prepared by precipitation using aqueous solutions of L-Glutamic acid (H2G) and calcium hydroxide, both mixed together with an aqueous solution (0.15 M) of phosphoric acid. Plate-shaped dicalcium phosphate dihydrate (brushite) particles were obtained and identified at a lower concentration of the solution of the reactants. The Ca/P ratio deduced by EDS was ~1, as expected. The nanoscale dimension of carbonate apatite and amorphous calcium phosphate, with variable Ca/P ratios, were revealed by X-ray diffraction (XRD) and scanning electron microscopy and energy dispersive X-ray spectroscopy analysis (SEM-EDS). They were characterized in medium and high concentrations of calcium hydroxide (0.15 M and 0.20 M). The equilibria involved in all the reactions in aqueous solution were determined. The thermodynamic calculations showed a decrease in the amount of chelate complexes with an increase in pH, being the opposite of [CaPO4-] and [CaHG+]. This fluctuation showed an evident influence on the morphology and polymorphism of CaP particles obtained under the present experimental conditions, with potential use as a biomaterial.
Collapse
Affiliation(s)
- Fatah Takabait
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Faculté des Sciences Exactes, Université A. Mira-Béjaïa, Terga Ouzemmour, Béjaïa 06000, Algeria
| | - Sergio Martínez-Martínez
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico y Tecnológico, Cinturón Sur s/n, 23700 Linares, Spain
- Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, Isla de la Cartuja, 41092 Seville, Spain
| | - Laila Mahtout
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Faculté des Sciences Exactes, Université A. Mira-Béjaïa, Terga Ouzemmour, Béjaïa 06000, Algeria
| | - Zahra Graba
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Faculté des Sciences Exactes, Université A. Mira-Béjaïa, Terga Ouzemmour, Béjaïa 06000, Algeria
| | - Pedro J. Sánchez-Soto
- Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, Isla de la Cartuja, 41092 Seville, Spain
| | - Luis Pérez-Villarejo
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico y Tecnológico, Cinturón Sur s/n, 23700 Linares, Spain
| |
Collapse
|
61
|
Nhu Van H, Dinh Tam P, Pham VH, Nguyen DH, Xuan Thang C, Quoc Minh L. Control of red upconversion emission in Er3+–Yb3+– Fe3+ tri–doped biphasic calcium phosphate. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
62
|
Takeuchi S, Fukuba S, Okada M, Nohara K, Sato R, Yamaki D, Matsuura T, Hoshi S, Aoki K, Iwata T. Preclinical evaluation of the effect of periodontal regeneration by carbonate apatite in a canine one-wall intrabony defect model. Regen Ther 2023; 22:128-135. [PMID: 36760990 PMCID: PMC9898576 DOI: 10.1016/j.reth.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Objective This study aimed to histologically compare periodontal regeneration of one-wall intrabony defects treated with open flap debridement, β-tricalcium phosphate (β-TCP), and carbonate apatite (CO3Ap) in dogs. Methods The mandibular third premolars of four beagle dogs were extracted. Twelve weeks after the extraction, a one-wall bone defect of 4 mm × 5 mm (mesio-distal width × depth) was created on the distal side of the mandibular second premolar and mesial side of the fourth premolar. Each defect was randomly allocated to open flap debridement (control group), periodontal regeneration utilizing β-TCP, or CO3Ap. Eight weeks after the surgery, histologic and histometric analyses were performed. Results No ankylosis, infection, or acute inflammation was observed at any of the experimental sites. Newly formed bone and cementum were observed in all experimental groups. The mineral apposition rate of the alveolar bone crest was higher in the CO3Ap group than in the control and β-TCP groups. The ratio of the new bone area was significantly higher in the CO3Ap group than in the control group (P < 0.05). The bone contact percentage of the residual granules was significantly higher in the CO3Ap group than in the β-TCP group (P < 0.05). Conclusion Although this study has limitations, the findings revealed the safety and efficacy of CO3Ap for periodontal regeneration in one-wall intrabony defects in dogs, and CO3Ap has a better ability to integrate with bone than β-TCP.
Collapse
Affiliation(s)
- Shunsuke Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan,Corresponding author. Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. Fax: +81 3 5803 0196.
| | - Munehiro Okada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Nohara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Sato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Yamaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Hoshi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
63
|
The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14020056. [PMID: 36826855 PMCID: PMC9959312 DOI: 10.3390/jfb14020056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Bone is capable of adjusting size, shape, and quality to maintain its strength, toughness, and stiffness and to meet different needs of the body through continuous remodeling. The balance of bone homeostasis is orchestrated by interactions among different types of cells (mainly osteoblasts and osteoclasts), extracellular matrix, the surrounding biological milieus, and waste products from cell metabolisms. Inorganic ions liberated into the localized microenvironment during bone matrix degradation not only form apatite crystals as components or enter blood circulation to meet other bodily needs but also alter cellular activities as molecular modulators. The osteoinductive potential of inorganic motifs of bone has been gradually understood since the last century. Still, few have considered the naturally generated ionic microenvironment's biological roles in bone remodeling. It is believed that a better understanding of the naturally balanced ionic microenvironment during bone remodeling can facilitate future biomaterial design for bone tissue engineering in terms of the modulatory roles of the ionic environment in the regenerative process.
Collapse
|
64
|
Tithito T, Sillapaprayoon S, Pimtong W, Thongbunchoo J, Charoenphandhu N, Krishnamra N, Lert-itthiporn A, Maneeprakorn W, Pon-On W. Development of Biomaterials Based on Biomimetic Trace Elements Co-Doped Hydroxyapatite: Physical, In Vitro Osteoblast-like Cell Growth and In Vivo Cytotoxicity in Zebrafish Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:255. [PMID: 36678008 PMCID: PMC9866680 DOI: 10.3390/nano13020255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Synthesized hydroxyapatite (sHA)-calcium phosphate (CaP) based biomaterials play a vital role and have been widely used in the process of bone regeneration for bone defect repair, due to their similarities to the inorganic components of human bones. However, for bone tissue engineering purpose, the composite components, physical and biological properties, efficacy and safety of sHA still need further improvements. In this work, we synthesized inhomogeneous hydroxyapatite based on biomimetic trace elements (Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr, Co, BO33-, and CO32-) co-doped into HA (THA) (Ca10-δMδ(PO4)5.5(CO3)0.5(OH)2, M = trace elements) via co-precipitation from an ionic solution. The physical properties, their bioactivities using in vitro osteoblast cells, and in vivo cytotoxicity using zebrafish were studied. By introducing biomimetic trace elements, the as-prepared THA samples showed nanorod (needle-like) structures, having a positively charged surface (6.49 meV), and showing paramagnetic behavior. The bioactivity studies demonstrated that the THA substrate can induce apatite particles to cover its surface and be in contact with surrounding simulated body fluid (SBF). In vitro biological assays revealed that the osteoblast-like UMR-106 cells were well-attached with growth and proliferation on the substrate's surface. Upon differentiation, enhanced ALP (alkaline phosphatase) activity was observed for bone cells on the surface of the THA compared with that on the control substrates (sHA). The in vivo performance in embryonic zebrafish studies showed that the synthesized THA particles are nontoxic based on the measurements of essential parameters such as survivability, hatching rate, and the morphology of the embryo. The mechanism of the ions release profile using digital conductivity measurement revealed that sustained controlled release was successfully achieved. These preliminary results indicated that the synthesized THA could be a promising material for potential practical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Tanatsaparn Tithito
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Institute of Molecular Biosciences, Mahidol University, Salaya 73170, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Aurachat Lert-itthiporn
- Responsive Nanomaterials Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand
| | - Weerakanya Maneeprakorn
- Responsive Nanomaterials Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
65
|
Lu T, Ma N, He F, Liang Y, Ye J. Enhanced osteogenesis and angiogenesis of biphasic calcium phosphate scaffold by synergistic effect of silk fibroin coating and zinc doping. J Biomater Appl 2023; 37:1007-1017. [PMID: 36066873 DOI: 10.1177/08853282221124367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biphasic calcium phosphate (BCP) scaffold has been widely applied to bone regeneration because of its good biocompatibility and bone conduction property. However, the low mechanical strength and the lack of angiogenic and osteogenic induction properties have restricted its application in bone tissue regeneration. In this study, we combined zinc (Zn2+) doping and silk fibroin (SF) coating with expectation to enhance compressive strength, osteogenesis and angiogenesis of BCP scaffolds. The phase composition, morphology, porosity, compressive strength, in vitro degradation and cell behaviors were investigated systematically. Results showed that the scaffold coated with SF exhibited almost 3 times of compressive strength without compromising its porosity compared with the uncoated scaffold. Zn2+ doping and SF coating synergistically enhanced the alkaline phosphatase activity and osteogenesis-related genes expression of mouse bone mesenchymal stem cells (mBMSCs). Furthermore, SF coating notably improved the proliferation, cell viability and in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). This work provides a novel way to modify BCP scaffolds simultaneously with enhancing mechanical strength and biological properties.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, 26467South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ning Ma
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, 26467South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| | - Fupo He
- School of Electromechanical Engineering, 47870Guangdong University of Technology, Guangzhou, China
| | - Yongyi Liang
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, 26467South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, 26467South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, 26467South China University of Technology, Guangzhou, China
| |
Collapse
|
66
|
Al‐allaq AA, Kashan JS. A review: In vivo studies of bioceramics as bone substitute materials. NANO SELECT 2022. [DOI: 10.1002/nano.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ali A. Al‐allaq
- Ministry of Higher Education and Scientific Research Office Reconstruction and Projects Baghdad Iraq
| | - Jenan S. Kashan
- Biomedical Engineering Department University of Technology Baghdad Iraq
| |
Collapse
|
67
|
Electrically Polarized Withaferin A and Alginate-Incorporated Biphasic Calcium Phosphate Microspheres Exhibit Osteogenicity and Antibacterial Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010086. [PMID: 36615281 PMCID: PMC9821985 DOI: 10.3390/molecules28010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Biphasic calcium phosphate microspheres were synthesized by the water on oil emulsion method and, subsequently, withaferin A was incorporated in the microspheres to evaluate their efficacy in biomedical applications. These withaferin A and alginate-incorporated biphasic calcium phosphate (BCP-WFA-ALG) microspheres were then negatively polarized, and the formation of biphasic calcium phosphates was validated by X-ray diffraction study. Although the TSDC measurement of the BCP-WFA-ALG microspheres showed the highest current density of 5.37 nA/cm2, the contact angle of the specimen was found to be lower than the control BCP microspheres in all the media. The water uptake into BCP-WFA-ALG microspheres was significantly higher than in the pure BCP microspheres. MTT assay results showed that there was a significant enhancement in cell proliferation rate with the BCP-WFA-ALG composite microspheres. The osteogenic differentiation of MG 63 cells on BCP-WFA-ALG microspheres exhibited an increased expression of osteogenic marker genes in the case of the BCP-WFA-ALG composite microspheres.
Collapse
|
68
|
Ding L, Wang H, Li J, Liu D, Bai J, Yuan Z, Yang J, Bian L, Zhao X, Li B, Chen S. Preparation and characterizations of an injectable and biodegradable high-strength iron-bearing brushite cement for bone repair and vertebral augmentation applications. Biomater Sci 2022; 11:96-107. [PMID: 36445030 DOI: 10.1039/d2bm01535h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brushite cements have good osteoconductive and resorbable properties, but the low mechanical strength and poor injectability limit their clinical applications in load-bearing conditions and minimally invasive surgery. In this study, an injectable brushite cement that contains monocalcium phosphate monohydrate (MCPM) and β-tricalcium phosphate (β-TCP) as its solid phase and ammonium ferric citrate (AFC) solution as the aqueous medium was designed to have high mechanical strength. The optimized formulation achieved a compressive strength of 62.8 ± 7.2 MPa, which is above the previously reported values of hand-mixing brushite cements. The incorporation of AFC prolonged the setting times and greatly enhanced the injectability and degradation properties of the cements. In vitro and in vivo experiments demonstrated that the brushite cements exhibited good biocompatibility and bone regeneration capacity. The novel brushite cement is promising for bone healing in load-bearing applications.
Collapse
Affiliation(s)
- Luguang Ding
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Dachuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Jianzhong Bai
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lu Bian
- Department of Orthopaedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xijiang Zhao
- Department of Orthopaedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Song Chen
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
69
|
Sah MK, Mukherjee S, Flora B, Malek N, Rath SN. Advancement in "Garbage In Biomaterials Out (GIBO)" concept to develop biomaterials from agricultural waste for tissue engineering and biomedical applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1015-1033. [PMID: 36406592 PMCID: PMC9672289 DOI: 10.1007/s40201-022-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Presently on a global scale, one of the major concerns is to find effective strategies to manage the agricultural waste to protect the environment. One strategy that has been drawing attention among the researchers is the development of biocompatible materials from agricultural waste. This strategy implies successful conversion of agricultural waste products (e.g.: cellulose, eggshell etc.) into building blocks for biomaterial development. Some of these wastes contain even bioactive compounds having biomedical applications. The replacement and augmentation of human tissue with biomaterials as alternative to traditional method not only bypasses immune-rejection, donor scarcity, and maintenance; but also provides long term solution to damaged or malfunctioning organs. Biomaterials development as one of the key challenges in tissue engineering approach, resourced from natural origin imparts better biocompatibility due to closely mimicking composition with cellular microenvironment. The "Garbage In, Biomaterials Out (GIBO)" concept, not only recycles the agricultural wastes, but also adds to biomaterial raw products for further product development in tissue regeneration. This paper reviews the conversion of garbage agricultural by-products to the biocompatible materials for various biomedical applications. Graphical abstract The agro-waste biomass processed, purified, modified, and further utilized for the fabrication of biomaterials-based support system for tissue engineering applications to grow living body parts in vitro or in vivo.
Collapse
Affiliation(s)
- Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Sunny Mukherjee
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Bableen Flora
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab India
| | - Naved Malek
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Medak, Telangana India
| |
Collapse
|
70
|
Zhang Q, Xue Z, Wang X, Xu D. Molecular Dynamics Simulation of Biomimetic Biphasic Calcium Phosphate Nanoparticles. J Phys Chem B 2022; 126:9726-9736. [PMID: 36378585 DOI: 10.1021/acs.jpcb.2c06098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biphasic calcium phosphate (BCP) is used as a bone substitute and bone tissue repair material due to its better control over bioactivity and biodegradability. It is crucial to stabilize the implanted biomaterial while promoting bone ingrowth. However, a lack of standard experimental and theoretical protocols to characterize the physicochemical properties of BCP limits the optimization of its composition and properties. Computational simulations can help us better to learn BCP at a nanoscale level. Here, the Voronoi tessellation method was combined with simulated annealing molecular dynamics to construct BCP nanoparticle models of different sizes, which were used to understand the physicochemical properties of BCP (e.g., melting point, infrared spectrum, and mechanical properties). We observed a ∼20 to 30 Å layer of calcium-deficient hydroxyapatite at the HAP/β-TCP interface due to particle migration, which may contribute to BCP stability. The BCP model may stimulate further research into BCP ceramics and multiphasic ceramics. Moreover, our study may facilitate the optimization of compositions of BCP-based biomaterials.
Collapse
Affiliation(s)
- Qiao Zhang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| |
Collapse
|
71
|
Wu Y, Yang L, Chen L, Geng M, Xing Z, Chen S, Zeng Y, Zhou J, Sun K, Yang X, Shen B. Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47491-47506. [PMID: 36251859 DOI: 10.1021/acsami.2c15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adequate new bone regeneration in bone defects has always been a challenge as it requires excellent and efficient osteogenesis. Calcium phosphate (CaP) bioceramics, including hydroxyapatite (HA) and biphasic calcium phosphates (BCPs), have been extensively used in clinical bone defect filling due to their good osteoinductivity and biodegradability. Here, for the first time, we designed and fabricated two porous CaP bioceramic granules with core-shell structures, named in accordance with their composition as BCP@HA and HA@BCP (core@shell). The spherical shape and the porous structure of these granules were achieved by the calcium alginate gel molding technology combined with a H2O2 foaming process. These granules could be stacked to build a porous structure with a porosity of 65-70% and a micropore size distribution between 150 and 450 μm, which is reported to be good for new bone ingrowth. In vitro experiments confirmed that HA@BCP bioceramic granules could promote the proliferation and osteogenic ability when cocultured with bone marrow mesenchymal stem cells, while inhibiting the differentiation of RAW264.7 cells into osteoclasts. In vivo, 12 weeks of implantation in a critical-sized femoral bone defect animal model showed a higher bone volume fraction and bone mineral density in the HA@BCP group than in the BCP@HA or pure HA or BCP groups. From histological analysis, we discovered that the new bone tissue in the HA@BCP group was invading from the surface to the inside of the granules, and most of the bioceramic phase was replaced by the new bone. A higher degree of vascularization at the defect region repaired by HA@BCP was revealed by 3D microvascular perfusion angiography in terms of a higher vessel volume fraction. The current study demonstrated that the core-shell structured HA@BCP bioceramic granules could be a promising candidate for bone defect repair.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064, China
| | - Mengyu Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan Zhou
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
72
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
73
|
Fadeeva IV, Deyneko DV, Forysenkova AA, Morozov VA, Akhmedova SA, Kirsanova VA, Sviridova IK, Sergeeva NS, Rodionov SA, Udyanskaya IL, Antoniac IV, Rau JV. Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility. Molecules 2022; 27:molecules27186085. [PMID: 36144818 PMCID: PMC9505591 DOI: 10.3390/molecules27186085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Sr2+-substituted β-tricalcium phosphate (β-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that β-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial β-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the β-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Dina V. Deyneko
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Anna A. Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Vladimir A. Morozov
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
| | - Suraya A. Akhmedova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Valentina A. Kirsanova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Irina K. Sviridova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Natalia S. Sergeeva
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- Academician Yarygin Department of Biology, Federal State Autonomous Educational Institution of Higher Education Russian National Research Medical University Named after N.I. Pirogov, Str. Ostrovityanova, 1, 117997 Moscow, Russia
| | - Sergey A. Rodionov
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics, 10 Priorova Str., 127299 Moscow, Russia
| | - Irina L. Udyanskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Iulian V. Antoniac
- Department of Metallic Materials Science and Physical Metallurg, University Politehnica of Bucharest, Street Splaiul Independentei No 313, Sector 6, 060042 Bucharest, Romania
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
- Correspondence:
| |
Collapse
|
74
|
Zhao Z, Zhang J, Yang Z, Zhao Q. Biodegradation of HA and β-TCP Ceramics Regulated by T-Cells. Pharmaceutics 2022; 14:pharmaceutics14091962. [PMID: 36145710 PMCID: PMC9502083 DOI: 10.3390/pharmaceutics14091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Biodegradability is one of the most important properties of implantable bone biomaterials, which is directly related to material bioactivity and the osteogenic effect. How foreign body giant cells (FBGC) involved in the biodegradation of bone biomaterials are regulated by the immune system is poorly understood. Hence, this study found that β-tricalcium phosphate (β-TCP) induced more FBGCs formation in the microenvironment (p = 0.0061) accompanied by more TNFα (p = 0.0014), IFNγ (p = 0.0024), and T-cells (p = 0.0029) than hydroxyapatite (HA), resulting in better biodegradability. The final use of T-cell depletion in mice confirmed that T-cell-mediated immune responses play a decisive role in the formation of FBGCs and promote bioceramic biodegradation. This study reveals the biological mechanism of in vivo biodegradation of implantable bone tissue engineering materials from the perspective of material-immune system interaction, which complements the mechanism of T-cells’ adaptive immunity in bone immune regulation and can be used as a theoretical basis for rational optimization of implantable material properties.
Collapse
Affiliation(s)
- Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zaibo Yang
- Department of Stomatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
- Correspondence: (Z.Y.); (Q.Z.)
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Correspondence: (Z.Y.); (Q.Z.)
| |
Collapse
|
75
|
Sun Q, Yu L, Zhang Z, Qian C, Fang H, Wang J, Wu P, Zhu X, Zhang J, Zhong L, He R. A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications. Front Chem 2022; 10:958420. [PMID: 36157039 PMCID: PMC9493496 DOI: 10.3389/fchem.2022.958420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Hydroxyapatite (HA) and tricalcium phosphate (TCP) constitute 60% of the content of the bone, and their combination has a better effect on bone tissue engineering than either single element. This study demonstrates a new degradable gelatin/carboxymethyl chitosan (CMC) bone scaffold loaded with both nano-HA and β-TCP (hereinafter referred to as HCP), and freeze drying combined with stir foaming was used to obtain highly connected macropores. Only a few studies have used these components to synthesize a four-component osteogenic scaffold. The aim of this study was to comprehensively assess the biocompatibility and osteoinductivity of the nanocomposites. Three HCP/CMC/gelatin scaffolds were made with different HCP contents: group A (10 wt% HCP), group B (30 wt% HCP), and group C (50 wt% HCP) (the ratio of nano-HA and β-TCP was fixed at 3:2). The scaffolds were macroporous with a high porosity and pore connectivity, as observed by morphological analysis by scanning electron microscopy. Additionally, the pore size of groups A and B was more homogeneous than that of group C. There were no significant differences in physicochemical characterization among the three groups. The Fourier-transform infrared (FTIR) spectroscopy test indicated that the scaffold contained active groups, such as hydroxyl, amino, or peptide bonds, corresponding to gelatin and CMC. The XRD results showed that the phase structures of HA and β-TCP did not change in the nanocomposite. The scaffolds had biodegradation potential and an appreciable swelling ratio, as demonstrated with the in vitro test. The scaffolds were cultured in vitro with MC3T3-E1 cells, showing that osteoinduction and osteoconduction increased with the HCP content. None of the scaffolds showed cytotoxicity. However, cell adhesion and growth in group B were better than those in group A and group C. Therefore, freeze drying combined with a stir foaming method may have a solid component limit. This study demonstrates a novel four-component scaffold via a simple manufacturing process. Group B (30% HCP) had the best characteristics for bone scaffold materials.
Collapse
Affiliation(s)
- Qiushuo Sun
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Lu Yu
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Zhuocheng Zhang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Hongzhe Fang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jintao Wang
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Wu
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Rui He
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Rui He,
| |
Collapse
|
76
|
Chen F, Tian L, Pu X, Zeng Q, Xiao Y, Chen X, Zhang X. Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis. Biomater Sci 2022; 10:5925-5937. [PMID: 36043373 DOI: 10.1039/d2bm00348a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore how strontium influences osteoclastogenesis and osteoblastogenesis during material-induced ectopic bone formation, porous strontium-substituted biphasic calcium phosphate (Sr-BCP) and BCP ceramics with equivalent pore structures and comparable grain size and porosity were prepared. In vitro results showed that compared with BCP, Sr-BCP inhibited the osteoclastic differentiation of osteoclast precursors by delaying cell fusion, down-regulating the expression of osteoclast marker genes, and reducing the activity of osteoclast specific proteins, possibly due to the activated ERK signaling pathway but the suppressed p38, JNK and AKT signaling pathways. Meanwhile, Sr-BCP promoted the osteogenic differentiation of mesenchymal stem cells (MSCs) by up-regulating the osteogenic gene expression. Sr-BCP also mediated the expression of important osteoblast-osteoclast coupling factors, as evidenced by the increased Opg/Rankl ratio in mMSCs, and the reduced Rank expression and enhanced EphrinB2 expression in osteoclast precursors. Similar results were observed in an in vivo study based on a murine intramuscular implantation model. The sign of ectopic bone formation was only seen in Sr-BCP at 8 weeks. Compared to BCP, Sr-BCP obviously hindered the formation of TRAP- and CTSK-positive multinucleated osteoclast-like cells during the early implantation time up to 6 weeks, which is consistent with the in vivo PCR results. This suggested that Sr-BCP could clearly accelerate the ectopic bone formation by promoting osteogenesis but suppressing osteoclastogenesis, which might be closely related to the expression of osteoblast-osteoclast coupling factors regulated by Sr2+. These findings may help in the design and fabrication of smart bone substitutes with the desired potential for bone regeneration through modulating both osteoclastic resorption and osteoblastic synthesis.
Collapse
Affiliation(s)
- Fuying Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
77
|
The experimental and theoretical investigation of Sm/Mg co-doped hydroxyapatites. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
78
|
Li M, Wu G, Wang M, Hunziker EB, Liu Y. Crystalline Biomimetic Calcium Phosphate Coating on Mini-Pin Implants to Accelerate Osseointegration and Extend Drug Release Duration for an Orthodontic Application. NANOMATERIALS 2022; 12:nano12142439. [PMID: 35889663 PMCID: PMC9324071 DOI: 10.3390/nano12142439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
Miniscrew implants (MSIs) have been widely used as temporary anchorage devices in orthodontic clinics. However, one of their major limitations is the relatively high failure rate. We hypothesize that a biomimetic calcium phosphate (BioCaP) coating layer on mini-pin implants might be able to accelerate the osseointegration, and can be a carrier for biological agents. A novel mini-pin implant to mimic the MSIs was used. BioCaP (amorphous or crystalline) coatings with or without the presence of bovine serum albumin (BSA) were applied on such implants and inserted in the metaphyseal tibia in rats. The percentage of bone to implant contact (BIC) in histomorphometric analysis was used to evaluate the osteoconductivity of such implants from six different groups (n=6 rats per group): (1) no coating no BSA group, (2) no coating BSA adsorption group, (3) amorphous BioCaP coating group, (4) amorphous BioCaP coating-incorporated BSA group, (5) crystalline BioCaP coating group, and (6) crystalline BioCaP coating-incorporated BSA group. Samples were retrieved 3 days, 1 week, 2 weeks, and 4 weeks post-surgery. The results showed that the crystalline BioCaP coating served as a drug carrier with a sustained release profile. Furthermore, the significant increase in BIC occurred at week 1 in the crystalline coating group, but at week 2 or week 4 in other groups. These findings indicate that the crystalline BioCaP coating can be a promising surface modification to facilitate early osseointegration and increase the success rate of miniscrew implants in orthodontic clinics.
Collapse
Affiliation(s)
- Menghong Li
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
| | - Ernst B. Hunziker
- Centre of Regenerative Medicine for Skeletal Tissues, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland;
- Group for Bone Biology, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (M.L.); (G.W.); (M.W.)
- Correspondence: ; Tel.: +31-2-0598-0626
| |
Collapse
|
79
|
Jamil M, Elouahli A, Abida F, Assaoui J, Gourri E, Hatim Z. Apatitic calcium phosphate /montmorillonite nano-biocomposite: in-situ synthesis, characterization and dissolution properties. Heliyon 2022; 8:e10042. [PMID: 35965974 PMCID: PMC9364031 DOI: 10.1016/j.heliyon.2022.e10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/19/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, calcium phosphate/montmorillonite composites have received attention as a synthetic bone substitutes. In this study, apatitic calcium phosphate/Montmorillonite nano-biocomposites were in-situ synthesized at 22 °C by reaction between calcium hydroxide and orthophosphoric acid in the presence of different contents of montmorillonite (MNa). Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Brunauer–Emmett–Teller (BET) surface areas were used to characterize the prepared powders. The XRD results show that the composites prepared with 2 and 5 wt% MNa and sintered at 900 °C, show the formation of hydroxyapatite (HAP) structure, whereas that prepared with 10 wt% MNa leads to the formation of β-tricalcium phosphate (β-TCP) structure. The HAP structure decomposes at 1000 °C and leads to the formation of biocomposite containing HAP, β and α-TCP. However, β-TCP composites show thermal stability. FTIR and structural refinement results show the incorporation of clay ions into the apatitic structure causing changes in the crystal structure of the formed calcium phosphate phases. The changes in the composition and structure lead to an increase in the dissolution rate of HAP and a decrease in that of β-TCP.
Collapse
Affiliation(s)
- M. Jamil
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
- Team of Mineral Solid Chemistry, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Corresponding author.
| | - A. Elouahli
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - F. Abida
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - J. Assaoui
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - E. Gourri
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| | - Z. Hatim
- Team of Energy, Materials and Environment, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco
| |
Collapse
|
80
|
Zhu Q, Chen T, Xia J, Jiang D, Wang S, Zhang Y. Preparation and characterization of two novel osteoinductive fishbone-derived biphasic calcium phosphate bone graft substitutes. J Biomater Appl 2022; 37:600-613. [PMID: 35775433 DOI: 10.1177/08853282221111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many studies have reported on the conversion of natural resources into xenografts with hydroxyapatite (HA) as major component, but the extraction of biphasic calcium phosphate (HA/β-TCP) from animal bones and transformation into bone graft substitutes are rarely reported. In this research, two kinds of fish bones were made into granular porous biphasic calcium phosphate bone graft substitutes with particle sizes between 500 to 1000 μm through a series of preparation procedures (Salmo salar calcined at 900°C named Sa900 and Anoplopoma fimbria calcined at 800°C named An800). The chemical composition was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphology and porous structure of the scaffolds were comparatively analyzed by scanning electron microscopy (SEM) and mercury porosimeter. The specific surface area of materials was measured by the nitrogen adsorption technique based on BET theory. Cytotoxicity and ectopic osteogenesis were also carried out to investigate the biocompatibility and osteoinductive potential of these materials. The results showed that both fishbone-derived scaffolds were composed of HA and β-TCP with different proportions, and numerous interconnected pores with different sizes were observed at the surface of materials. An800 had higher total porosity reaching 74.8% with higher interconnectivity and micropores mostly distributed at 0.27 μm and 0.12 μm, while Sa900 had a higher specific surface area and higher intraparticle porosity with nanopores mostly distributed at 0.07 μm. CCK-8 assays and Live/dead staining demonstrated excellent biocompatibility. Material-induced osteoid formation were observed on the interface of both internal pores and periphery of materials after implantation in muscle pouch of Wistar rats for 8 weeks which indicated some extent of osteoinductive potential of materials. The possible mechanism of material-induced osteogenesis and the effects of chemical composition, surface topography, and spatial structure on osteogenesis were also discussed in this paper.
Collapse
Affiliation(s)
- Qingfeng Zhu
- Department of Stomatology, 12520Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tong Chen
- Department of Stomatology, 12520Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jinfeng Xia
- 58306Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China
| | - Danyu Jiang
- 58306Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China
| | - Shaohai Wang
- Department of Stomatology, 12476Dongfang Hospital, Tongji University, Shanghai 200092, China
| | - Yuntong Zhang
- Department of Orthopeadics, 12476Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
81
|
Zhang R, He Y, Tao B, Wu J, Hu X, Li X, Xia Z, Cai K. Multifunctional silicon calcium phosphate composite scaffolds promote stem cell recruitment and bone regeneration. J Mater Chem B 2022; 10:5218-5230. [PMID: 35737023 DOI: 10.1039/d2tb00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A scaffold is one of the most significant implants for treating bone injury, while the precise control of stem cell proliferation and differentiation within a scaffold is still challenging. In this work, a composite scaffold was designed to be capable of recruiting endogenous stem cells, stimulating osteogenic differentiation and achieving significant bone repair function. The designed SiCP + SF@PFS silica-calcium phosphate composite scaffold was obtained by mixing the peptide PFS containing silk fibroin solution with the SiCP scaffold, and treating with horseradish peroxidase and H2O2. The results showed that the composite scaffold was able to release the PFS peptide continuously to induce the migration of mesenchymal stem cells. Meanwhile, cell proliferation and osteogenic differentiation were also improved after being seeded on the scaffold. In the cranial defect rat model, the composite scaffold was able to recruit CD29+ and CD90+ cells one week after implantation around the injury sites. The results of Micro-CT, H&E staining, Masson's staining and immunohistochemical staining indicated that the composite scaffold was able to promote new bone formation significantly.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
82
|
Fievet L, Serratrice N, Brulin B, Giraudo L, Véran J, Degardin N, Sabatier F, Féron F, Layrolle P. A Comparative In Vitro and In Vivo Study of Osteogenicity by Using Two Biomaterials and Two Human Mesenchymal Stem Cell Subtypes. Front Cell Dev Biol 2022; 10:913539. [PMID: 35712655 PMCID: PMC9195506 DOI: 10.3389/fcell.2022.913539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Bone repair induced by stem cells and biomaterials may represent an alternative to autologous bone grafting. Mesenchymal stromal/stem cells (MSCs), easily accessible in every human, are prototypical cells that can be tested, alone or with a biomaterial, for creating new osteoblasts. The aim of this study was to compare the efficiency of two biomaterials—biphasic calcium phosphate (BCP) and bioactive glass (BG)—when loaded with either adult bone marrow mesenchymal stem cells (BMMSCs) or newborn nasal ecto-mesenchymal stem cells (NE-MSCs), the latter being collected for further repair of lip cleft-associated bone loss. Materials and Methods: BMMSCs were collected from two adults and NE-MSCs from two newborn infants. An in vitro study was performed in order to determine the best experimental conditions for adhesion, viability, proliferation and osteoblastic differentiation on BCP or BG granules. Bone-associated morphological changes and gene expression modifications were quantified using histological and molecular techniques. The in vivo study was based on the subcutaneous implantation in nude mice of the biomaterials, loaded or not with one of the two cell types. Eight weeks after, bone formation was assessed using histological and electron microscopy techniques. Results: Both cell types—BMMSC and NE-MSC—display the typical stem cell surface markers—CD73+, CD90+, CD105+, nestin - and exhibit the MSC-associated osteogenic, chondrogenic and adipogenic multipotency. NE-MSCs produce less collagen and alkaline phosphatase than BMMSCs. At the transcript level, NE-MSCs express more abundantly three genes coding for bone sialoprotein, osteocalcin and osteopontin while BMMSCs produce extra copies of RunX2. BMMSCs and NE-MSCs adhere and survive on BCP and BG. In vivo experiments reveal that bone formation is only observed with BMMSCs transplanted on BCP biomaterial. Conclusion: Although belonging to the same superfamily of mesenchymal stem cells, BMMSCs and NE-MSCs exhibit striking differences, in vitro and in vivo. For future clinical applications, the association of BMMSCs with BCP biomaterial seems to be the most promising.
Collapse
Affiliation(s)
- L Fievet
- Department of Pediatric Surgery, Centre Hospitalier Régional Henri Duffaut, Avignon, France
| | - N Serratrice
- Department of Neurosurgery, La Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,APHM, Culture and Cell Therapy Laboratory, Inserm CBT-1409, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - B Brulin
- INSERM, UMR 1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, Nantes University Nantes, Nantes, France
| | - L Giraudo
- APHM, Culture and Cell Therapy Laboratory, Inserm CBT-1409, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - J Véran
- APHM, Culture and Cell Therapy Laboratory, Inserm CBT-1409, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - N Degardin
- Department of Pediatric Surgery, La Timone Enfant Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - F Sabatier
- APHM, Culture and Cell Therapy Laboratory, Inserm CBT-1409, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - F Féron
- APHM, Culture and Cell Therapy Laboratory, Inserm CBT-1409, Centre d'Investigations Cliniques en Biothérapies, Marseille, France.,Aix Marseille University, CNRS, INP, Marseille, France
| | - P Layrolle
- INSERM, UMR 1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, Nantes University Nantes, Nantes, France
| |
Collapse
|
83
|
Tabrizi R, Sadeghi HM, Ghasemi K, Khayati A, Jafarian M. Does Biphasic Calcium Phosphate-Coated Surface Increase the Secondary Stability in Dental Implants? A Split-Mouth Study. J Maxillofac Oral Surg 2022; 21:557-561. [DOI: 10.1007/s12663-020-01448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022] Open
|
84
|
Yang Z, Wang C, Gao H, Jia L, Zeng H, Zheng L, Wang C, Zhang H, Wang L, Song J, Fan Y. Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study. Front Bioeng Biotechnol 2022; 10:882631. [PMID: 35694236 PMCID: PMC9177945 DOI: 10.3389/fbioe.2022.882631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
In the repair of alveolar bone defect, the microstructure of bone graft scaffolds is pivotal for their biological and biomechanical properties. However, it is currently controversial whether gradient structures perform better in biology and biomechanics than homogeneous structures when considering microstructural design. In this research, bioactive ceramic scaffolds with different porous gradient structures were designed and fabricated by 3D printing technology. Compression test, finite element analysis (FEA) revealed statistically significant differences in the biomechanical properties of three types of scaffolds. The mechanical properties of scaffolds approached the natural cancellous bone, and scaffolds with pore size decreased from the center to the perimeter (GII) had superior mechanical properties among the three groups. While in the simulation of Computational Fluid Dynamics (CFD), scaffolds with pore size increased from the center to the perimeter (GI) possessed the best permeability and largest flow velocity. Scaffolds were cultured in vitro with rBMSC or implanted in vivo for 4 or 8 weeks. Porous ceramics showed excellent biocompatibility. Results of in vivo were analysed by using micro-CT, concentric rings and VG staining. The GI was superior to the other groups with respect to osteogenicity. The Un (uniformed pore size) was slightly inferior to the GII. The concentric rings analysis demonstrated that the new bone in the GI was distributed in the periphery of defect area, whereas the GII was distributed in the center region. This study offers basic strategies and concepts for future design and development of scaffolds for the clinical restoration of alveolar bone defect.
Collapse
Affiliation(s)
- Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Chunjuan Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Hui Gao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lurong Jia
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- *Correspondence: Chao Wang, ; Hongmei Zhang,
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- *Correspondence: Chao Wang, ; Hongmei Zhang,
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
85
|
The Relationship between Osteoinduction and Vascularization: Comparing the Ectopic Bone Formation of Five Different Calcium Phosphate Biomaterials. MATERIALS 2022; 15:ma15103440. [PMID: 35629467 PMCID: PMC9146137 DOI: 10.3390/ma15103440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Objective: The objective of this study is to compare the bone induction of five kinds of calcium phosphate (Ca-P) biomaterials implanted in mice and explore the vascularization and particle-size-related osteoinductive mechanism. Methods: The following five kinds of Ca-P biomaterials including hydroxyapatite (HA) and/or tricalcium phosphate (TCP) were implanted in the muscle of 30 BALB/c mice (n = 6): 20 nm HA (20HA), 60 nm HA (60HA), 12 µm HA (12HA), 100 nm TCP (100TCP) and 12 µm HA + 100 nm TCP (HATCP). Then, all animals were put on a treadmill to run 30 min at a 6 m/h speed each day. Five and ten weeks later, three mice of each group were killed, and the samples were harvested to assess the osteoinductive effects by hematoxylin eosin (HE), Masson’s trichrome and safranine−fast green stainings, and the immunohistochemistry of the angiogenesis and osteogenesis markers CD31 and type I collagen (ColI). Results: The numbers of blood vessels were 139 ± 29, 118 ± 25, 78 ± 15, 65 ± 14 in groups HATCP, 100TCP, 60HA and 20HA, respectively, which were significantly higher than that of group 12HA (12 ± 5) in week 5 (p < 0.05). The area percentages of new bone tissue were (7.33 ± 1.26)% and (8.49 ± 1.38)% in groups 100TCP and HATCP, respectively, which were significantly higher than those in groups 20HA (3.27 ± 0.38)% and 60HA (3.43 ± 0.27)% (p < 0.05); however, no bone tissue was found in group 12HA 10 weeks after transplantation. The expression of CD31 was positive in new blood vessels, and the expression of ColI was positive in new bone tissue. Conclusions: Nanoscale Ca-P biomaterials could induce osteogenesis in mice muscle, and the osteoinductive effects of TCP were about 124% higher than those of 20HA and 114% higher than those of 60HA. The particle size of the biomaterials affected angiogenesis and osteogenesis. There was a positive correlation between the number of blood vessels and the area percentage of new bone tissue; therefore, osteoinduction is closely related to vascularization. Our results provide an experimental basis for the synthesis of calcium−phosphorus matrix composites and for further exploration of the osteoinductive mechanism.
Collapse
|
86
|
Roohani I, No YJ, Zuo B, Xiang SD, Lu Z, Liu H, Plebanski M, Zreiqat H. Low-Temperature Synthesis of Hollow β-Tricalcium Phosphate Particles for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:1806-1815. [PMID: 35405073 DOI: 10.1021/acsbiomaterials.1c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Tricalcium phosphate (β-TCP) has been extensively used in bone tissue engineering in the form of scaffolds, granules, or as reinforcing phase in organic matrices. Solid-state reaction route at high temperatures (>1000 °C) is the most widely used method for the preparation of β-TCP. The high-temperature synthesis, however, results in the formation of hard agglomerates and fused particles which necessitates postprocessing steps such as milling and sieving operations. This, inadvertently, could lead to introducing unwanted trace elements, promoting particle shape irregularity as well as compromising the biodegradability and bioactivity of β-TCP because of the solid microstructure of particles. In this study, we introduce a one-pot wet-chemical method at low temperatures (between 160 and 170 °C) to synthesize hollow β-TCP (hβ-TCP) submicron particles of an average size of 300 nm with a uniform rhombohedral shape. We assessed the cytocompatibility of the hβ-TCP using primary human osteoblasts (HOB), adipose-derived stem cells (ADSC), and antigen-presenting cells (APCs). We demonstrate the bioactivity of the hβ-TCP when cultured with HOB, ADSC, and APCs at a range of particle concentrations (up to 1000 μg/mL) for up to 7 days. hβ-TCP significantly enhances osteogenic differentiation of ADSC without the addition of osteogenic supplements. These findings offer a new type of β-TCP particles prepared at low temperatures, which present various opportunities for developing β-TCP based biomaterials.
Collapse
Affiliation(s)
- Iman Roohani
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Young Jung No
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Betty Zuo
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Zufu Lu
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hongwei Liu
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3052, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3084, Australia
| | - Hala Zreiqat
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
87
|
Qi D, Su J, Li S, Zhu H, Cheng L, Hua S, Yuan X, Jiang J, Shu Z, Shi Y, Xiao J. 3D printed magnesium-doped β-TCP gyroid scaffold with osteogenesis, angiogenesis, immunomodulation properties and bone regeneration capability in vivo. BIOMATERIALS ADVANCES 2022; 136:212759. [PMID: 35929304 DOI: 10.1016/j.bioadv.2022.212759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Bioceramics have been used in orthopedic surgery for several years. Magnesium (Mg) is an essential element in bone tissue and plays an important role in bone metabolism. Mg-doped bioceramics has attracted the attention of researchers recently. However, the optimal doping amount of Mg in β-TCP and the immunomodulatory property of Mg-doped β-TCP (Mg-TCP) have not been determined yet. In this study, β-TCP scaffolds doped with different contents of magnesium oxide (0 wt%, 1 wt%, 3 wt%, and 5 wt%) with gyroid structure were printed by digital light processing (DLP) method, and the physicochemical and biological functions were then investigated. Mg-doping improved the physicochemical properties of the β-TCP scaffolds. In vitro experiments confirmed that the doping of Mg in β-TCP scaffolds promoted the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenic differentiation of endothelial progenitor cells (EPCs), where the 5Mg-TCP has the optimal properties when using the "one cell type" method. It was also found that all Mg-TCP facilitated the polarization of RAW264.7 cells to the M2 phenotype, especially the 3Mg-TCP. However, 3Mg-TCP displayed the optimal osteogenic and angiogenic potential when using a "multiple cell type" method, which referred to culturing the BMSCs or EPCs in the macrophage-conditioned medium. Finally, the in vivo experiments were conducted and the results confirmed that the 3Mg-TCP scaffolds possessed the satisfying bone defect repair capability both after 6 and 12 weeks of implantation. This study suggests that 3Mg-TCP scaffolds provide the optimal biological performance and thus have the potential for clinical translation.
Collapse
Affiliation(s)
- Dahu Qi
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Song Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hao Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lijin Cheng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuaibin Hua
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Yuan
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jiawei Jiang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zixing Shu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
88
|
Lima JR, Soares PBF, Pinotti FE, Marcantonio RAC, Marcantonio-Junior E, de Oliveira GJPL. Comparison of the osseointegration of implants placed in areas grafted with HA/TCP and native bone. Microsc Res Tech 2022; 85:2776-2783. [PMID: 35397154 DOI: 10.1002/jemt.24126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
This study evaluated the osseointegration of implants in areas grafted with biphasic ceramic based on hydroxyapatite/β-tricalcium phosphate (HA/TCP) and in native bone (NB). Twenty-eight rats were randomly assigned into two groups of 14 animals each: HA/TCP group: implants installed in areas grafted with HA/TCP and NB group: implants installed in areas of native bone. Bone defects were made in both tibiae of the rats belonging to the HA/TCP group and then filled with this bone substitute. After 60 days, the rats were submitted to surgical procedures for implant placement in grafted areas in both tibiae in the HA/TCP group while the implants were installed directly in native bone in the NB group. The animals were euthanized 15 and 45 days, respectively, after the implant placement. Biomechanical (removal torque), microtomographic (volume of mineralized tissues around the implants), and histomorphometric (Bone-Implant contact-%BIC and bone area between the implant threads-%BBT) analyzes were conducted to assess the osseointegration process. The HA/TCP group showed lower values of removal torque, volume of mineralized tissue around the implants, lower %BIC, and %BBT compared to the NB group in both experimental periods. Osseointegration of implants placed in grafted areas with HA/TCP was lower compared to the osseointegration observed in native bone areas.
Collapse
Affiliation(s)
- Julia Raulino Lima
- Department of Periodontology/Implantology, Universidade Federal de Uberlândia - UFU, School of Dentistry, Uberlândia, MG, Brazil
| | | | - Felipe Eduardo Pinotti
- Department of Diagnosis and Surgery, Universidade Estadual Paulista - UNESP, School of Dentistry, Araraquara, SP, Brazil
| | | | - Elcio Marcantonio-Junior
- Department of Diagnosis and Surgery, Universidade Estadual Paulista - UNESP, School of Dentistry, Araraquara, SP, Brazil
| | | |
Collapse
|
89
|
Zhang D, Guo X, Zong X, Du H, Zhao J, Du L, Cao C, Jin X, Song G. Study on the difference of osteogenesis and Notch signaling pathway expression in biphasic calcium-phosphorus ceramic granule materials with different microstructure. J Biomed Mater Res B Appl Biomater 2022; 110:2028-2038. [PMID: 35377532 DOI: 10.1002/jbm.b.35057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/12/2022]
Abstract
Different microstructures including micropore diameter, micropore volume, and micropore area of biphasic calcium phosphate (BCP, hydroxyapatite: β-tricalcium phosphate = 8:2) ceramics granules were obtained by varying their sintering temperatures. Sprague-Dawley rat bone marrow-derived stem cells (BMSCs) were co-cultured with BCPs in vitro study and the BMSCs showed different degrees of proliferative activity under the influence of three materials. Cell proliferation and vitality were assessed. Three kinds of BCPs were implanted in the dorsal muscle of beagle dogs. At 1, 2, and 3 months, histological analyses were conducted to estimate the rate of osteogenesis. Expression of Notch pathway genes and osteogenic-related genes were detected by quantitative real-time polymerase chain reaction (q-rtPCR). The proportion of osteogenesis area increased to:48.75 ± 4.20%, 29.48 ± 1.55%, and 26.58 ± 3.86% at 3 months after the implantation (1050, 1150, 1250). Significant differences were observed in the upregulation of Notch pathway genes among different BCPs. BCPs with different micropore diameters have different ectopic osteogenesis effects and led to up-regulation of the Notch signaling pathway genes to different extents.
Collapse
Affiliation(s)
- Dong Zhang
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoshuang Guo
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianlei Zong
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Du
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyi Zhao
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Le Du
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyan Cao
- Animal Lab Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolei Jin
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Guodong Song
- 16th Department, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
90
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
91
|
Polymeric coating on β-TCP scaffolds provides immobilization of small extracellular vesicles with surface-functionalization and ZEB1-Loading for bone defect repair in diabetes mellitus. Biomaterials 2022; 283:121465. [DOI: 10.1016/j.biomaterials.2022.121465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022]
|
92
|
Le Gars Santoni B, Niggli L, Dolder S, Loeffel O, Sblendorio G, Heuberger R, Maazouz Y, Stähli C, Döbelin N, Bowen P, Hofstetter W, Bohner M. Effect of minor amounts of β-calcium pyrophosphate and hydroxyapatite on the physico-chemical properties and osteoclastic resorption of β-tricalcium phosphate cylinders. Bioact Mater 2022; 10:222-235. [PMID: 34901541 PMCID: PMC8636826 DOI: 10.1016/j.bioactmat.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
β-Tricalcium Phosphate (β-TCP), one of the most used bone graft substitutes, may contain up to 5 wt% foreign phase according to standards. Typical foreign phases include β-calcium pyrophosphate (β-CPP) and hydroxyapatite (HA). Currently, the effect of small amounts of impurities on β-TCP resorption is unknown. This is surprising since pyrophosphate is a very potent osteoclast inhibitor. The main aim of this study was to assess the effect of small β-CPP fractions (<1 wt%) on the in vitro osteoclastic resorption of β-TCP. A minor aim was to examine the effect of β-CPP and HA impurities on the physico-chemical properties of β-TCP powders and sintered cylinders. Twenty-six batches of β-TCP powder were produced with a Ca/P molar ratio varying between 1.440 and 1.550. Fifteen were further processed to obtain dense and polished β-TCP cylinders. Finally, six of them, with a Ca/P molar ratio varying between 1.496 (1 wt% β-CPP) and 1.502 (1 wt% HA), were incubated in the presence of osteoclasts. Resorption was quantified by white-light interferometry. Osteoclastic resorption was significantly inhibited by β-CPP fraction in a linear manner. The presence of 1% β-CPP reduced β-TCP resorption by 40%, which underlines the importance of controlling β-CPP content when assessing β-TCP biological performance.
Collapse
Affiliation(s)
- B. Le Gars Santoni
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
- University of Bern, Graduate School for Cellular and Biomedical Sciences, Mittelstrasse 43, CH-3012, Bern, Switzerland
| | - L. Niggli
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - S. Dolder
- University of Bern, Department for BioMedical Research (DBMR), Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - O. Loeffel
- RMS Foundation, Materials Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - G.A. Sblendorio
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Construction Materials Laboratory, Station 12, CH-1015, Lausanne, Switzerland
| | - R. Heuberger
- RMS Foundation, Materials Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - Y. Maazouz
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - C. Stähli
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - N. Döbelin
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - P. Bowen
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Construction Materials Laboratory, Station 12, CH-1015, Lausanne, Switzerland
| | - W. Hofstetter
- University of Bern, Department for BioMedical Research (DBMR), Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - M. Bohner
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| |
Collapse
|
93
|
Song T, Yang J, Liu P, Liu M, Li D, Xiao Y, Wang Y, Zhang X. Icariin self-crosslinked network functionalized strontium-doped bioceramic scaffolds synergistically enhanced the healing of osteoporotic bone defects. COMPOSITES PART B: ENGINEERING 2022; 235:109759. [DOI: 10.1016/j.compositesb.2022.109759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
94
|
Okuyama K, Shiwaku Y, Hamai R, Mizoguchi T, Tsuchiya K, Takahashi T, Suzuki O. Differentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia. Acta Biomater 2022; 142:332-344. [PMID: 35183778 DOI: 10.1016/j.actbio.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the accumulation and differentiation of mesenchymal stem cells (MSCs) around octacalcium phosphate (OCP) compared with those around calcium-deficient hydroxyapatite (CDHA), a material obtained through hydrolysis of the original OCP. Leptin receptor (Lepr)-expressing bone marrow-derived MSCs around the OCP and CDHA were pursued utilizing genetically modified Lepr-cre/Tomato mice. OCP and CDHA granules were implanted into the tibia defect of the mice for 10 weeks and subjected to histomorphometric and immunohistochemical analyses. The structural properties of OCP and CDHA after inoculation into mouse subcutaneous tissue (until 4 weeks) or culture mediums (14 days) were analyzed using physicochemical techniques. In vitro osteoblastic differentiation of primary MSCs was examined with the materials for 14 days. While Lepr-cre/Tomato positive cells (red) accumulated around both OCP and CDHA, Lepr and osteocalcin double-positive osteoblastic cells (yellow) were significantly more abundant around OCP than around CDHA in the early implantation period. OCP enhanced the osteoblastic differentiation of MSCs more than CDHA in vitro. Physicochemical and structual analyses provided evidence that OCP tended to convert to the apatitic phase in the tested physiological environments. The higher osteoconductivity of OCP originated from a capacity-enhancing osteoblastic differentiation of committed osteoblast progenitors in bone marrow accompanied by OCP hydrolysis. STATEMENT OF SIGNIFICANCE: MSCs play a key role in bone regeneration through osteoblastic differentiation. Calcium phosphates have been widely applied as bone substitute materials, and OCP has a better ability to promote osteoblast differentiation of MSCs than that of HA in vitro. However, it is not clear how MSCs accumulate in the bone marrow and differentiate into osteoblasts during bone regeneration in vivo. In this study, we focused on the leptin receptor, a marker of bone marrow-derived MSCs. Using genetically modified mice labeled with the red fluorescent protein Tomato, we observed the accumulation of MSCs around calcium phosphates implanted in tibia bone defects and their differentiation into osteoblasts.
Collapse
Affiliation(s)
- Kyosuke Okuyama
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
95
|
Al Maruf DSA, Parthasarathi K, Cheng K, Mukherjee P, McKenzie DR, Crook JM, Wallace GG, Clark JR. Current and future perspectives on biomaterials for segmental mandibular defect repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D S Abdullah Al Maruf
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Krishnan Parthasarathi
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
| | - Kai Cheng
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Payal Mukherjee
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - David R. McKenzie
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown, Australia
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Jeremy M. Crook
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
- Illawarrah Health and Medical Research Institute, The University of Wollongong, Wollongong, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Jonathan R. Clark
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| |
Collapse
|
96
|
Kim SG. Multiple ways for the same destination: bone regeneration. Maxillofac Plast Reconstr Surg 2022; 44:9. [PMID: 35235091 PMCID: PMC8891406 DOI: 10.1186/s40902-022-00340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
The regeneration of the bone is a challenging topic for maxillofacial plastic and reconstructive surgeons. For successful bone regeneration, timely providing of essential components is prerequisite. They are cellular components (osteoblasts, osteoclasts, and immune cells), extracellular matrix, and inorganic components (calcium and phosphate). Any deficient component can be provided from outside as a graft. Accordingly, there are many ways for successful bone regeneration. Selection of appropriate methods in an individualized situation is important.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
| |
Collapse
|
97
|
Qin H, Wei Y, Han J, Jiang X, Yang X, Wu Y, Gou Z, Chen L. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. J Tissue Eng Regen Med 2022; 16:409-421. [PMID: 35156316 DOI: 10.1002/term.3287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Hongling Qin
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yingming Wei
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiayin Han
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xiaojian Jiang
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xianyan Yang
- Bio‐nanomaterials and Regenerative Medicine Research Division Zhejiang‐California International Nanosystem Institute Zhejiang University Hangzhou China
| | - Yanmin Wu
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongru Gou
- Bio‐nanomaterials and Regenerative Medicine Research Division Zhejiang‐California International Nanosystem Institute Zhejiang University Hangzhou China
| | - Lili Chen
- Department of Periodontics The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
98
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
99
|
Feng S, Li R, Wang Z. Experimental study on the biocompatibility and osteogenesis induction ability of PLLA/DDM scaffolds. Odontology 2022; 110:508-522. [PMID: 35048230 DOI: 10.1007/s10266-021-00683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
To investigate the characterization and function of a novel porous osteogenic material (PLLA / DDM) containing polylactic acid and demineralized dentin matrix. The surface morphology and composition of the material were observed by SEM and EDS. The physical characteristics of the material were detected by roughness and water contact angle analyses. The rate of weight loss and change in the pH value of the material were observed by scaffold degradation experiments. Four types of material were investigated: polylactic acid (PLLA) scaffold, demineralized dentin matrix (DDM) particles, PLLA/DDM scaffold and a blank control. The osteogenic effect and osteogenic characteristics of the new materials were explored through in vivo and in vitro osteogenic experiments. SEM analysis showed that DDM powder was uniformly distributed in the polylactic acid scaffold, and the water contact angle revealed that the water absorption of the porous scaffold was improved after the addition of DDM powder. The EDS results showed that the peak values of calcium and phosphorus were obviously increased after the addition of DDM powder, and the porosity test showed that the scaffold had higher porosity after the addition of DDM powder. Scaffold degradation experiments revealed that the scaffold gradually degraded with increasing time, and its pH value slightly increased. The results of cell culture and animal model experiments showed that the porous PLLA/DDM scaffold had good bio-compatibility and promoted cell proliferation and differentiation. In histological and micro-CT evaluations, the material showed good bio-compatibility, biodegradability and bone conductivity with host bone tissue in vivo. PLLA / DDM hybrid showed better performance than PLLA or DDM. The biocompatibility and cell growth promoting properties were stronger than those of single material.
Collapse
Affiliation(s)
- Song Feng
- Institute for Implant Center, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruipiao Li
- Institute for Implant Center, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiying Wang
- Institute for Implant Center, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
100
|
Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone 2022; 154:116256. [PMID: 34781047 DOI: 10.1016/j.bone.2021.116256] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering approaches have evolved towards addressing the challenges of tissue mimetic requirements over the years. Different strategies have been combining scaffolds, cells, and biologically active cues using a wide range of fabrication techniques, envisioning the mimicry of bone tissue. On the one hand, biomimetic scaffold-based strategies have been pursuing different biomaterials to produce scaffolds, combining with diverse and innovative fabrication strategies to mimic bone tissue better, surpassing bone grafts. On the other hand, biomimetic scaffold-free approaches mainly foresee replicating endochondral ossification, replacing hyaline cartilage with new bone. Finally, since bone tissue is highly vascularized, new strategies focused on developing pre-vascularized scaffolds or pre-vascularized cellular aggregates have been a motif of study. The recent biomimetic scaffold-based and scaffold-free approaches in bone tissue engineering, focusing on materials and fabrication methods used, are overviewed herein. The biomimetic vascularized approaches are also discussed, namely the development of pre-vascularized scaffolds and pre-vascularized cellular aggregates.
Collapse
Affiliation(s)
- F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ana R Bastos
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|