51
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
52
|
Kamya E, Lu Z, Cao Y, Pei R. Effective design of organic luminogens for near-infrared-II fluorescence imaging and photo-mediated therapy. J Mater Chem B 2022; 10:9770-9788. [PMID: 36448479 DOI: 10.1039/d2tb01903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Due to their electron coupling capability, organic luminescent materials exhibit powerful optoelectronic features that are responsible for their light-harvesting and light-amplification properties. The extensive modification of conjugated systems has shown significant improvement in their photonic properties thus broadening their applicability in photo-mediated imaging and photo-based treatment. Organic luminogens with emission in the near-infrared second region are found attractive not only for their deeper penetrating power but also for accurate visual imaging superiority with higher temporal resolution and spatial resolution suitable for tumor precision treatment. In this review, we underscore the latest development in organic luminogens (conjugated polymers and small molecules), focusing on chemical design, molecular engineering, and their applications in the scope of bioimaging followed by photo-assisted treatment, including photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy ablation. Organic luminogens integrated with an aggregation-induced emission feature significantly optimize their physicochemical properties to act as quintessential nanoplatforms for controllable image-guided therapy. In conclusion, we clarify the limitations and challenges and provide insights into how to design organic dyes with improved safety for potential clinical applications.
Collapse
Affiliation(s)
- Edward Kamya
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| |
Collapse
|
53
|
Kaneko Y, Yamatsugu K, Yamashita T, Takahashi K, Tanaka T, Aki S, Tatsumi T, Kawamura T, Miura M, Ishii M, Ohkubo K, Osawa T, Kodama T, Ishikawa S, Tsukagoshi M, Chansler M, Sugiyama A, Kanai M, Katoh H. Pathological complete remission of relapsed tumor by photo-activating antibody-mimetic drug conjugate treatment. Cancer Sci 2022; 113:4350-4362. [PMID: 36121618 DOI: 10.1111/cas.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Collapse
Affiliation(s)
- Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Kawamura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Akira Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
54
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. New insight into the application of fluorescence platforms in tumor diagnosis: From chemical basis to clinical application. Med Res Rev 2022; 43:570-613. [PMID: 36420715 DOI: 10.1002/med.21932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Early and rapid diagnosis of tumors is essential for clinical treatment or management. In contrast to conventional means, bioimaging has the potential to accurately locate and diagnose tumors at an early stage. Fluorescent probe has been developed as an ideal tool to visualize tumor sites and to detect biological molecules which provides a requirement for noninvasive, real-time, precise, and specific visualization of structures and complex biochemical processes in vivo. Rencently, the development of synthetic organic chemistry and new materials have facilitated the development of near-infrared small molecular sensing platforms and nanoimaging platforms. This provides a competitive tool for various fields of bioimaging such as biological structure and function imaging, disease diagnosis, in situ at the in vivo level, and real-time dynamic imaging. This review systematically focused on the recent progress of small molecular near-infrared fluorescent probes and nano-fluorescent probes as new biomedical imaging tools in the past 3-5 years, and it covers the application of tumor biomarker sensing, tumor microenvironment imaging, and tumor vascular imaging, intraoperative guidance and as an integrated platform for diagnosis, aiming to provide guidance for researchers to design and develop future biomedical diagnostic tools.
Collapse
Affiliation(s)
- Yanchen Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Qinhua Chen
- Department of Pharmacy Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen China
| | - Xiaoyan Pan
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Wen Lu
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| |
Collapse
|
55
|
Shu Y, Huang C, Liu H, Hu F, Wen H, Liu J, Wang X, Shan C, Li W. A hemicyanine-based fluorescent probe for simultaneous imaging of Carboxylesterases and Histone deacetylases in hepatocellular carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121529. [PMID: 35797949 DOI: 10.1016/j.saa.2022.121529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (CESs) and Histone deacetylases (HDACs) are regarded as important signaling enzymes highly associated with the development and progression of multiple cancers, including hepatocellular carcinoma (HCC). In this work, a near-infrared (NIR) fluorescent probe named Lys-HXPI was designed and synthesized, which linked a hemicyanine dye and 6-acetamidohexanoic acid via an ester bond. Lys-HXPI displayed a remarkable increase with a NIR emission at 720 nm, a low detection limit (<10 nM) for HDAC1, HDAC 6, CES1 and CES2, as well as a high selectivity for the target enzymes over other relevant analytes. Furthermore, Lys-HXPI was used to image endogenous target enzymes in living cells, tumor-bearing nude mice and tissue slices. The ability of Lys-HXPI to simultaneous image CESs and HDACs was demonstrated with RT-qPCR and the confocal imaging in Hep G2 and MDA-MB-231. Taking advantage of NIR emission, the probe was also successfully applied to imaging Hep G2 tumor mice and tissue slices. Lys-HXPI is expected to be useful for the effective detecting of CESs and HDACs in complex biosystems.
Collapse
Affiliation(s)
- Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongjing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
56
|
Xu XX, Chen SY, Yi NB, Li X, Chen SL, Lei Z, Cheng DB, Sun T. Research progress on tumor hypoxia-associative nanomedicine. J Control Release 2022; 350:829-840. [PMID: 36100192 DOI: 10.1016/j.jconrel.2022.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia at the solid tumor site is generally related to the unrestricted proliferation and metabolism of cancerous cells, which can cause tumor metastasis and aggravate tumor progression. Besides, hypoxia plays a substantial role in tumor treatment, and it is one of the main reasons that malignant tumors are difficult to cure and have a poor prognosis. On account of the tumor specific hypoxic environment, many hypoxia-associative nanomedicine have been proposed for tumor treatment. Considering the enhanced targeting effect, designing hypoxia-associative nanomedicine can not only minimize the adverse effects of drugs on normal tissues, but also achieve targeted therapy at the lesion site. Mostly, there can be three strategies for the treatment of hypoxic tumor, including improvement of hypoxic environment, hypoxia responsive drug release and hypoxia activated prodrug. The review describes the design principle and applications of tumor hypoxia-associative nanomedicine in recent years, and also explores its development trends in solid tumor treatment. Moreover, this review presents the current limitations of tumor hypoxia-associative nanomedicine in chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy, which may provide a reference for clinic translation of tumor hypoxia-associative nanomedicine.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Si-Lin Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| |
Collapse
|
57
|
Zhao Y, Yao Q, Chen J, Zhang R, Song J, Gao Y. Intracellular fluorogenic supramolecular assemblies for self-reporting bioorthogonal prodrug activation. Biomater Sci 2022; 10:5662-5668. [PMID: 35996984 DOI: 10.1039/d2bm00972b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visual drug delivery system (DDS) is urgently needed for precision medicine. DDS-mediated bioorthogonal prodrug activation strategies have demonstrated remarkable advantages in enlarging a therapeutic index via the alleviation of adverse drug reactions. However, the events of bioorthogonal prodrug activation remain inaccessible. Here, we construct a self-reporting bioorthogonal prodrug activation system using fluorescence emission to interpret prodrug activation events. In designed reactive oxygen species (ROS)-instructed supramolecular assemblies, the bioorthogonal reaction handle of tetrazine carries a dual role as fluorescence quencher and prodrug activator. The subsequent inverse-electron-demand Diels-Alder (IEDDA) reaction simultaneously liberates fluorescence and active drugs, which form a linear relationship. Differentiated by their cellular redox status, ROS-instructed supramolecular assemblies form selectively in both tumor cells and cell spheroids. Upon prodrug treatment, the brightness of fluorescence reflects the liberation of active drugs, which further correlates with the cell survival rate. Therefore, a fluorescence-based visualizable DDS (VDDS) for bioorthogonal prodrug activation is demonstrated, which should be useful to elucidate the multi-step processes in drug delivery and determine prodrug activation efficacy.
Collapse
Affiliation(s)
- Yan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiali Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ruijia Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jialei Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
58
|
Sarrett SM, Rodriguez C, Rymarczyk G, Hosny MM, Keinänen O, Delaney S, Thau S, Krantz BA, Zeglis BM. Lysine-Directed Site-Selective Bioconjugation for the Creation of Radioimmunoconjugates. Bioconjug Chem 2022; 33:1750-1760. [PMID: 35946495 DOI: 10.1021/acs.bioconjchem.2c00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of radioimmunoconjugates via the stochastic attachment of bifunctional chelators to lysines can yield heterogeneous products with suboptimal in vitro and in vivo behavior. In response to this, several site-selective approaches to bioconjugation have been developed, yet each has intrinsic drawbacks, such as the need for expensive reagents or the complexity of incorporating unnatural amino acids into IgGs. Herein, we describe the use of a simple and facile approach to lysine-directed site-selective bioconjugation for the generation of radioimmunoconjugates. This strategy relies upon on the selective modification of single lysine residues within each light chain of the monoclonal antibody (mAb) with a branched azide-bearing perfluorophenyl ester (PFP-bisN3) followed by the ligation of dibenzocyclooctyne (DBCO)-bearing payloads to these bioorthogonal handles via the strain-promoted azide-alkyne cycloaddition. This methodology was used to create [89Zr]Zr-SSKDFO-pertuzumab, a radioimmunoconjugate of the HER2-targeting mAb pertuzumab labeled with desferrioxamine (DFO) and the positron-emitting radiometal zirconium-89 (89Zr). [89Zr]Zr-SSKDFO-pertuzumab was compared to a pair of analogous probes: one synthesized via random lysine modification ([89Zr]Zr-DFO-pertuzumab) and another via thiol-maleimide chemistry ([89Zr]Zr-malDFO-pertuzumab). The bioconjugation strategy was assessed using ESI mass spectrometry, SDS-PAGE, and autoradiography. All three immunoconjugates demonstrated comparable binding to HER2 via flow cytometry and surface plasmon resonance (SPR), and 89Zr-labeled variants of each were synthesized in >99% radiochemical yield and molar activities of up to ∼55.5 GBq/μmol (10 mCi/mg). Subsequently, the in vivo behavior of this trio of 89Zr-immunoPET probes was interrogated in athymic nude mice bearing subcutaneous HER2-expressing BT-474 human breast cancer xenografts. [89Zr]Zr-SSKDFO-pertuzumab, [89Zr]Zr-malDFO-pertuzumab, and [89Zr]Zr-DFO-pertuzumab produced positron emission tomography (PET) images with high tumoral uptake and high tumor-to-healthy organ activity concentration ratios. A terminal biodistribution study complemented the PET results, revealing tumoral activity concentrations of 126.9 ± 50.3%ID/g, 86.9 ± 53.2%ID/g, and 92.5 ± 27.2%ID/g at 144 h post-injection for [89Zr]Zr-SSKDFO-pertuzumab, [89Zr]Zr-malDFO-pertuzumab, and [89Zr]Zr-DFO-pertuzumab, respectively. Taken together, the data clearly illustrate that this highly modular and facile approach to site-selective bioconjugation produces radioimmunoconjugates that are better-defined and more homogeneous than stochastically modified constructs and also exhibit excellent in vitro and in vivo performance. Furthermore, we contend that this lysine-directed strategy holds several key advantages over extant approaches to site-selective bioconjugation, especially in the context of production for the clinic.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States.,Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Grzegorz Rymarczyk
- Advanced Proteome Therapeutics Inc, Boston, Massachusetts 02118, United States
| | - Meena M Hosny
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.,Department of Chemistry, University of Helsinki, Helsinki, 00100, Finland
| | - Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States.,Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Sarah Thau
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Benjamin A Krantz
- Advanced Proteome Therapeutics Inc, Boston, Massachusetts 02118, United States.,Department of Medicine, Division of Hematology and Medical Oncology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States.,Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
59
|
Das RS, Mukherjee A, Kar S, Bera T, Das S, Sengupta A, Guha S. Construction of Red Fluorescent Dual Targeting Mechanically Interlocked Molecules for Live Cancer Cell Specific Lysosomal Staining and Multicolor Cellular Imaging. Org Lett 2022; 24:5907-5912. [PMID: 35925778 DOI: 10.1021/acs.orglett.2c02114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed and synthesized red fluorescent mechanically interlocked molecules with dual targeting functionality for live cancer cell specific active targeting followed by selective internalization and imaging of malignant lysosomes along with real-time tracking, 3D, and multicolor cellular imaging applications.
Collapse
Affiliation(s)
- Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shreya Das
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Arunima Sengupta
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
60
|
Yu Q, Li J, Zhang X, Yang S, Zhou P, Xia J, Deng T, Yu C. Dual-Emission ZAISe/ZnS Quantum Dots for Multi-level Bio-Imaging: Foam Cells and Atherosclerotic Plaque Imaging. J Colloid Interface Sci 2022; 629:399-408. [DOI: 10.1016/j.jcis.2022.08.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
|
61
|
Jiang M, Wu J, Liu W, Ren H, Wang S, Wang P. Novel selenium-containing photosensitizers for near-infrared fluorescence imaging-guided photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112488. [PMID: 35689930 DOI: 10.1016/j.jphotobiol.2022.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Benzopyran nitrile dyes cannot be used as qualified photosensitizers due to the low quantum yield of triplet state. The benzopyran derivatives containing selenium instead of oxygen atom based on the heavy atom effect are expected to become potential agents for photodynamic therapy. In this paper, a series of selenium-containing photosensitizers (PSX) were prepared according to this strategy. PSX can effectively produce both singlet oxygen and superoxide anions upon laser irradiation. PSX exhibited the emission wavelength at 500-800 nm and near-infrared (NIR) fluorescence imaging in HeLa cells. Excellent biocompatibility and phototoxicity further indicated that PSX could be used as efficient photosensitizers for NIR fluorescence imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Meiyu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuai Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
62
|
Martí-Marí O, Martínez-Gualda B, Fernández-Barahona I, Mills A, Abdelnabi R, Noppen S, Neyts J, Schols D, Camarasa MJ, Herranz F, Gago F, San-Félix A. Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. Eur J Med Chem 2022; 237:114414. [DOI: 10.1016/j.ejmech.2022.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
|
63
|
Kang H, Kang MW, Kashiwagi S, Choi HS. NIR fluorescence imaging and treatment for cancer immunotherapy. J Immunother Cancer 2022; 10:e004936. [PMID: 35858710 PMCID: PMC9305898 DOI: 10.1136/jitc-2022-004936] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has emerged as one of the most powerful anticancer therapies. However, the details on the interaction between tumors and the immune system are complicated and still poorly understood. Optical fluorescence imaging is a technique that allows for the visualization of fluorescence-labeled immune cells and monitoring of the immune response during immunotherapy. To this end, near-infrared (NIR) light has been adapted for optical fluorescence imaging because it is relatively safe and simple without hazardous ionizing radiation and has relatively deeper tissue penetration into living organisms than visible fluorescence light. In this review, we discuss state-of-the-art NIR optical imaging techniques in cancer immunotherapy to observe the dynamics, efficacy, and responses of the immune components in living organisms. The use of bioimaging labeling techniques will give us an understanding of how the immune system is primed and ultimately developed.
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Min-Woong Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
64
|
Yokomizo S, Henary M, Buabeng ER, Fukuda T, Monaco H, Baek Y, Manganiello S, Wang H, Kubota J, Ulumben AD, Lv X, Wang C, Inoue K, Fukushi M, Kang H, Bao K, Kashiwagi S, Choi HS. Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201416. [PMID: 35567348 PMCID: PMC9286000 DOI: 10.1002/advs.202201416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Fluorescence-guided surgery (FGS) aids surgeons with real-time visualization of small cancer foci and borders, which improves surgical and prognostic efficacy of cancer. Despite the steady advances in imaging devices, there is a scarcity of fluorophores available to achieve optimal FGS. Here, 1) a pH-sensitive near-infrared fluorophore that exhibits rapid signal changes in acidic tumor microenvironments (TME) caused by the attenuation of intramolecular quenching, 2) the inherent targeting for cancer based on chemical structure (structure inherent targeting, SIT), and 3) mitochondrial and lysosomal retention are reported. After topical application of PH08 on peritoneal tumor regions in ovarian cancer-bearing mice, a rapid fluorescence increase (< 10 min), and extended preservation of signals (> 4 h post-topical application) are observed, which together allow for the visualization of submillimeter tumors with a high tumor-to-background ratio (TBR > 5.0). In addition, PH08 is preferentially transported to cancer cells via organic anion transporter peptides (OATPs) and colocalizes in the mitochondria and lysosomes due to the positive charges, enabling a long retention time during FGS. PH08 not only has a significant impact on surgical and diagnostic applications but also provides an effective and scalable strategy to design therapeutic agents for a wide array of cancers.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Maged Henary
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Emmanuel R. Buabeng
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Takeshi Fukuda
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Obstetrics and GynecologyOsaka City University Graduate School of Medicine1‐4‐3, AsahimachiAbeno‐kuOsaka545–8585Japan
| | - Hailey Monaco
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Yoonji Baek
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sophia Manganiello
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haoran Wang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jo Kubota
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Xiangmin Lv
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Cheng Wang
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Kazumasa Inoue
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Masahiro Fukushi
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Homan Kang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Kai Bao
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hak Soo Choi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
65
|
Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022; 12:16927-16941. [PMID: 35754870 PMCID: PMC9178442 DOI: 10.1039/d2ra01102f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the limitations resulting from hypoxia and the self-aggregation of photosensitizers, photodynamic therapy (PDT) has not been applied clinically to treat most types of solid tumors. Zeolitic imidazolate framework-8 (ZIF-8) is a common metal-organic framework that has ultra-high porosity, an adjustable structure, good biocompatibility, and pH-induced biodegradability. In this review, we summarize the applications of ZIF-8 and its derivatives in PDT. This review is divided into two parts. In the first part, we summarize progress in the application of ZIF-8 to enhance PDT and realize theranostics. We discuss the use of ZIF-8 to avoid the self-aggregation of photosensitizers, alleviate hypoxia, increase the PDT penetration depth, and combine PDT with multi-modal imaging. In the second part, we summarize how ZIF-8 can achieve synergistic PDT with other anti-tumor therapies, including chemotherapy, photothermal therapy, chemodynamic therapy, starvation therapy, protein therapy, gene therapy, and immunotherapy. Finally, we highlight the challenges that must be overcome for ZIF-8 to be widely applied in PDT. To the best of our knowledge, this is the first review of ZIF-8-based nanoplatforms for PDT.
Collapse
Affiliation(s)
- Wen Kang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 P. R. China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications Nanjing 210046 P. R. China
| |
Collapse
|
66
|
Shao Y, Zhu D, Wang Y, Zhu Z, Tang W, Tian Z, Peng Y, Zhu Y. Moxa Wool in Different Purities and Different Growing Years Measured by Terahertz Spectroscopy. PLANT PHENOMICS 2022; 2022:9815143. [PMID: 35707451 PMCID: PMC9178489 DOI: 10.34133/2022/9815143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/01/2022] [Indexed: 11/06/2022]
Abstract
Moxa wool is a traditional Chinese herbal medicine, which can warm channels to dispel coldness. At present, there is no unified index to evaluate the purity and growing years of moxa wool in the market. Terpineol is one of the effective substances in the volatile oil of moxa wool. Here, we characterize the purity and growing years of moxa wool by studying terpineol. Gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) are the methods for monitoring terpineol at present, all of which have defects of complicated procedures. We established linear fitting to distinguish the different purities of moxa wool through the intensities (areas) of terpineol, the characteristic peaks, and the consequence presented; the coefficient of determination (R2) was higher than 0.90. Furthermore, based on the characteristic peak position of standard terpineol, the correlation model with the purity and growing year of moxa wool was set up, thereby differentiating the quality of moxa wool. We have built the partial least squares (PLS) model of the growing years of moxa wool with high accuracy, and the determination coefficient is greater than 0.98. In addition, we compare the quantitative accuracy of Raman spectroscopy with terahertz technology. Finally, a new method of terahertz spectroscopy to evaluate quality of moxa wool was found. It provides a new idea for the identification of inferior moxa wool in the market and a new method for identifying the quality of moxa wool in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yongni Shao
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 20009, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Di Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 20009, China
| | - Yutian Wang
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 20009, China
| | - Zhi Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 20009, China
| | - Wenchao Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai Customs District P.R. 200335, China
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 20009, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Yiming Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 20009, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
67
|
Pan X, Gao A, Lin Z. Fluorescence imaging of tumor immune contexture in immune checkpoint blockade therapy. Int Immunopharmacol 2022; 106:108617. [DOI: 10.1016/j.intimp.2022.108617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
68
|
Monaco H, Yokomizo S, Choi HS, Kashiwagi S. Quickly evolving near‐infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW 2022. [DOI: 10.1002/viw.20200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hailey Monaco
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
- Department of Radiological Sciences Tokyo Metropolitan University Arakawa Tokyo Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
69
|
Zhu L, Yan T, Alimu G, Zhang L, Ma R, Alifu N, Zhang X, Wang D. Liposome-Loaded Targeted Theranostic Fluorescent Nano-Probes for Diagnosis and Treatment of Cervix Carcinoma. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Near-infrared fluorescence imaging, with its high sensitivity, non-invasiveness, and superior real-time feedback properties, has become a powerful skill for accurate diagnosis in the clinic. Nanoparticle-assisted chemotherapy is an effective cure for cancer. Specifically, the combination
of near-infrared fluorescence imaging with chemotherapy represents a promising method for precise diagnosis and treatment of cervical cancer. To realize this approach, it is necessary to design and synthesize therapeutic nano-probes with detection abilities. In this work, an organic NIRF emissive
heptamethine cyanine dye, IR783, was utilized and encapsulated in biocompatible drug-carrier liposomes). Then, the anticancer drug doxorubicin was loaded, to form LP-IR783-DOX nanoparticles. The LP-IR783-DOX nanoparticles had spherical shapes and were smoothly dispersed in aqueous solutions.
Favorable absorption (a peak of 800 nm) and fluorescence (a peak of 896 nm) features were obtained from LP-IR783-DOX nanoparticles in the near-infrared region. Moreover, the specific detection abilities of nanoparticles were confirmed in different cell lines, and nanoparticles exhibited strong
detection abilities in human cervix carcinoma cells in particular. To analyze the chemotherapeutic properties of LP-IR783-DOX nanoparticles, live HeLa cells were studied in detail, and the application of these NPs resulted in a chemotherapeutic efficiency of 56.75% based on fluorescein isothiocyanate
staining and flow cytometry. The results indicate that nanoparticles have great potential for theranostic application of fluorescence imaging and chemotherapy in cases of cervical cancer.
Collapse
Affiliation(s)
- Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Ting Yan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Gulinigaer Alimu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Linxue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Duoqiang Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
70
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. Development and Challenge of Fluorescent Probes for Bioimaging Applications: From Visualization to Diagnosis. Top Curr Chem (Cham) 2022; 380:22. [PMID: 35412098 DOI: 10.1007/s41061-022-00376-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Fluorescent probes have been used widely in bioimaging, including biological substance detection, cell imaging, in vivo biochemical reaction process tracking, and disease biomarker monitoring, and have gradually occupied an indispensable position. Compared with traditional biological imaging technologies, such as positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI), the attractive advantages of fluorescent probes, such as real-time imaging, in-depth visualization, and less damage to biological samples, have made them increasingly popular. Among them, ultraviolet-visible (UV-vis) fluorescent probes still occupy the mainstream in the field of fluorescent probes due to the advantages of available structure, simple synthesis, strong versatility, and wide application. In recent years, fluorescent probes have become an indispensable tool for bioimaging and have greatly promoted the development of diagnostics. In this review, we focus on the structure, design strategies, advantages, representative probes and latest discoveries in application fields of UV-visible fluorescent probes developed in the past 3-5 years based on several fluorophores. We look forward to future development trends of fluorescent probes from the perspective of bioimaging and diagnostics. This comprehensive review may facilitate the development of more powerful fluorescent sensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
71
|
Chi G, Lv Y, Chao S, Hou C, Pei Y, Pei Z. Glyconanoparticles with Activatable Near-Infrared Probes for Tumor-Cell Imaging and Targeted Drug Delivery. Int J Nanomedicine 2022; 17:1567-1575. [PMID: 35401000 PMCID: PMC8985912 DOI: 10.2147/ijn.s337082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Multifunctional nanocarriers based on tumor targeting and intracellular monitoring have received much attention and been a subject of intensive study by researchers in recent years. In this study, we report multifunctional glyconanoparticles with activatable near-infrared probes for tumor imaging and targeted drug delivery. Methods Disulfide-functionalized dicyanomethylene-4H-pyran (DCM-SS-NH2) and amino-functionalized lactose were modified and loaded onto the surfaces of polydopamine nanoparticles (NPs) by Michael addition or Schiff-base reaction as GSH stimulation–responsive fluorescent probes and tumor-targeting moieties, respectively. Doxorubicin (DOX), a model anticancer drug, was loaded onto polydopamine through π–π interactions directly to prepare multifunctional PLDD (PDA@Lac/DCM/DOX) NPs. Results Experimental results showed that PLDD NPs had been successfully prepared. DCM, the fluorescence of which was quenched in PLDD NPs, was able to restore red fluorescence in a solution with a GSH concentration of 5 mM. The amount of DOX released from PLDD NPs was 44% over 72 hours in a weak-acid environment (pH 5). The results of CLSM and flow cytometry indicated that the PLDD NPs had good HepG2-targeting ability due to the special recognition between lactose derivative of NPs and overexpressed asialoglycoprotein receptors on HepG2 cell membrane. More importantly, the disulfide bond of DCM-SS-NH2 was broken by the high concentration of GSH inside cancer cells, activating the near-infrared fluorescence probe DCM for cancer-cell imaging. MTT assays indicated that PLDD NPs exhibited higher anticancer efficiency for HepG2 cells and had reduced side effects on normal cells compared with free DOX. Conclusion The fluorescence of modified DCM loaded onto PLDD NPs is able to be restored in the high-concentration GSH environment within cancer cells, while improving the effectiveness of chemotherapy with reduced side effects. It provides a good example of integration of tumor imaging and targeted drug delivery.
Collapse
Affiliation(s)
- Guanyu Chi
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
- Correspondence: Zhichao Pei, Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China, Tel/Fax +86 29 8709-2769, Email
| |
Collapse
|
72
|
Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today 2022; 27:1622-1638. [PMID: 35331925 DOI: 10.1016/j.drudis.2022.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
In recent years, nanobodies have emerged as ideal imaging agents for molecular imaging. Molecular nanobody imaging combines the specificity of nanobodies with the sensitivity of state-of-the-art molecular imaging modalities, such as positron emission tomography (PET). Given that modifications of nanobodies alter their pharmacokinetics (PK), the engineering strategies that combine nanobodies with radionuclides determine the effectiveness, reliability, and safety of the molecular imaging probes. In this review, we introduce conjugation strategies that have been applied to nanobodies, including random conjugation, 99mTc tricarbonyl chemistry, sortase A-mediated site-specific conjugation, maleimide-cysteine chemistry, and click chemistries. We also summarize the latest advances in nanobody tracers, emphasizing their preclinical and clinical use. In addition, we elaborate on nanobody-based near-infrared fluorescence (NIRF) imaging and image-guided surgery.
Collapse
Affiliation(s)
- Erpeng Yang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
73
|
Yang X, Li C, Liu L, Zhang H, Feng HT, Li Y, Jiang G, Wang J. Donor–acceptor strategy to construct near infrared AIEgens for cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A donor–acceptor strategy was applied to construct NIR AIEgens. Six new AIEgens were obtained and among them, DMNIC exhibited the longest emission maximum at 694 nm and was successfully applied for NIR cell imaging.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongge Zhang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
74
|
Zhu L, Chen J, Yan T, Alimu G, Zhang X, Chen S, Aimaiti M, Ma R, Alifu N. Near-infrared emissive polymer-coated IR-820 nanoparticles assisted photothermal therapy for cervical cancer cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202100117. [PMID: 34331509 DOI: 10.1002/jbio.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Photothermal therapy (PTT) has attracted wide attention due to its noninvasiveness and its thermal ablation ability. As photothermal agents are crucial factor in PTT, those with the characteristics of biocompatibility, non-toxicity and high photothermal stability have attracted great interest. In this work, new indocyanine green (IR-820) was utilized as a photothermal agent and near-infrared (NIR) fluorescence imaging nanoprobe. To improve the biocompatibility, poly(styrene-co-maleic anhydride) (PSMA) was utilized to encapsulate the IR-820 molecules to form novel IR-820@PSMA nanoparticles (NPs). Then, the optical and thermal properties of IR-820@PSMA NPs were studied in detail. The IR-820@PSMA NPs showed excellent photothermal stability and biocompatibility. The cellular uptaking ability of the IR-820@PSMA NPs was further confirmed in HeLa cells by the NIR fluorescent confocal microscopic imaging technique. The IR-820@PSMA NPs assisted PTT of living HeLa cells was conducted under 793 nm laser excitation, and a high PTT efficiency of 73.3% was obtained.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianjun Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xueliang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Shuang Chen
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, China
| | | | - Rong Ma
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
75
|
Li S, Cheng D, He L, Yuan L. Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation. Front Bioeng Biotechnol 2021; 9:768698. [PMID: 34790654 PMCID: PMC8591038 DOI: 10.3389/fbioe.2021.768698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of morbidity and death rate around the world, although diagnostic and therapeutic technologies are used to advance human disease treatment. Currently, surgical resection of solid tumors is the most effective and a prior remedial measure to treat cancer. Although medical treatment, technology, and science have advanced significantly, it is challenging to completely treat this lethal disease. Near-infrared (NIR) fluorescence, including the first near-infrared region (NIR-I, 650-900 nm) and the second near-infrared region (NIR-II, 1,000-1,700 nm), plays an important role in image-guided cancer surgeries due to its inherent advantages, such as great tissue penetration, minimal tissue absorption and emission light scattering, and low autofluorescence. By virtue of its high precision in identifying tumor tissue margins, there are growing number of NIR fluorescence-guided surgeries for various living animal models as well as patients in clinical therapy. Herein, this review introduces the basic construction and operation principles of fluorescence molecular imaging technology, and the representative application of NIR-I/II image-guided surgery in biomedical research studies are summarized. Ultimately, we discuss the present challenges and future perspectives in the field of fluorescence imaging for surgical navigation and also put forward our opinions on how to improve the efficiency of the surgical treatment.
Collapse
Affiliation(s)
- Songjiao Li
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Cheng
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Longwei He
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
76
|
Huang D, Wang G, Mao J, Liu C, Fan Z, Zhang Y, Zhang B, Zhao Y, Dai C, He Y, Ma H, Liu G, Chen X, Zhao Q. Intravital Whole-Process Monitoring Thermo-Chemotherapy Via 2D Silicon Nanoplatform: A Macro Guidance and Long-Term Microscopic Precise Imaging Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101242. [PMID: 34166580 PMCID: PMC8373095 DOI: 10.1002/advs.202101242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Tumor angiogenesis is a complex process that is unamenable to intravital whole-process monitoring, especially on microscopic assessment of tumor microvessel and quantifying microvascular hemodynamics before and after the nanotherapeutics, which hinder the understanding of nanotheranostics outcomes in tumor treatment. Herein, a new photoacoustic (PA) imaging-optical coherence tomography angiography (OCTA)-laser speckle (LS) multimodal imaging strategy is first proposed, which is not only able to precisely macro guide the thermo-chemotherapy of tumor by monitoring blood oxygen saturation (SaO2 ) and hemoglobin content (HbT), but also capable of long-term microscopic investigating the microvessel morphology (microvascular density) and hemodynamics changes (relative blood flow) before and after the nanotherapeutics in vivo. Moreover, to realize the tumor thermo-chemotherapy treatment based on this novel multimodal imaging strategy, a 2D 5-fluorouracil silicon nanosheets (5-Fu-Si NSs) therapeutic agent is designed. Furthermore, 2D high-resolution tumor microvascular images in different stage display that tendency of the thermo-chemotherapy effect is closely associated with tumor angiogenesis. Taken together, the investigations establish the fundamental base in theory and technology for further tailoring the novel specific diagnosis and treatment strategy in tumor. More importantly, this technique will be beneficial to evaluate the tumor microvascular response to nanotherapeutics at microscale.
Collapse
Affiliation(s)
- Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Guangxing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Jingsong Mao
- Department of RadiologyXiang'an Hospital of Xiamen UniversityXiamen361102China
| | - Chunlei Liu
- Laboratory of Translational MedicineMedical Innovation Research Division of Chinese PLA General HospitalBeijing100853China
| | - Zhongxiong Fan
- Department of BiomaterialsCollege of MaterialsResearch Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft FunctionalXiamen UniversityXiamen361102China
| | - Yunrui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Bei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Yang Zhao
- Department of Mechanical and Electrical EngineeringXiamen UniversityXiamen361102China
| | - Cuixia Dai
- College of PhysicsShanghai Institute of TechnologyShanghai201418China
| | - Yaqin He
- Department of Colorectal SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Heng Ma
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'an710032China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore117597Singapore
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518063China
| |
Collapse
|
77
|
Lu F, Cao J, Su Q, Zhao Q, Wang H, Guan W, Zhou W. Recent Advances in Fluorescence Imaging of Traumatic Brain Injury in Animal Models. Front Mol Biosci 2021; 8:660993. [PMID: 34124151 PMCID: PMC8194861 DOI: 10.3389/fmolb.2021.660993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the top three specific neurological disorders, requiring reliable, rapid, and sensitive imaging of brain vessels, tissues, and cells for effective diagnosis and treatment. Although the use of medical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) for the TBI detection is well established, the exploration of novel TBI imaging techniques is of great interest. In this review, recent advances in fluorescence imaging for the diagnosis and evaluation of TBI are summarized and discussed in three sections: imaging of cerebral vessels, imaging of brain tissues and cells, and imaging of TBI-related biomarkers. Design strategies for probes and labels used in TBI fluorescence imaging are also described in detail to inspire broader applications. Moreover, the multimodal TBI imaging platforms combining MRI and fluorescence imaging are also briefly introduced. It is hoped that this review will promote more studies on TBI fluorescence imaging, and enable its use for clinical diagnosis as early as possible, helping TBI patients get better treatment and rehabilitation.
Collapse
Affiliation(s)
- Fei Lu
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Jiating Cao
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Qinglun Su
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Huihai Wang
- Department of Rehabilitation Medicine, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|
78
|
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021; 9:647905. [PMID: 33928072 PMCID: PMC8076689 DOI: 10.3389/fbioe.2021.647905] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer treatments, such as surgical resection, radiotherapy, and chemotherapy, have achieved significant progress in cancer therapy. Nevertheless, some limitations (such as toxic side effects) are still existing for conventional therapies, which motivate efforts toward developing novel theranostic avenues. Owning many merits such as easy surface modification, unique optical properties, and high biocompatibility, gold nanoparticles (AuNPs and GNPs) have been engineered to serve as targeted delivery vehicles, molecular probes, sensors, and so on. Their small size and surface characteristics enable them to extravasate and access the tumor microenvironment (TME), which is a promising solution to realize highly effective treatments. Moreover, stimuli-responsive properties (respond to hypoxia and acidic pH) of nanoparticles to TME enable GNPs’ unrivaled control for effective transport of therapeutic cargos. In this review article, we primarily introduce the basic properties of GNPs, further discuss the recent progress in gold nanoparticles for cancer theranostics, with an additional concern about TME stimuli-responsive studies.
Collapse
Affiliation(s)
- Qinyue Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
79
|
Zhang L, Gong X, Tian C, Fu H, Tan H, Dai J, Cui M. Near-Infrared Fluorescent Probes with Rotatable Polyacetylene Chains for the Detection of Amyloid-β Plaques. J Phys Chem B 2021; 125:497-506. [PMID: 33415984 DOI: 10.1021/acs.jpcb.0c08845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plaques of accumulated β-amyloid (Aβ) in the parenchymal brain are accepted as an important biomarker for the early diagnosis of Alzheimer's disease (AD). Many near-infrared (NIR) probes, which were based on the D-π-A structure and bridged by conjugated double bonds, had been reported and displayed a high affinity to Aβ plaques. Considering the isomerization caused by the polyethylene chain, however, the conjugated polyacetylene chain is a better choice for developing new NIR Aβ probes. Hence, in this report, a new series of NIR probes with naphthyl or phenyl rings and different numbers of conjugated triple bonds were designed, synthesized, and evaluated as NIR probes for Aβ plaques. Upon interaction with Aβ aggregates, these probes displayed a significant increase in fluorescence intensity (45- to 360-fold) and a high to moderate affinity (6.05-56.62 nM). Among them, probe 22b displayed excellent fluorescent properties with a 183-fold increase in fluorescence intensity and an emission maximum at 650 nm after incubated with Aβ aggregates. Furthermore, 22b had a high affinity to Aβ aggregates (Kd = 12.96 nM) and could efficiently detect the Aβ plaques in brain sections from both transgenic mice and AD patients in vitro. In summary, this work may lead to a new direction in the development of novel NIR probes for the detection of Aβ plaques.
Collapse
Affiliation(s)
- Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin Gong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chuan Tian
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|