51
|
Wang X, Chen M, Dai L, Tan C, Hu L, Zhang Y, Xiao Y, Li F, Zeng C, Xiang Z, Wang Y, Zhang W, Zhang X, Ran Q, Li Z, Chen L. Potential biomarkers for inherited thrombocytopenia 2 identified by plasma proteomics. Platelets 2021; 33:443-450. [PMID: 34101524 DOI: 10.1080/09537104.2021.1937594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Inherited thrombocytopenia 2 (THC2) is difficult to diagnose due to the lack of specific clinical characteristics and diagnostic methods. To identify potential plasma protein biomarkers for THC2, we collected the plasma samples from a THC2 family (9 THC2 and 15 non-THC2 members), enriched the medium and low abundant proteins using Proteominer and analyzed the protein profiles using the liquid chromatography-mass spectrometry in data independent acquisition mode. Initially, we detected 784 proteins in the plasma samples of this family and identified 27 up-regulated and 36 down-regulated in the THC2 group compared to the non-THC2 group (|log2 ratio| >1 and p-value <0.05). To improve the predictive power, top eight dysregulated proteins (B7Z2B4, LTF, HP, ERN1, IGHV1-8, A0A0X9V9C4, VH6DJ, and D3JV41) were selected by an area under the curve-based random forest process to construct a clinical model. Multivariate analysis with random forest and support vector machine showed that the prediction model provided high discrimination ability for THC2 diagnosis (AUC: 1.000 and 0.967, respectively). The potential plasma protein biomarkers will be tested in more THC2 patients and other thrombocytopenia patients to further validate their specificity and sensitivity.
Collapse
Affiliation(s)
- Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Maoshan Chen
- Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne, Australia
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yichi Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fengjie Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Zeng
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zheng Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yali Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaomei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
52
|
Feurstein S, Drazer M, Godley LA. Germline predisposition to haematopoietic malignancies. Hum Mol Genet 2021; 30:R225-R235. [PMID: 34100074 DOI: 10.1093/hmg/ddab141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Once thought to be exceedingly rare, the advent of next-generation sequencing has revealed a plethora of germline predisposition disorders that confer risk for haematopoietic malignancies (HMs). These syndromes are now recognized to be much more common than previously thought. The recognition of a germline susceptibility risk allele in an individual impacts the clinical management and health surveillance strategies in the index patient and relatives who share the causative DNA variant. Challenges to accurate clinical testing include a lack of familiarity in many health care providers, the requirement for DNA samples that reasonably approximate the germline state, and a lack of standardization among diagnostic platforms as to which genes are sequenced and their capabilities in detecting the full range of variant types that confer risk. Current knowledge gaps include a comprehensive understanding of all predisposition genes; whether scenarios exist in which an allogeneic stem cell transplant using donor haematopoietic stem cells with deleterious variants is permissive; and effective means of delivering genetic counseling and results disclosure for these conditions. We are hopeful that comprehensive germline genetic testing, universal germline testing for all patients with an HM, universal germline testing for allogeneic haematopoietic stem cell donors, and the development of preventive strategies to delay or even prevent malignancies will be available in the near future. These factors will likely contribute to improved health outcomes for at-risk individuals and their family members.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
53
|
Murphy L, Mead AJ. Familial thrombocytopenia: The long and short of it. J Exp Med 2021; 218:e20210604. [PMID: 34014260 PMCID: PMC8142280 DOI: 10.1084/jem.20210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this issue, Wahlster, Verboon, and colleagues (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210444) describe a multigenerational family with inherited thrombocytopenia where the causal variant was not identified using conventional genome sequencing approaches. Long-read sequencing and RNA sequencing revealed a complex structural variant, causing overexpression of a pathogenic gain-of-function WAC-ANKRD26 fusion transcript.
Collapse
Affiliation(s)
- Lauren Murphy
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Adam J Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
54
|
Chopra M, McEntagart M, Clayton-Smith J, Platzer K, Shukla A, Girisha KM, Kaur A, Kaur P, Pfundt R, Veenstra-Knol H, Mancini GM, Cappuccio G, Brunetti-Pierri N, Kortüm F, Hempel M, Denecke J, Lehman A, Kleefstra T, Stuurman KE, Wilke M, Thompson ML, Bebin EM, Bijlsma EK, Hoffer MJ, Peeters-Scholte C, Slavotinek A, Weiss WA, Yip T, Hodoglugil U, Whittle A, diMonda J, Neira J, Yang S, Kirby A, Pinz H, Lechner R, Sleutels F, Helbig I, McKeown S, Helbig K, Willaert R, Juusola J, Semotok J, Hadonou M, Short J, Yachelevich N, Lala S, Fernández-Jaen A, Pelayo JP, Klöckner C, Kamphausen SB, Abou Jamra R, Arelin M, Innes AM, Niskakoski A, Amin S, Williams M, Evans J, Smithson S, Smedley D, de Burca A, Kini U, Delatycki MB, Gallacher L, Yeung A, Pais L, Field M, Martin E, Charles P, Courtin T, Keren B, Iascone M, Cereda A, Poke G, Abadie V, Chalouhi C, Parthasarathy P, Halliday BJ, Robertson SP, Lyonnet S, Amiel J, Gordon CT, Amiel J, Gordon CT. Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism. Am J Hum Genet 2021; 108:1138-1150. [PMID: 33909992 DOI: 10.1016/j.ajhg.2021.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/05/2021] [Indexed: 01/02/2023] Open
Abstract
ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), and Institut Imagine, Paris 75015, France; Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, Paris 75015, France
| | - Christopher T Gordon
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, Paris 75015, France.
| |
Collapse
|
55
|
Kewan T, Noss R, Godley LA, Rogers HJ, Carraway HE. Inherited Thrombocytopenia Caused by Germline ANKRD26 Mutation Should Be Considered in Young Patients With Suspected Myelodysplastic Syndrome. J Investig Med High Impact Case Rep 2021; 8:2324709620938941. [PMID: 32618208 PMCID: PMC7493274 DOI: 10.1177/2324709620938941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thrombocytopenia 2 (THC2) is an autosomal dominant disorder characterized by ankyrin repeat domain 26 mutation and moderate thrombocytopenia. THC2 exposes patients to a low risk of bleeding and an increased likelihood of myelodysplastic syndrome/acute myeloid leukemia. Germline evaluation for a genetic disorder should be considered when a patient presents with isolated thrombocytopenia and associated dysmegakaryopoiesis. In this case report, we present a male patient who presented with isolated thrombocytopenia but was ultimately confirmed to have an inherited THC2 thrombocytopenia/myelodysplastic syndrome. Given the rarity of the disease, no clear guidelines on how to follow THC2 patients over the long term have been established. We recommend a monthly complete blood count and clinical visits every 3 months at a minimum.
Collapse
Affiliation(s)
- Tariq Kewan
- Hematology-Oncology Leukemia Program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ryan Noss
- Hematology-Oncology Leukemia Program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Heesun J Rogers
- Hematology-Oncology Leukemia Program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Hematology-Oncology Leukemia Program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
56
|
Wahlster L, Verboon JM, Ludwig LS, Black SC, Luo W, Garg K, Voit RA, Collins RL, Garimella K, Costello M, Chao KR, Goodrich JK, DiTroia SP, O'Donnell-Luria A, Talkowski ME, Michelson AD, Cantor AB, Sankaran VG. Familial thrombocytopenia due to a complex structural variant resulting in a WAC-ANKRD26 fusion transcript. J Exp Med 2021; 218:211998. [PMID: 33857290 PMCID: PMC8056752 DOI: 10.1084/jem.20210444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Advances in genome sequencing have resulted in the identification of the causes for numerous rare diseases. However, many cases remain unsolved with standard molecular analyses. We describe a family presenting with a phenotype resembling inherited thrombocytopenia 2 (THC2). THC2 is generally caused by single nucleotide variants that prevent silencing of ANKRD26 expression during hematopoietic differentiation. Short-read whole-exome and genome sequencing approaches were unable to identify a causal variant in this family. Using long-read whole-genome sequencing, a large complex structural variant involving a paired-duplication inversion was identified. Through functional studies, we show that this structural variant results in a pathogenic gain-of-function WAC-ANKRD26 fusion transcript. Our findings illustrate how complex structural variants that may be missed by conventional genome sequencing approaches can cause human disease.
Collapse
Affiliation(s)
- Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Susan C Black
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Wendy Luo
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Kopal Garg
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Ryan L Collins
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kiran Garimella
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Maura Costello
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Katherine R Chao
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Julia K Goodrich
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Stephanie P DiTroia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Anne O'Donnell-Luria
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Michael E Talkowski
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alan D Michelson
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alan B Cantor
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
57
|
Tsumura AM, Druker BJ, Brewer D, Press R, Braun TP. BCR-ABL+ Chronic Myeloid Leukemia Arising in a Family With Inherited ANKRD26-Related Thrombocytopenia. JCO Precis Oncol 2021; 5:PO.20.00318. [PMID: 34250402 DOI: 10.1200/po.20.00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Aaron M Tsumura
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR
| | - Brian J Druker
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Diana Brewer
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR
| | - Richard Press
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Theodore P Braun
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
58
|
Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J, Holland AJ. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 2021; 40:e105106. [PMID: 33350495 PMCID: PMC7883295 DOI: 10.15252/embj.2020105106] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Centriole copy number is tightly maintained by the once-per-cycle duplication of these organelles. Centrioles constitute the core of centrosomes, which organize the microtubule cytoskeleton and form the poles of the mitotic spindle. Centrosome amplification is frequently observed in tumors, where it promotes aneuploidy and contributes to invasive phenotypes. In non-transformed cells, centrosome amplification triggers PIDDosome activation as a protective response to inhibit cell proliferation, but how extra centrosomes activate the PIDDosome remains unclear. Using a genome-wide screen, we identify centriole distal appendages as critical for PIDDosome activation in cells with extra centrosomes. The distal appendage protein ANKRD26 is found to interact with and recruit the PIDDosome component PIDD1 to centriole distal appendages, and this interaction is required for PIDDosome activation following centrosome amplification. Furthermore, a recurrent ANKRD26 mutation found in human tumors disrupts PIDD1 localization and PIDDosome activation in cells with extra centrosomes. Our data support a model in which ANKRD26 initiates a centriole-derived signal to limit cell proliferation in response to centrosome amplification.
Collapse
Affiliation(s)
- Lauren T Evans
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Taylor Anglen
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Phillip Scott
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Andrew J Holland
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
59
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
60
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
61
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|
62
|
Han X, Li C, Zhang S, Hou X, Chen Z, Zhang J, Zhang Y, Sun J, Wang Y. Why thromboembolism occurs in some patients with thrombocytopenia and treatment strategies. Thromb Res 2020; 196:500-509. [PMID: 33091704 DOI: 10.1016/j.thromres.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Platelets play such an important role in the process of thrombosis that patients with thrombocytopenia generally have an increased risk of bleeding. However, abnormal thrombotic events can sometimes occur in patients with thrombocytopenia, which is unusual and inexplicable. The treatments for thrombocytopenia and thromboembolism are usually contradictory. This review introduces the mechanisms of thromboembolism in patients with different types of thrombocytopenia and outlines treatment recommendations for the prevention and treatment of thrombosis. According to the cause of thrombocytopenia, this article addresses four etiologies, including inherited thrombocytopenia (Myh9-related disease, ANKRD26-associated thrombocytopenia, Glanzmann thrombasthenia, Bernard-Soulier syndrome), thrombotic microangiopathy (thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome, hemolytic uremic syndrome, Hemolysis Elevated Liver enzymes and Low Platelets syndrome, disseminated intravascular coagulation), autoimmune-related thrombocytopenia (immune thrombocytopenic purpura, antiphospholipid syndrome, systemic lupus erythematosus), and acquired thrombocytopenia (Infection-induced thrombocytopenia and drug-induced thrombocytopenia, heparin-induced thrombocytopenia). We hope to provide more evidence for clinical applications and future research.
Collapse
Affiliation(s)
- Xiaorong Han
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Cheng Li
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Shuai Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China.
| | - Zhongbo Chen
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jin Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Ying Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jian Sun
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| |
Collapse
|
63
|
ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Adv 2020; 3:2962-2979. [PMID: 31648317 DOI: 10.1182/bloodadvances.2019000644] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.
Collapse
|
64
|
Zidan NI, AbdElmonem DM, Elsheikh HM, Metwally EA, Mokhtar WA, Osman GM. Relation between mutations in the 5' UTR of ANKRD26 gene and inherited thrombocytopenia with predisposition to myeloid malignancies. An Egyptian study. Platelets 2020; 32:642-650. [PMID: 32659145 DOI: 10.1080/09537104.2020.1790512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inherited thrombocytopenias are a heterogeneous group of diseases characterized by a reduced number of platelets and a bleeding tendency that ranges from very mild to life threatening especially in surgery. Mutations in the 5' untranslated region (UTR) of Ankirin repeat domain 26 (ANKRD26) are responsible for autosomal-dominant form of thrombocytopenia, that is known as ANKRD26-related thrombocytopenia (ANKRD26 RT), characterized by a moderate thrombocytopenia with mild propensity to bleeding and predisposition to hematological malignancies including AML and MDS. We included 90 unrelated patients with inherited thrombocytopenia. In addition, we investigated 45 patients with ITP. Peripheral blood and bone marrow samples were collected and examined and molecular detection of mutations in the 5︡ UTR of ANKRD26 gene was performed for all the patients. Also, screening of the mutation and development of myeloid malignancies in the extended series of the affected subjects was done. ANKRD26 mutations were identified in 10% of the patients with inherited thrombocytopenia. The most common types were c.128 G > A and c.127A>T, while no mutations were found in the ITP group. In those affected, the median number of platelets was 69 x109/L (43-106) with normal MPV in most of the patients (9.4-11.6). There was a statistically significant increase in the unexpected high frequency of myeloid malignancies in the extended series of the mutated subjects compared with the ITP group-extended series (P < .001). So, we can conclude that ANKRD26 RT is associated with increased risk for developing myeloid malignancies and ANKRD26 mutations can represent a valuable tool for making therapeutic decisions.
Collapse
Affiliation(s)
- Nahla Ibrahim Zidan
- Clinical Pathology Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | | | - Haitham Mohamed Elsheikh
- Hematology Unit of Internal Medicine Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Elsayed Anany Metwally
- Hematology Unit of Internal Medicine Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | | | - Gamal Mohamed Osman
- General Surgery Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
65
|
Mangaonkar AA, Patnaik MM. Hereditary Predisposition to Hematopoietic Neoplasms: When Bloodline Matters for Blood Cancers. Mayo Clin Proc 2020; 95:1482-1498. [PMID: 32571604 DOI: 10.1016/j.mayocp.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
With the advent of precision genomics, hereditary predisposition to hematopoietic neoplasms- collectively known as hereditary predisposition syndromes (HPS)-are being increasingly recognized in clinical practice. Familial clustering was first observed in patients with leukemia, which led to the identification of several germline variants, such as RUNX1, CEBPA, GATA2, ANKRD26, DDX41, and ETV6, among others, now established as HPS, with tendency to develop myeloid neoplasms. However, evidence for hereditary predisposition is also apparent in lymphoid and plasma--cell neoplasms, with recent discoveries of germline variants in genes such as IKZF1, SH2B3, PAX5 (familial acute lymphoblastic leukemia), and KDM1A/LSD1 (familial multiple myeloma). Specific inherited bone marrow failure syndromes-such as GATA2 haploinsufficiency syndromes, short telomere syndromes, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, severe congenital neutropenia, and familial thrombocytopenias-also have an increased predisposition to develop myeloid neoplasms, whereas inherited immune deficiency syndromes, such as ataxia-telangiectasia, Bloom syndrome, Wiskott Aldrich syndrome, and Bruton agammaglobulinemia, are associated with an increased risk for lymphoid neoplasms. Timely recognition of HPS is critical to ensure safe choice of donors and/or conditioning-regimen intensity for allogeneic hematopoietic stem-cell transplantation and to enable direction of appropriate genomics-driven personalized therapies. The purpose of this review is to provide a comprehensive overview of HPS and serve as a useful reference for clinicians to recognize relevant signs and symptoms among patients to enable timely screening and referrals to pursue germline assessment. In addition, we also discuss our institutional approach toward identification of HPS and offer a stepwise diagnostic and management algorithm.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
66
|
Tan C, Dai L, Chen Z, Yang W, Wang Y, Zeng C, Xiang Z, Wang X, Zhang X, Ran Q, Guo H, Li Z, Chen L. A Rare Big Chinese Family With Thrombocytopenia 2: A Case Report and Literature Review. Front Genet 2020; 11:340. [PMID: 32351539 PMCID: PMC7174646 DOI: 10.3389/fgene.2020.00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
Thrombocytopenia 2 (THC2) is one of the most prevalent forms of inherited thrombocytopenia. It is caused by a heterogeneous group of ANKRD26 gene mutation and shows a heterogeneous clinical and laboratory characteristics. We present a big Chinese family with 10 THC2 patients carrying c.-128G > T heterozygous substitution in the 5-untranslated region of the ANKRD26 gene. Although the platelets are fewer than 50 × 109/L in 8 THC2 family members, only the proband and her son show a higher WHO bleeding score. The proband and her son are also beta-thalassemia carriers with heterozygous c.52A > T mutation of HBB, which might not be associated with the increased bleeding tendency since 3 other family members with low bleeding tendency also carried both ANKRD26 c.-128G > T and HBB c.52A > T mutations. However, the proband and her son also show hypofibrinogenaemia, which is likely the cause of their more severe clinical manifestation. HID1 c.442G > T mutation was detected not only in these two hypofibrinogenaemia family members but also in the other 8 family members with normal blood fibrinogen levels. Our study suggests that the co-occurrence of other inherited genetic conditions associated with blood coagulation might contribute to the heterogeneity of clinical and laboratory characteristics in THC2 patients. Considering the hematologic and myeloid malignancy predisposition of THC2 patients and a large population of immune thrombocytopenia in China, we urge more attention to be paid to the diagnosis of THC2 patients to avoid misdiagnosis and mistreatment.
Collapse
Affiliation(s)
- Chengning Tan
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhengqiong Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wuchen Yang
- Department of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yali Wang
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Zeng
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zheng Xiang
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaomei Zhang
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Lab of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
67
|
Schratz KE, DeZern AE. Genetic Predisposition to Myelodysplastic Syndrome in Clinical Practice. Hematol Oncol Clin North Am 2020; 34:333-356. [PMID: 32089214 PMCID: PMC7875473 DOI: 10.1016/j.hoc.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of marrow failure disorders that primarily affect older persons but also occur at a lower frequency in children and young adults. There is increasing recognition of an inherited predisposition to MDS as well as other myeloid malignancies for patients of all ages. Germline predisposition to MDS can occur as part of a syndrome or sporadic disease. The timely diagnosis of an underlying genetic predisposition in the setting of MDS is important. This article delineates germline genetic causes of MDS and provides a scaffold for the diagnosis and management of patients in this context.
Collapse
Affiliation(s)
- Kristen E Schratz
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Bloomberg 11379, 1800 Orleans Street, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21287, USA
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21287, USA; Division of Hematologic Malignancies, Johns Hopkins University School of Medicine, CRBI Room 3M87, 1650 Orleans Street, Baltimore, MD 21287-0013, USA.
| |
Collapse
|
68
|
Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2020; 134:2082-2091. [PMID: 31064749 DOI: 10.1182/blood.2018891192] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.
Collapse
|
69
|
Wu D, Luo X, Feurstein S, Kesserwan C, Mohan S, Pineda-Alvarez DE, Godley LA. How I curate: applying American Society of Hematology-Clinical Genome Resource Myeloid Malignancy Variant Curation Expert Panel rules for RUNX1 variant curation for germline predisposition to myeloid malignancies. Haematologica 2020; 105:870-887. [PMID: 32165484 PMCID: PMC7109758 DOI: 10.3324/haematol.2018.214221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 01/30/2023] Open
Abstract
The broad use of next-generation sequencing and microarray platforms in research and clinical laboratories has led to an increasing appreciation of the role of germline mutations in genes involved in hematopoiesis and lineage differentiation that contribute to myeloid neoplasms. Despite implementation of the American College of Medical Genetics and Genomics and Association for Molecular Pathology 2015 guidelines for sequence variant interpretation, the number of variants deposited in ClinVar, a genomic repository of genotype and phenotype data, and classified as having uncertain significance or being discordantly classified among clinical laboratories remains elevated and contributes to indeterminate or inconsistent patient care. In 2018, the American Society of Hematology and the Clinical Genome Resource co-sponsored the Myeloid Malignancy Variant Curation Expert Panel to develop rules for classifying gene variants associated with germline predisposition to myeloid neoplasia. Herein, we demonstrate application of our rules developed for the RUNX1 gene to variants in six examples to show how we would classify them within the proposed framework.
Collapse
Affiliation(s)
- David Wu
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Xi Luo
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Chimene Kesserwan
- Albert Einstein College of Medicine, Department of Pathology, New York, NY
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and The University of Chicago Comprehensive Cancer Center, Chicago, IL .,Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
70
|
Wiggins M, Stevenson W. Genetic predisposition in acute leukaemia. Int J Lab Hematol 2020; 42 Suppl 1:75-81. [PMID: 32115888 DOI: 10.1111/ijlh.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
A small but important proportion of patients with myelodysplasia (MDS) and acute leukaemia (AL) have underlying germline mutations in leukaemia susceptibility genes. The majority of these variants predispose to myeloid neoplasms with a smaller number associated with acute lymphoblastic leukaemia (ALL). The 2016 revision of the WHO classification of tumours of haematopoietic and lymphoid tissues has defined a number of myeloid neoplasms with germline predisposition (Blood, 127, 2016, 2391) alerting clinicians to the importance of this underlying diagnosis. Advances in genetic technology and access to testing will undoubtably result in increased numbers of patients and families with leukaemia predisposition syndromes being identified. Here we summarize the salient biology and genetic and clinical features of a number of these conditions including some more recently described genetic variants.
Collapse
Affiliation(s)
- Meredith Wiggins
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - William Stevenson
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
71
|
Aguilera-Diaz A, Vazquez I, Ariceta B, Mañú A, Blasco-Iturri Z, Palomino-Echeverría S, Larrayoz MJ, García-Sanz R, Prieto-Conde MI, del Carmen Chillón M, Alfonso-Pierola A, Prosper F, Fernandez-Mercado M, Calasanz MJ. Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. PLoS One 2020; 15:e0227986. [PMID: 31978184 PMCID: PMC6980571 DOI: 10.1371/journal.pone.0227986] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
The diagnosis of myeloid neoplasms (MN) has significantly evolved through the last few decades. Next Generation Sequencing (NGS) is gradually becoming an essential tool to help clinicians with disease management. To this end, most specialized genetic laboratories have implemented NGS panels targeting a number of different genes relevant to MN. The aim of the present study is to evaluate the performance of four different targeted NGS gene panels based on their technical features and clinical utility. A total of 32 patient bone marrow samples were accrued and sequenced with 3 commercially available panels and 1 custom panel. Variants were classified by two geneticists based on their clinical relevance in MN. There was a difference in panel’s depth of coverage. We found 11 discordant clinically relevant variants between panels, with a trend to miss long insertions. Our data show that there is a high risk of finding different mutations depending on the panel of choice, due both to the panel design and the data analysis method. Of note, CEBPA, CALR and FLT3 genes, remains challenging the use of NGS for diagnosis of MN in compliance with current guidelines. Therefore, conventional molecular testing might need to be kept in place for the correct diagnosis of MN for now.
Collapse
Affiliation(s)
- Almudena Aguilera-Diaz
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Iria Vazquez
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Amagoia Mañú
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Zuriñe Blasco-Iturri
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | | | - María José Larrayoz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca, IBSAL and CIBERONC, Salamanca, Spain
| | | | | | - Ana Alfonso-Pierola
- Hematology Department, Clinica Universidad de Navarra (CUN), Pamplona, Spain
| | - Felipe Prosper
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematology Department, Clinica Universidad de Navarra (CUN), Pamplona, Spain
| | - Marta Fernandez-Mercado
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- Biomedical Engineering Department, School of Engineering, University of Navarra, San Sebastian, Spain
- * E-mail: ,
| | - María José Calasanz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- Scientific Co-Director of CIMA LAB Diagnostics, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| |
Collapse
|
72
|
Zhao Y, Li J. A new NOTCH3 damaging variant in a thrombocytopenia family of Miao ethnic group. J Gene Med 2019; 21:e3130. [PMID: 31729093 DOI: 10.1002/jgm.3130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/15/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pediatric inherited thrombocytopenia, also known as a deficiency of platelets in children, is caused by genetic factors and it is hard to obtain an effective treatment. Thus, it is necessary to identify the possible genetic variants that are responsible for thrombocytopenia. METHODS Whole exome sequencing was used to detect genetic variants in two members of a thrombocytopenia family of Miao ethnic group. Multiple in silico analyses were performed to evaluate the effects of the novel missense variants. RESULTS Finally, a novel variant (chr19: g.15170364G>A) in the NOTCH3 gene was found, as confirmed with Sanger sequencing, which could result in a R1694Q substitution in the protein. This variant was consistently suggested to be damaging by sift (Sorting Tolerant From Intolerant; http://sift.jcvi.org), polyphen (Polymorphism Phenotyping, version 2.0; http://genetics.bwh.harvard.edu/pph2) and mutationtaster (http://www.mutationtaster.org) software. By building the 3D model of the key region of NOTCH3 protein and performing the structure simulation, we found that (i) this variant affected the 3D structure model with a root-mean-square deviation = 0.46 between wild-type and mutant type; (ii) this variant caused the protein to reduce the solvent accessible surface area by 421 Å2 ; and (iii) compared to the wild-type protein, the mutant protein had two less amino acids to maintain protein stability. CONCLUSIONS A novel damaging variant in the NOTCH3 gene was identified in a thrombocytopenia family with respect to decreasing the stability of NOTCH3, which may help with the prognosis and therapy of inherited thrombocytopenia.
Collapse
Affiliation(s)
- Yingling Zhao
- Department of Hematology, Longgang District Central Hospital of Shenzhen, Guangdong Province, China
| | - Juheng Li
- Department of Hematology, People's Hospital of Longgang District of Shenzhen, Guangdong Province, China
| |
Collapse
|
73
|
Hamilton KV, Maese L, Marron JM, Pulsipher MA, Porter CC, Nichols KE. Stopping Leukemia in Its Tracks: Should Preemptive Hematopoietic Stem-Cell Transplantation be Offered to Patients at Increased Genetic Risk for Acute Myeloid Leukemia? J Clin Oncol 2019; 37:2098-2104. [DOI: 10.1200/jco.19.00181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Luke Maese
- The University of Utah, Salt Lake City, UT
| | - Jonathan M. Marron
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | | | | | | |
Collapse
|
74
|
D'Altri T, Schuster MB, Wenzel A, Porse BT. Heterozygous loss of Srp72 in mice is not associated with major hematological phenotypes. Eur J Haematol 2019; 103:319-328. [PMID: 31254415 DOI: 10.1111/ejh.13286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Familial cases of hematological malignancies are associated with germline mutations. In particular, heterozygous mutations of SRP72 correlate with the development of myelodysplasia and bone marrow aplasia in two families. The signal recognition particle 72 kDa protein (SRP72) is part of the SRP complex, responsible for targeting of proteins to the endoplasmic reticulum. The main objective of this study is to investigate the role of SRP72 in the hematopoietic system, thus explaining why a reduced dose could increase susceptibility to hematological malignancies. METHODS We developed an Srp72 null mouse model and characterized its hematopoietic system using flow cytometry, bone marrow transplantations, and gene expression analysis. RESULTS Heterozygous loss of Srp72 in mice is not associated with major changes in hematopoiesis, although causes mild reductions in blood and BM cellularity and minor changes within the stem/progenitor compartment. We did not observe any hematological disorder. Interestingly, gene expression analysis demonstrated that genes encoding secreted factors, including cytokines and receptors, were transcriptionally down-regulated in Srp72+/- animals. CONCLUSIONS The Srp72+/- mouse model only partially recapitulates the phenotype observed in families with inherited SRP72 lesions. Nonetheless, these results can provide mechanistic insights into why SRP72 mutations are associated with aplasia and myelodysplasia in humans.
Collapse
Affiliation(s)
- Teresa D'Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
75
|
Galera P, Dulau-Florea A, Calvo KR. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int J Lab Hematol 2019; 41 Suppl 1:131-141. [PMID: 31069978 DOI: 10.1111/ijlh.12999] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Advances in molecular genetic sequencing techniques have contributed to the elucidation of previously unknown germline mutations responsible for inherited thrombocytopenia (IT). Regardless of age of presentation and severity of symptoms related to thrombocytopenia and/or platelet dysfunction, a subset of patients with IT are at increased risk of developing myeloid neoplasms during their life time, particularly those with germline autosomal dominant mutations in RUNX1, ANKRD26, and ETV6. Patients may present with isolated thrombocytopenia and megakaryocytic dysmorphia or atypia on baseline bone marrow evaluation, without constituting myelodysplasia (MDS). Bone marrow features may overlap with idiopathic thrombocytopenic purpura (ITP) or sporadic MDS leading to misdiagnosis. Progression to myelodysplastic syndrome/ acute myeloid leukemia (MDS/AML) may be accompanied by progressive bi- or pancytopenia, multilineage dysplasia, increased blasts, cytogenetic abnormalities, acquisition of bi-allelic mutations in the underlying gene with germline mutation, or additional somatic mutations in genes associated with myeloid malignancy. A subset of patients may present with MDS/AML at a young age, underscoring the growing concern for evaluating young patients with MDS/AML for germline mutations predisposing to myeloid neoplasm. Early recognition of germline mutation and predisposition to myeloid malignancy permits appropriate treatment, adequate monitoring for disease progression, proper donor selection for hematopoietic stem cell transplantation, as well as genetic counseling of the affected patients and their family members. Herein, we describe the clinical and diagnostic features of IT with germline mutations predisposing to myeloid neoplasms focusing on mutations involving RUNX1, ANKRD26, and ETV6.
Collapse
Affiliation(s)
- Pallavi Galera
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| | - Katherine R Calvo
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
76
|
Almazni I, Stapley R, Morgan NV. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 2019; 6:80. [PMID: 31275945 PMCID: PMC6593073 DOI: 10.3389/fcvm.2019.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Inherited thrombocytopenia (IT) is comprised of a group of hereditary disorders characterized by a reduced platelet count as the main feature, and often with abnormal platelet function, which can subsequently lead to impaired haemostasis. Inherited thrombocytopenia results from genetic mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. The identification of the underlying causative gene of IT is challenging given the high degree of heterogeneity, but important due to the presence of various clinical presentations and prognosis, where some defects can lead to hematological malignancies. Traditional platelet function tests, clinical manifestations, and hematological parameters allow for an initial diagnosis. However, employing Next-Generation Sequencing (NGS), such as Whole Genome and Whole Exome Sequencing (WES) can be an efficient method for discovering causal genetic variants in both known and novel genes not previously implicated in IT. To date, 40 genes and their mutations have been implicated to cause many different forms of inherited thrombocytopenia. Nevertheless, despite this advancement in the diagnosis of IT, the molecular mechanism underlying IT in some patients remains unexplained. In this review, we will discuss the genetics of thrombocytopenia summarizing the recent advancement in investigation and diagnosis of IT using phenotypic approaches, high-throughput sequencing, targeted gene panels, and bioinformatics tools.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
77
|
Germline RUNX1 Intragenic Deletion: Implications for Accurate Diagnosis of FPD/AML. Hemasphere 2019; 3:e203. [PMID: 31723833 PMCID: PMC6746022 DOI: 10.1097/hs9.0000000000000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/26/2022] Open
|
78
|
Hereditary myeloid malignancies. Best Pract Res Clin Haematol 2019; 32:163-176. [DOI: 10.1016/j.beha.2019.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
|
79
|
Khoriaty R, Ozel AB, Ramdas S, Ross C, Desch K, Shavit JA, Everett L, Siemieniak D, Li JZ, Ginsburg D. Genome-wide linkage analysis and whole-exome sequencing identifies an ITGA2B mutation in a family with thrombocytopenia. Br J Haematol 2019; 186:574-579. [PMID: 31119735 DOI: 10.1111/bjh.15961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/19/2019] [Indexed: 11/27/2022]
Abstract
Hereditary thrombocytopenias can be subclassified based on mode of inheritance and platelet size. Here we report a family with autosomal dominant (AD) thrombocytopenia with normal platelet size. Linkage analysis and whole exome sequencing identified the R1026W substitution in ITGA2B as the causative defect. The same mutation has been previously reported in 7 Japanese families/patients with AD thrombocytopenia, but all of these patients had macrothrombocytopenia. This is the first report of a family with AD thrombocytopenia with normal platelet size resulting from mutation in ITGA2B. ITGA2B mutations should therefore be included in the differential diagnosis of this latter disorder.
Collapse
Affiliation(s)
- Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Univeristy of Michigan, Ann Arbor, MI, USA
| | - Ayse B Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Shweta Ramdas
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Charles Ross
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Karl Desch
- Department of Pediatrics and Communicable Disease, University of Michigan, Ann Arbor, MI, USA
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Disease, University of Michigan, Ann Arbor, MI, USA
| | - Lesley Everett
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - David Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics and Communicable Disease, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
80
|
Fatumo S, Carstensen T, Nashiru O, Gurdasani D, Sandhu M, Kaleebu P. Complimentary Methods for Multivariate Genome-Wide Association Study Identify New Susceptibility Genes for Blood Cell Traits. Front Genet 2019; 10:334. [PMID: 31080455 PMCID: PMC6497788 DOI: 10.3389/fgene.2019.00334] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 02/02/2023] Open
Abstract
Genome-wide association studies (GWAS) have found hundreds of novel loci associated with full blood count (FBC) phenotypes. However, most of these studies were performed in a single phenotype framework without putting into consideration the clinical relatedness among traits. In this work, in addition to the standard univariate GWAS, we also use two different multivariate methods to perform the first multiple traits GWAS of FBC traits in ∼7000 individuals from the Ugandan General Population Cohort (GPC). We started by performing the standard univariate GWAS approach. We then performed our first multivariate method, in this approach, we tested for marker associations with 15 FBC traits simultaneously in a multivariate mixed model implemented in GEMMA while accounting for the relatedness of individuals and pedigree structures, as well as population substructure. In this analysis, we provide a framework for the combination of multiple phenotypes in multivariate GWAS analysis and show evidence of multi-collinearity whenever the correlation between traits exceeds the correlation coefficient threshold of r 2 >=0.75. This approach identifies two known and one novel loci. In the second multivariate method, we applied principal component analysis (PCA) to the same 15 correlated FBC traits. We then tested for marker associations with each PC in univariate linear mixed models implemented in GEMMA. We show that the FBC composite phenotype as assessed by each PC expresses information that is not completely encapsulated by the individual FBC traits, as this approach identifies three known and five novel loci that were not identified using both the standard univariate and multivariate GWAS methods. Across both multivariate methods, we identified six novel loci. As a proof of concept, both multivariate methods also identified known loci, HBB and ITFG3. The two multivariate methods show that multivariate genotype-phenotype methods increase power and identify novel genotype-phenotype associations not found with the standard univariate GWAS in the same dataset.
Collapse
Affiliation(s)
- Segun Fatumo
- Uganda Medical Informatics Centre, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda,London School of Hygiene and Tropical Medicine, London, United Kingdom,H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria,*Correspondence: Segun Fatumo, ;
| | - Tommy Carstensen
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Oyekanmi Nashiru
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Deepti Gurdasani
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Manjinder Sandhu
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom,Division of Computational Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pontiano Kaleebu
- Uganda Medical Informatics Centre, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda,London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
81
|
Sharma A, Albahrani M, Zhang W, Kufel CN, James SR, Odunsi K, Klinkebiel D, Karpf AR. Epigenetic activation of POTE genes in ovarian cancer. Epigenetics 2019; 14:185-197. [PMID: 30764732 DOI: 10.1080/15592294.2019.1581590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The POTE gene family consists of 14 homologous genes localized to autosomal pericentromeres, and a sub-set of POTEs are cancer-testis antigen (CTA) genes. POTEs are over-expressed in epithelial ovarian cancer (EOC), including the high-grade serous subtype (HGSC), and expression of individual POTEs correlates with chemoresistance and reduced survival in HGSC. The mechanisms driving POTE overexpression in EOC and other cancers is unknown. Here, we investigated the role of epigenetics in regulating POTE expression, with a focus on DNA hypomethylation. Consistent with their pericentromeric localization, Pan-POTE expression in EOC correlated with expression of the pericentromeric repeat NBL2, which was not the case for non-pericentromeric CTAs. POTE genomic regions contain LINE-1 (L1) sequences, and Pan-POTE expression correlated with both global and POTE-specific L1 hypomethylation in EOC. Analysis of individual POTEs using RNA-seq and DNA methylome data from fallopian tube epithelia (FTE) and HGSC revealed that POTEs C, E, and F have increased expression in HGSC in conjunction with DNA hypomethylation at 5' promoter or enhancer regions. Moreover, POTEs C/E/F showed additional increased expression in recurrent HGSC in conjunction with 5' hypomethylation, using patient-matched samples. Experiments using decitabine treatment and DNMT knockout cell lines verified a functional contribution of DNA methylation to POTE repression, and epigenetic drug combinations targeting histone deacetylases (HDACs) and histone methyltransferases (HMTs) in combination with decitabine further increased POTE expression. In summary, several alterations of the cancer epigenome, including pericentromeric activation, global and locus-specific L1 hypomethylation, and locus-specific 5' CpG hypomethylation, converge to promote POTE expression in ovarian cancer.
Collapse
Affiliation(s)
- Ashok Sharma
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mustafa Albahrani
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Wa Zhang
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Christina N Kufel
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Smitha R James
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Kunle Odunsi
- d Department of Immunology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,e Department of Gynecologic Oncology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,f Center for Immunotherapy , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - David Klinkebiel
- b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,g Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Adam R Karpf
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
82
|
Diep RT, Corey K, Arcasoy MO. A novel nucleotide substitution in the 5' untranslated region of ANKRD26 gene is associated with inherited thrombocytopenia: a report of two new families. Ann Hematol 2019; 98:1789-1791. [PMID: 30747248 DOI: 10.1007/s00277-019-03632-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Robert T Diep
- Division of Hematology, Department of Medicine and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kristin Corey
- Division of Hematology, Department of Medicine and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Murat O Arcasoy
- Division of Hematology, Department of Medicine and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
83
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
84
|
Genetic predisposition to MDS: clinical features and clonal evolution. Blood 2019; 133:1071-1085. [PMID: 30670445 DOI: 10.1182/blood-2018-10-844662] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndrome (MDS) typically presents in older adults with the acquisition of age-related somatic mutations, whereas MDS presenting in children and younger adults is more frequently associated with germline genetic predisposition. Germline predisposition is increasingly recognized in MDS presenting at older ages as well. Although each individual genetic disorder is rare, as a group, the genetic MDS disorders account for a significant subset of MDS in children and young adults. Because many patients lack overt syndromic features, genetic testing plays an important role in the diagnostic evaluation. This review provides an overview of syndromes associated with genetic predisposition to MDS, discusses implications for clinical evaluation and management, and explores scientific insights gleaned from the study of MDS predisposition syndromes. The effects of germline genetic context on the selective pressures driving somatic clonal evolution are explored. Elucidation of the molecular and genetic pathways driving clonal evolution may inform surveillance and risk stratification, and may lead to the development of novel therapeutic strategies.
Collapse
|
85
|
Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia. Blood 2018; 133:1346-1357. [PMID: 30591527 DOI: 10.1182/blood-2018-07-859496] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.
Collapse
|
86
|
Hurtado B, Trakala M, Ximénez-Embún P, El Bakkali A, Partida D, Sanz-Castillo B, Álvarez-Fernández M, Maroto M, Sánchez-Martínez R, Martínez L, Muñoz J, García de Frutos P, Malumbres M. Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets. J Clin Invest 2018; 128:5351-5367. [PMID: 30252678 DOI: 10.1172/jci121876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. These aberrations were accompanied by abnormal hyperphosphorylation of multiple components of the actin cytoskeleton and were rescued both in vitro and in vivo by inhibiting upstream kinases such as PKA, PKC, or AMPK. These data reveal an unexpected role of Mastl in actin cytoskeletal dynamics in postmitotic cells and suggest that the thrombocytopenia-associated mutation in MASTL is a pathogenic dominant mutation that mimics decreased PP2A activity resulting in altered phosphorylation of cytoskeletal regulatory pathways.
Collapse
Affiliation(s)
- Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marianna Trakala
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Partida
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Sanz-Castillo
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - María Maroto
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ruth Sánchez-Martínez
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Javier Muñoz
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
87
|
Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia 2018; 32:1679-1696. [PMID: 29946191 DOI: 10.1038/s41375-018-0173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a "real-world" context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an "integrated" diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.
Collapse
|
88
|
DiNardo CD, Routbort MJ, Bannon SA, Benton CB, Takahashi K, Kornblau SM, Luthra R, Kanagal-Shamanna R, Medeiros LJ, Garcia-Manero G, M. Kantarjian H, Futreal PA, Meric-Bernstam F, Patel KP. Improving the detection of patients with inherited predispositions to hematologic malignancies using next-generation sequencing-based leukemia prognostication panels. Cancer 2018; 124:2704-2713. [DOI: 10.1002/cncr.31331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Courtney D. DiNardo
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Mark J. Routbort
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Sarah A. Bannon
- Department of Clinical Cancer Genetics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Christopher B. Benton
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Koichi Takahashi
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Steve M. Kornblau
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - L. Jeffrey Medeiros
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | | | - Hagop M. Kantarjian
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - P. Andrew Futreal
- Department of Genomic Medicine; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Keyur P. Patel
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
89
|
Balduini A, Raslova H, Di Buduo CA, Donada A, Ballmaier M, Germeshausen M, Balduini CL. Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. Eur J Med Genet 2018; 61:715-722. [PMID: 29545013 DOI: 10.1016/j.ejmg.2018.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022]
Abstract
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count resulting in impaired hemostasis. Patients can have spontaneous hemorrhages and/or excessive bleedings provoked by hemostatic challenges as trauma or surgery. To date, ITs encompass 32 different rare monogenic disorders caused by mutations of 30 genes. This review will focus on the major discoveries that have been made in the last years on the diagnosis, treatment and molecular mechanisms of ANKRD26-Related Thrombocytopenia and MYH9-Related Diseases. Furthermore, we will discuss the use a Thrombopoietin mimetic as a novel approach to treat the thrombocytopenia in these patients. We will propose the use of a new 3D bone marrow model to study the mechanisms of action of these drugs and to test their efficacy and safety in patients. The overall purpose of this review is to point out that important progresses have been made in understanding the pathogenesis of ANKRD26-Related Thrombocytopenia and MYH9-Related Diseases and new therapeutic approaches have been proposed and tested. Future advancement in this research will rely in the development of more physiological models to study the regulation of human platelet biogenesis, disease mechanisms and specific pharmacologic targets.
Collapse
Affiliation(s)
- Alessandra Balduini
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | - Hana Raslova
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - Christian A Di Buduo
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandro Donada
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Carlo L Balduini
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| |
Collapse
|
90
|
Pastor VB, Sahoo SS, Boklan J, Schwabe GC, Saribeyoglu E, Strahm B, Lebrecht D, Voss M, Bryceson YT, Erlacher M, Ehninger G, Niewisch M, Schlegelberger B, Baumann I, Achermann JC, Shimamura A, Hochrein J, Tedgård U, Nilsson L, Hasle H, Boerries M, Busch H, Niemeyer CM, Wlodarski MW. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica 2018; 103:427-437. [PMID: 29217778 PMCID: PMC5830370 DOI: 10.3324/haematol.2017.180778] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in hematopoiesis and are primarily associated with early-onset disease. Here we describe a familial syndrome in seven patients from four unrelated pedigrees presenting with myelodysplastic syndrome and loss of chromosome 7/7q. Their median age at diagnosis was 2.1 years (range, 1-42). All patients presented with thrombocytopenia with or without additional cytopenias and a hypocellular marrow without an increase of blasts. Genomic studies identified constitutional mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in the SAMD9L gene on 7q21, with decreased allele frequency in hematopoiesis. The non-random loss of mutated SAMD9L alleles was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation carriers. Long-term observation revealed divergent outcomes with either progression to leukemia and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient monosomy 7 followed by spontaneous recovery with SAMD9L-wildtype UPD7q (n=2). Dysmorphic features or neurological symptoms were absent in our patients, pointing to the notion that myelodysplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. Collectively, our results define a new subtype of familial myelodysplastic syndrome and provide an explanation for the phenomenon of transient monosomy 7. Registered at: www.clinicaltrials.gov; #NCT00047268.
Collapse
Affiliation(s)
- Victor B Pastor
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Sushree S Sahoo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany
| | - Jessica Boklan
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, AZ, USA
| | | | | | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Dirk Lebrecht
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Voss
- Department of Medicine, Huddinge, Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine, Huddinge, Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerhard Ehninger
- Internal Medicine of Hematology/Medical Oncology, University Hospital, Dresden, Germany
| | - Marena Niewisch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | | | - Irith Baumann
- Clinical Centre South West, Department of Pathology, Böblingen Clinics, Germany
| | - John C Achermann
- Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Akiko Shimamura
- Boston Children's Hospital, Dana Farber Cancer Institute, and Harvard Medical School, MA, USA
| | - Jochen Hochrein
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Ulf Tedgård
- Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund, Sweden
| | - Lars Nilsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Denmark
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
- Lübeck Institute of Experimental Dermatology, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcin W Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
91
|
Kisko M, Bouain N, Safi A, Medici A, Akkers RC, Secco D, Fouret G, Krouk G, Aarts MGM, Busch W, Rouached H. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 2018; 7:e32077. [PMID: 29453864 PMCID: PMC5826268 DOI: 10.7554/elife.32077] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/15/2018] [Indexed: 12/25/2022] Open
Abstract
All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.
Collapse
Affiliation(s)
- Mushtak Kisko
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Nadia Bouain
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Robert C Akkers
- Laboratory of GeneticsWageningen UniversityWageningenNetherlands
| | - David Secco
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | | | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Mark GM Aarts
- Laboratory of GeneticsWageningen UniversityWageningenNetherlands
| | - Wolfgang Busch
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BiocenterViennaAustria
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| |
Collapse
|
92
|
Kisko M, Bouain N, Safi A, Medici A, Akkers RC, Secco D, Fouret G, Krouk G, Aarts MG, Busch W, Rouached H. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 2018; 7:32077. [PMID: 29453864 DOI: 10.7554/elife.32077.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/15/2018] [Indexed: 05/22/2023] Open
Abstract
All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.
Collapse
Affiliation(s)
- Mushtak Kisko
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Nadia Bouain
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Robert C Akkers
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - David Secco
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | | | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Mark Gm Aarts
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Wolfgang Busch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| |
Collapse
|
93
|
How I treat myelodysplastic syndromes of childhood. Blood 2018; 131:1406-1414. [PMID: 29438960 DOI: 10.1182/blood-2017-09-765214] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pediatric myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal disorders with an annual incidence of 1 to 4 cases per million, accounting for less than 5% of childhood hematologic malignancies. MDSs in children often occur in the context of inherited bone marrow failure syndromes, which represent a peculiarity of myelodysplasia diagnosed in pediatric patients. Moreover, germ line syndromes predisposing individuals to develop MDS or acute myeloid leukemia have recently been identified, such as those caused by mutations in GATA2, ETV6, SRP72, and SAMD9/SAMD9-L Refractory cytopenia of childhood (RCC) is the most frequent pediatric MDS variant, and it has specific histopathologic features. Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many children with MDSs and is routinely offered to all patients with MDS with excess of blasts, to those with MDS secondary to previously administered chemoradiotherapy, and to those with RCC associated with monosomy 7, complex karyotype, severe neutropenia, or transfusion dependence. Immune-suppressive therapy may be a treatment option for RCC patients with hypocellular bone marrow and the absence of monosomy 7 or a complex karyotype, although the response rate is lower than that observed in severe aplastic anemia, and a relevant proportion of these patients will subsequently need HSCT for either nonresponse or relapse.
Collapse
|
94
|
Gao J, Gong S, Chen YH. Myeloid Neoplasm With Germline Predisposition: A 2016 Update for Pathologists. Arch Pathol Lab Med 2018; 143:13-22. [PMID: 29372845 DOI: 10.5858/arpa.2017-0194-ra] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Myeloid neoplasms with familial occurrence have been rarely reported in the past. With the advance of molecular technology and better understanding of the molecular pathogenesis of myeloid neoplasms, investigating the genetic causes of familial acute myeloid leukemia or myelodysplastic syndrome has become feasible in the clinical setting. Recent studies have identified a rapidly expanding list of germline mutations associated with increased risks of developing myeloid neoplasm in the affected families. It is important to recognize these entities, as such a diagnosis may dictate a unique approach in clinical management and surveillance for the patients and carriers. OBJECTIVE.— To raise the awareness of myeloid neoplasms arising in the setting of familial inheritance among practicing pathologists. DATA SOURCES.— Based on recent literature and the 2016 revision of the World Health Organization classification of hematopoietic neoplasms, we provide an up-to-date review of myeloid neoplasm with germline predisposition. CONCLUSIONS.— This short review focuses on the clinical, pathologic, and molecular characterization of myeloid neoplasm with germline predisposition. We emphasize the important features that will help practicing pathologists to recognize these newly described entities.
Collapse
Affiliation(s)
- Juehua Gao
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shunyou Gong
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yi-Hua Chen
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
95
|
Romasko EJ, Devkota B, Biswas S, Jayaraman V, Rajagopalan R, Dulik MC, Thom CS, Choi J, Jairam S, Scarano MI, Krantz ID, Spinner NB, Conlin LK, Lambert MP. Utility and limitations of exome sequencing in the molecular diagnosis of pediatric inherited platelet disorders. Am J Hematol 2018; 93:8-16. [PMID: 28960434 DOI: 10.1002/ajh.24917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022]
Abstract
Inherited platelet disorders (IPD) are a heterogeneous group of rare disorders that affect platelet number and function and often predispose to other significant medical complications. In spite of the identification of over 50 IPD disease-associated genes, a molecular diagnosis is only identified in a minority (10%) of affected patients without a clinically suspected etiology. We studied a cohort of 21 pediatric patients with suspected IPDs by exome sequencing (ES) to: (1) examine the performance of the exome test for IPD genes, (2) determine if this exome-wide diagnostic test provided a higher diagnostic yield than has been previously reported, (3) to evaluate the frequency of variants of uncertain significance identified, and (4) to identify candidate variants for functional evaluation in patients with an uncertain or negative diagnosis. We established a high priority gene list of 53 genes, evaluated exome capture kit performance, and determined the coverage for these genes and disease-related variants. We identified likely disease causing variants in 5 of the 21 probands (23.8%) and variants of uncertain significance in 52% of patients studied. In conclusion, ES has the potential to molecularly diagnose causes of IPD, and to identify candidate genes for functional evaluation. Robust exome sequencing also requires that coverage of genes known to be associated with clinical findings of interest need to be carefully examined and supplemented if necessary. Clinicians who undertake ES should understand the limitations of the test and the full significance of results that may be returned.
Collapse
Affiliation(s)
- Edward J. Romasko
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Batsal Devkota
- Department of Biomedical and Health Informatics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Sawona Biswas
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Vijayakumar Jayaraman
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Ramakrishnan Rajagopalan
- Department of Biomedical and Health Informatics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Matthew C. Dulik
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Christopher S. Thom
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
| | - Jiwon Choi
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Sowmya Jairam
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York New York
| | | | - Ian D. Krantz
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia Pennsylvania
| | - Laura K. Conlin
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia Pennsylvania
| | - Michele P. Lambert
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
- Division of Hematology; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
96
|
Zaninetti C, Santini V, Tiniakou M, Barozzi S, Savoia A, Pecci A. Inherited thrombocytopenia caused by ANKRD26 mutations misdiagnosed and treated as myelodysplastic syndrome: report on two cases. J Thromb Haemost 2017; 15:2388-2392. [PMID: 28976612 DOI: 10.1111/jth.13855] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 08/31/2023]
Abstract
Essentials Thrombocytopenia 2 (THC2) is an inherited thrombocytopenia (IT) with dysmegakaryopoiesis. Physicians often do not suspect the genetic origin of thrombocytopenia in patients with THC2. We report two THC2 patients misdiagnosed with myelodysplasia and treated with chemotherapy. IT should be always considered in patients with isolated thrombocytopenia and dysmegakaryopoiesis. SUMMARY Thrombocytopenia 2 (THC2) is an autosomal-dominant disorder caused by point substitutions in the 5'UTR of the ANKRD26 gene. Patients have congenital thrombocytopenia, normal platelet morphology and function, and dysmegakaryopoiesis. Thrombocytopenia is frequently discovered only in adulthood and physicians often do not suspect its genetic origin. We describe two unrelated patients referred to two different institutions for investigation of thrombocytopenia. Based on the finding of dysmegakaryopoiesis at bone marrow examination, patients were diagnosed with myelodysplastic syndrome (MDS) (refractory thrombocytopenia) and treated with several courses of 5-azacytidine. Subsequently, demonstration of thrombocytopenia in their relatives eventually led to molecular diagnosis of THC2 in both families. These cases highlight that patients with THC2 are at risk of being misdiagnosed with MDS and receiving undue myelosuppressive treatments. Because dysmegakaryopoiesis is a feature also of other forms of inherited thrombocytopenia, a genetic disorder must always be considered when a patient presents with isolated thrombocytopenia and dysmegakaryopoiesis.
Collapse
Affiliation(s)
- C Zaninetti
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - V Santini
- Division of Hematology, Careggi Hospital and University of Florence, Firenze, Italy
| | - M Tiniakou
- Division of Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - S Barozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - A Savoia
- Department of Medical, Surgical and Health Sciences, IRCCS Burlo Garofolo and University of Trieste, Trieste, Italy
| | - A Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
97
|
Chen MH, Yanek LR, Backman JD, Eicher JD, Huffman JE, Ben-Shlomo Y, Beswick AD, Yerges-Armstrong LM, Shuldiner AR, O'Connell JR, Mathias RA, Becker DM, Becker LC, Lewis JP, Johnson AD, Faraday N. Exome-chip meta-analysis identifies association between variation in ANKRD26 and platelet aggregation. Platelets 2017; 30:164-173. [PMID: 29185836 DOI: 10.1080/09537104.2017.1384538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10-7) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.
Collapse
Affiliation(s)
- Ming-Huei Chen
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Lisa R Yanek
- b GeneSTAR Research Program, Department of Medicine, Division of General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Joshua D Backman
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - John D Eicher
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Jennifer E Huffman
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Yoav Ben-Shlomo
- d School of Social and Community Medicine , University of Bristol , Bristol , UK
| | - Andrew D Beswick
- e School of Clinical Sciences , University of Bristol , Bristol , UK
| | - Laura M Yerges-Armstrong
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Alan R Shuldiner
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Jeffrey R O'Connell
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Rasika A Mathias
- f GeneSTAR Research Program, Department of Medicine, Divisions of Allergy and Clinical Immunology and General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Diane M Becker
- b GeneSTAR Research Program, Department of Medicine, Division of General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Lewis C Becker
- g GeneSTAR Research Program, Department of Medicine, Divisions of Cardiology and General Internal Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Joshua P Lewis
- c School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Andrew D Johnson
- a National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research , National Heart, Lung and Blood Institute , Framingham , MA , USA
| | - Nauder Faraday
- h GeneSTAR Research Program, Department of Anesthesiology & Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
98
|
Bozzi V, Panza E, Barozzi S, Gruppi C, Seri M, Balduini C, Pecci A. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2017; 106:693-704. [DOI: 10.1160/th11-02-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023]
Abstract
SummaryMYH9-related disease (MYH9-RD) is an autosomal-dominant thrombocytopenia caused by mutations in the gene for the heavy chain of nonmuscle myosin-IIA (NMMHC-IIA). Recent in vitro studies led to the hypothesis that thrombocytopenia of MYH9-RD derives from an ectopic platelet release by megakaryocytes in the osteoblastic areas of bone marrow (BM), which are enriched in type I collagen, rather than in vascular spaces. SDF-1-driven migration of megakaryocytes within BM to reach the vascular spaces is a key mechanism for platelet biogenesis. Since myosin-IIA is implicated in polarised migration of different cell types, we hypothesised that MYH9 mutations could interfere with this mechanism. We therefore investigated the SDF-1-driven migration of a megakaryoblastic cell line, Dami cells, on type I collagen or fibrinogen by a modified transwell assay. Inhibition of myosin-IIA ATPase activity suppressed the SDF-1-driven migration of Dami cells, while over-expression of NMMHC-IIA increased the efficiency of chemotaxis, indicat- ing a role for NMMHC-IIA in this mechanism. Transfection of cells with three MYH9 mutations frequently responsible for MYH9-RD (p.R702C, p.D1424H, or p.R1933X) resulted in a defective SDF-1-driven migration with respect to the wild-type counterpart and in increased cell spreading onto collagen. Analysis of differential localisation of wild-type and mutant proteins suggested that mutant NMMHC-IIAs had an impaired cytoplasmic re-organisation in functional cytoskeletal structures after cell adhesion to collagen. These findings support the hypothesis that a defect of SDF-1-driven migration of megakaryocytes induced by MYH9 mutations contributes to ectopic platelet release in the BM osteoblastic areas, resulting in ineffective platelet production.
Collapse
|
99
|
Baptista RLR, Dos Santos ACE, Gutiyama LM, Solza C, Zalcberg IR. Familial Myelodysplastic/Acute Leukemia Syndromes-Myeloid Neoplasms with Germline Predisposition. Front Oncol 2017; 7:206. [PMID: 28955657 PMCID: PMC5600909 DOI: 10.3389/fonc.2017.00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Although most cases of myeloid neoplasms are sporadic, a small subset has been associated with germline mutations. The 2016 revision of the World Health Organization classification included these cases in a myeloid neoplasm group with a predisposing germline mutational background. These patients must have a different management and their families should get genetic counseling. Cases identification and outline of the major known syndromes characteristics will be discussed in this text.
Collapse
Affiliation(s)
| | | | - Luciana Mayumi Gutiyama
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Cristiana Solza
- Departamento de Medicina Interna/Hematologia, Hospital Universitário Pedro Ernesto, Rio de Janeiro, Brazil
| | - Ilana Renault Zalcberg
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
100
|
Feurstein S, Godley LA. Germline ETV6 mutations and predisposition to hematological malignancies. Int J Hematol 2017; 106:189-195. [PMID: 28555414 DOI: 10.1007/s12185-017-2259-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022]
Abstract
Patients with thrombocytopenia 5 have an autosomal dominant disorder of decreased platelet number with tendency to bleed, usually presenting in childhood, and have been found to have germline mutations in ETV6, which encodes a master hematopoietic transcription factor. Some patients who present similarly have inherited mutations in RUNX1 or ANKRD26. All three germline syndromes are also associated with a predisposition to myelodysplastic syndrome (MDS) and acute leukemia (AL). Since the first description of germline ETV6 mutations, 18 families have been reported. The common phenotype is mild to moderate thrombocytopenia with a variable predisposition to acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and MDS. This review will focus upon the role of ETV6 in hematopoiesis, especially in myeloid differentiation and maturation, and will describe the functional effects of mutant ETV6. The review will also provide an overview of common clinical features as well as recommendations for patient screening and follow-up and will debate whether additional clinical features should be included with the germline ETV6 syndrome.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Comprehensive Cancer Center, University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA
- Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Comprehensive Cancer Center, University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
- Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|