51
|
Brennenstuhl H, Schaaf CP. [Genomic newborn screening-research approaches, challenges, and opportunities]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:1232-1242. [PMID: 37831095 PMCID: PMC10622372 DOI: 10.1007/s00103-023-03777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The application of high-throughput sequencing methods for population-based genomic newborn screening offers numerous opportunities for improving population health. The use of genome-based sequencing technology holds potential to enable the diagnosis of virtually any genetic disorder at an early stage and offers great flexibility when it comes to selection and expansion of target diseases. National and international efforts are therefore being made to investigate the ethical, legal, social, psychological, and technical aspects of genomic newborn screening. In addition to the many opportunities, there are numerous challenges and questions that remain to be answered: When and how should legal guardians be informed about such screening? Which diseases should be screened for? How should incidental findings or identification of a genetic predisposition be dealt with? Should data be stored long term and if so, how can this be done securely? Provided there is an appropriate regulatory framework and a transparent consent process, genomic newborn screening has the potential to fundamentally change the way in which we screen for congenital diseases. However, there is still much to be done. To achieve understanding and acceptance of genomic newborn screening amongst all stakeholders and thus to maximize its benefits for the population, a public discourse on the possibilities and limitations of genomic newborn screening is of critical importance. This article aims to provide an overview of the innovative technical developments in the field of human genetics, describe national and international approaches, and discuss challenges and opportunities of genomic newborn screening development.
Collapse
Affiliation(s)
- Heiko Brennenstuhl
- Institut für Humangenetik, Universität Heidelberg, Heidelberg, Baden-Württemberg, Deutschland
| | - Christian P Schaaf
- Institut für Humangenetik, Universität Heidelberg, Heidelberg, Baden-Württemberg, Deutschland.
| |
Collapse
|
52
|
Szalai C. Arguments for and against the whole-genome sequencing of newborns. Am J Transl Res 2023; 15:6255-6263. [PMID: 37969196 PMCID: PMC10641337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Recent decades have brought enormous progress in both genetics and genomics, as well as in information technology (IT). The sequence of the human genome is now known, and although our knowledge is far from complete, great progress has been made in understanding how the genome works. With the developments in storage capacity, artificial intelligence, and learning algorithms, we are now able to learn and interpret complex systems such as the human genome in a very short time. Perhaps the most important goal of learning about the human genome is to understand diseases better: how they develop; how their processes can be prevented or slowed down; and after diseases have developed, how they can be cured or their symptoms alleviated. The vast majority of diseases have a genetic background, i.e., genes, sequence variations, and gene-gene interactions play a role in most diseases to a greater or lesser extent. Accordingly, the first step is to discover which genes, or genomic variants, cause or contribute to the development of a particular disease in a given patient. Given that an individual's genome remains virtually unchanged throughout their life (with one or two exceptions, such as in the case of cancer, which is caused by somatic mutations), it might be considered advantageous to sequence the genome of every person at birth. In this paper, we set out to show the possible benefits of sequencing the entire genome of every human being at birth, while also discussing the main arguments against it.
Collapse
Affiliation(s)
- Csaba Szalai
- Department of Genetics, Cell and Immunobiology, Semmelweis University1089 Budapest, Hungary
- Heim Pál Children’s Hospital1089 Budapest, Hungary
| |
Collapse
|
53
|
Wang X, Sun Y, Guan XW, Wang YY, Hong DY, Zhang ZL, Li YH, Yang PY, Jiang T, Xu ZF. Newborn genetic screening is highly effective for high-risk infants: A single-centre study in China. J Glob Health 2023; 13:04128. [PMID: 37824171 PMCID: PMC10569371 DOI: 10.7189/jogh.13.04128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Background Newborn genetic screening (NBGS) is promising for early detection of genetic diseases in newborns. However, little is known about its clinical effectiveness in special groups like high-risk infants. To address this gap, we aimed to investigate the impact of NBGS on high-risk infants. Methods We screened 10 334 healthy newborns from the general maternity unit and 886 high-risk infants from the neonatal ward using both traditional newborn screening (tNBS) and NBGS, and collected clinical data from electronic medical records. Results We found that high-risk infants had a higher proportion of eutocia (P < 0.01) and prematurity (P < 0.01). For high-risk infants vs healthy newborns screened by tNBS, the primary screening positive rate was 3.84% vs 1.31%, the false positive rate (FPR) was 3.62% vs 1.18% (P < 0.001), and the positive predictive value (PPV) was 5.88% vs 8.27%. For NBGS vs tNBS in high-risk infants, the primary screening positive rate was 0.54% vs 3.68%, the FPR was 0.22% vs 3.47%, and the PPV was 60.00% vs 5.88%. Conclusions We found that combined newborn screening can effectively reduce the FPR caused by the high-risk symptoms and improve the PPV in high-risk infants, sufficient for more accurately showing the true status of the disease.
Collapse
Affiliation(s)
| | | | - Xian-Wei Guan
- Genetic Medicine Center, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province of China, China
| | - Yan-Yun Wang
- Genetic Medicine Center, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province of China, China
| | - Dong-Yang Hong
- Genetic Medicine Center, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province of China, China
| | - Zhi-Lei Zhang
- Genetic Medicine Center, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province of China, China
| | - Ya-Hong Li
- Genetic Medicine Center, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province of China, China
| | - Pei-Ying Yang
- Genetic Medicine Center, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province of China, China
| | | | | |
Collapse
|
54
|
Veldman A, Kiewiet MBG, Westra D, Bosch AM, Brands MMG, de Coo RIFM, Derks TGJ, Fuchs SA, van den Hout JMP, Huidekoper HH, Kluijtmans LAJ, Koop K, Lubout CMA, Mulder MF, Panis B, Rubio-Gozalbo ME, de Sain-van der Velden MG, Schaefers J, Schreuder AB, Visser G, Wevers RA, Wijburg FA, Heiner-Fokkema MR, van Spronsen FJ. A Delphi Survey Study to Formulate Statements on the Treatability of Inherited Metabolic Disorders to Decide on Eligibility for Newborn Screening. Int J Neonatal Screen 2023; 9:56. [PMID: 37873847 PMCID: PMC10594494 DOI: 10.3390/ijns9040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
The Wilson and Jungner (W&J) and Andermann criteria are meant to help select diseases eligible for population-based screening. With the introduction of next-generation sequencing (NGS) methods for newborn screening (NBS), more inherited metabolic diseases (IMDs) can technically be included, and a revision of the criteria was attempted. This study aimed to formulate statements and investigate whether those statements could elaborate on the criterion of treatability for IMDs to decide on eligibility for NBS. An online Delphi study was started among a panel of Dutch IMD experts (EPs). EPs evaluated, amended, and approved statements on treatability that were subsequently applied to 10 IMDs. After two rounds of Delphi, consensus was reached on 10 statements. Application of these statements selected 5 out of 10 IMDs proposed for this study as eligible for NBS, including 3 IMDs in the current Dutch NBS. The statement: 'The expected benefit/burden ratio of early treatment is positive and results in a significant health outcome' contributed most to decision-making. Our Delphi study resulted in 10 statements that can help to decide on eligibility for inclusion in NBS based on treatability, also showing that other criteria could be handled in a comparable way. Validation of the statements is required before these can be applied as guidance to authorities.
Collapse
Affiliation(s)
- Abigail Veldman
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - M. B. Gea Kiewiet
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Dineke Westra
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Marion M. G. Brands
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - René I. F. M. de Coo
- Department of Toxicogenomics, Unit Clinical Genomics, MHeNs School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Terry G. J. Derks
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Sabine A. Fuchs
- Department of Metabolic Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Johanna. M. P. van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hidde H. Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leo A. J. Kluijtmans
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands (R.A.W.)
| | - Klaas Koop
- Department of Metabolic Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Charlotte M. A. Lubout
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Margaretha F. Mulder
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Bianca Panis
- Department of Pediatrics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - M. Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | | | - Jaqueline Schaefers
- Department of Pediatrics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Andrea B. Schreuder
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Gepke Visser
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
- Department of Metabolic Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Ron A. Wevers
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands (R.A.W.)
| | - Frits A. Wijburg
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - M. Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Francjan J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| |
Collapse
|
55
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
56
|
Ferlini A, Gross ES, Garnier N. Rare diseases' genetic newborn screening as the gateway to future genomic medicine: the Screen4Care EU-IMI project. Orphanet J Rare Dis 2023; 18:310. [PMID: 37794437 PMCID: PMC10548672 DOI: 10.1186/s13023-023-02916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Following the reverse genetics strategy developed in the 1980s to pioneer the identification of disease genes, genome(s) sequencing has opened the era of genomics medicine. The human genome project has led to an innumerable series of applications of omics sciences on global health, from which rare diseases (RDs) have greatly benefited. This has propelled the scientific community towards major breakthroughs in disease genes discovery, in technical innovations in bioinformatics, and in the development of patients' data registries and omics repositories where sequencing data are stored. Rare diseases were the first diseases where nucleic acid-based therapies have been applied. Gene therapy, molecular therapy using RNA constructs, and medicines modulating transcription or translation mechanisms have been developed for RD patients and started a new era of medical science breakthroughs. These achievements together with optimization of highly scalable next generation sequencing strategies now allow movement towards genetic newborn screening. Its applications in human health will be challenging, while expected to positively impact the RD diagnostic journey. Genetic newborn screening brings many complexities to be solved, technical, strategic, ethical, and legal, which the RD community is committed to address. Genetic newborn screening initiatives are therefore blossoming worldwide, and the EU-IMI framework has funded the project Screen4Care. This large Consortium will apply a dual genetic and digital strategy to design a comprehensive genetic newborn screening framework to be possibly translated into the future health care.
Collapse
Affiliation(s)
- Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | | | | |
Collapse
|
57
|
Ormond KE, Blasimme A, Vayena E. Ethical Aspects of Pediatric Genetic Care: Testing and Treatment. Pediatr Clin North Am 2023; 70:1029-1046. [PMID: 37704345 DOI: 10.1016/j.pcl.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Pediatric health care providers caring for patients and families with genetic disease will encounter a range of ethical issues. These include traditional pediatric health care issues, such as surrogate decision making and end-of-life care. Genetic testing raises the importance of informed consent for potential risks that move beyond the oft discussed physical risks and into longer term concepts such as psychological impact, privacy and potential discrimination. Predictive testing in childhood also raises questions of whether the child has an autonomy interest in delaying testing until they have decision making capacity to do so on their own. And finally, treatments including gene therapies and gene editing, may raise issues of identity for families dealing with genetic disease.
Collapse
Affiliation(s)
- Kelly E Ormond
- Department of Health Sciences and Technology, Health Ethics & Policy Lab, ETH Zurich. Hottingerstrasse 10, Zurich 8092, Switzerland; Department of Genetics and Stanford Center for Biomedical Ethics, Stanford University School of Medicine.
| | - Alessandro Blasimme
- Department of Health Sciences and Technology, Health Ethics & Policy Lab, ETH Zurich. Hottingerstrasse 10, Zurich 8092, Switzerland
| | - Effy Vayena
- Department of Health Sciences and Technology, Health Ethics & Policy Lab, ETH Zurich. Hottingerstrasse 10, Zurich 8092, Switzerland
| |
Collapse
|
58
|
McBride DJ, Fielding C, Newington T, Vatsiou A, Fischl H, Bajracharya M, Thomson VS, Fraser LJ, Fujita PA, Becq J, Kingsbury Z, Ross MT, Moat SJ, Morgan S. Whole-Genome Sequencing Can Identify Clinically Relevant Variants from a Single Sub-Punch of a Dried Blood Spot Specimen. Int J Neonatal Screen 2023; 9:52. [PMID: 37754778 PMCID: PMC10532340 DOI: 10.3390/ijns9030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The collection of dried blood spots (DBS) facilitates newborn screening for a variety of rare, but very serious conditions in healthcare systems around the world. Sub-punches of varying sizes (1.5-6 mm) can be taken from DBS specimens to use as inputs for a range of biochemical assays. Advances in DNA sequencing workflows allow whole-genome sequencing (WGS) libraries to be generated directly from inputs such as peripheral blood, saliva, and DBS. We compared WGS metrics obtained from libraries generated directly from DBS to those generated from DNA extracted from peripheral blood, the standard input for this type of assay. We explored the flexibility of DBS as an input for WGS by altering the punch number and size as inputs to the assay. We showed that WGS libraries can be successfully generated from a variety of DBS inputs, including a single 3 mm or 6 mm diameter punch, with equivalent data quality observed across a number of key metrics of importance in the detection of gene variants. We observed no difference in the performance of DBS and peripheral-blood-extracted DNA in the detection of likely pathogenic gene variants in samples taken from individuals with cystic fibrosis or phenylketonuria. WGS can be performed directly from DBS and is a powerful method for the rapid discovery of clinically relevant, disease-causing gene variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Stuart J. Moat
- Wales Newborn Screening Laboratory, University Hospital of Wales, Cardiff CF14 4XW, UK
- School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | - Sian Morgan
- All Wales Genetics Laboratory, University Hospital of Wales, Cardiff CF14 4XW, UK
| |
Collapse
|
59
|
Affiliation(s)
- Eugene Braunwald
- TIMI Study Group, Division of Cardiovascular Medicine, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Suite 7022, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
60
|
Brunelli L, Sohn H, Brower A. Newborn sequencing is only part of the solution for better child health. LANCET REGIONAL HEALTH. AMERICAS 2023; 25:100581. [PMID: 37663526 PMCID: PMC10474049 DOI: 10.1016/j.lana.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Newborn screening (NBS) aims to detect newborns with severe congenital diseases before the onset of clinical manifestations. Advancements in genomic technologies have led to proposals for the development of genomic-based NBS (G-NBS) in concert with traditional NBS. Proponents of G-NBS highlight how G-NBS could expand the number of diseases screened at birth to thousands and spur the development of new drugs and treatments for rare diseases. Balancing the excitement, some experts have pointed to the ethical dilemmas linked to G-NBS. The dialog, however, has yet to engage with sufficient urgency on how the new G-NBS might chart a course for improving the health of all children. Our analysis of more than 130 million births in the United States between 1959 and 1995 shows that traditional NBS led to improvements in infant mortality and health equity only when it was implemented in association with measures to improve healthcare access for children. We suggest that the new G-NBS will lead to better child health only when the same degree of attention devoted to genomic technologies will be directed to the promotion of public health measures that facilitate access to high-quality healthcare for all children.
Collapse
Affiliation(s)
- Luca Brunelli
- Division of Neonatology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, and Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, United States
| | - Heeju Sohn
- Department of Sociology, Emory University, Atlanta, GA, United States
| | - Amy Brower
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD, United States
| |
Collapse
|
61
|
Aradhya S, Facio FM, Metz H, Manders T, Colavin A, Kobayashi Y, Nykamp K, Johnson B, Nussbaum RL. Applications of artificial intelligence in clinical laboratory genomics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32057. [PMID: 37507620 DOI: 10.1002/ajmg.c.32057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
Collapse
Affiliation(s)
- Swaroop Aradhya
- Invitae Corporation, San Francisco, California, USA
- Adjunct Clinical Faculty, Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hillery Metz
- Invitae Corporation, San Francisco, California, USA
| | - Toby Manders
- Invitae Corporation, San Francisco, California, USA
| | | | | | - Keith Nykamp
- Invitae Corporation, San Francisco, California, USA
| | | | - Robert L Nussbaum
- Invitae Corporation, San Francisco, California, USA
- Volunteer Faculty, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
62
|
Belaramani KM, Fung CW, Kwok AMK, Lee SYR, Yau EKC, Luk HM, Mak CM, Yeung MCW, Ngan OMY. Public and Healthcare Provider Receptivity toward the Retention of Dried Blood Spot Cards and Their Usage for Extended Genetic Testing in Hong Kong. Int J Neonatal Screen 2023; 9:45. [PMID: 37606482 PMCID: PMC10443280 DOI: 10.3390/ijns9030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Dried blood spot (DBS) cards from newborn screening (NBS) programs represent a wealth of biological data. They can be stored easily for a long time, have the potential to support medical and public health research, and have secondary usages such as quality assurance and forensics, making it the ideal candidate for bio-banking. However, worldwide policies vary with regard to the duration of storage of DBS cards and how it can be used. Recent advances in genomics have also made it possible to perform extended genetic testing on DBS cards in the newborn period to diagnose both actionable and non-actionable childhood and adult diseases. Both storage and secondary uses of DBS cards raise many ethical, clinical, and social questions. The openness of the key stakeholders, namely, parents and healthcare providers (HCPs), to store the DBS cards, and for what duration and purposes, and to extended genetic testing is largely dependent on local cultural-social-specific factors. The study objective is to assess the parents' and HCPs' awareness and receptivity toward DBS retention, its secondary usage, and extended genetic testing. A cross-sectional, self-administrated survey was adopted at three hospitals, out of which two were public hospitals with maternity services, between June and December 2022. In total, 452 parents and 107 HCPs completed and returned the survey. Overall, both HCPs and parents were largely knowledgeable about the potential benefits of DBS card storage for a prolonged period and its secondary uses, and they supported extended genetic testing. Knowledge gaps were found in respondents with a lower education level who did not know that a DBS card could be stored for an extended period (p < 0.001), could support scientific research (p = 0.033), and could aid public health research, and future policy implementation (p = 0.030). Main concerns with regard to DBS card storage related to potential privacy breaches and anonymity (Parents 70%, HCPs 60%). More parents, compared to HCPs, believed that storing DBS cards for secondary research does not lead to a reciprocal benefit to the child (p < 0.005). Regarding extended genetic testing, both groups were receptive and wanted to know about actionable childhood- and adult-onset diseases. More parents (four-fifths) rather than HCPs (three-fifths) were interested in learning about a variant with unknown significance (p < 0.001). Our findings report positive support from both parents and HCPs toward the extended retention of DBS cards for secondary usage and for extended genetic testing. However, more efforts to raise awareness need to be undertaken in addition to addressing the ethical concerns of both parents and HCPs to pave the way forward toward policy-making for DBS bio-banking and extended genetic testing in Hong Kong.
Collapse
Affiliation(s)
- Kiran Moti Belaramani
- Metabolic Medicine Unit, Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Cheuk Wing Fung
- Metabolic Medicine Unit, Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Anne Mei Kwun Kwok
- Metabolic Medicine Unit, Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Shing Yan Robert Lee
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Eric Kin Cheong Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Ho Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children’s Hospital, Hong Kong, China
| | - Chloe Miu Mak
- Newborn Screening Laboratory, Division of Chemical Pathology, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, China
| | - Matthew Chun Wing Yeung
- Newborn Screening Laboratory, Division of Chemical Pathology, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, China
| | - Olivia Miu Yung Ngan
- Medical Ethics and Humanities Unit, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Centre for Medical Ethics and Law, Faculty of Law and LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
63
|
Marasa M, Ahram DF, Rehman AU, Mitrotti A, Abhyankar A, Jain NG, Weng PL, Piva SE, Fernandez HE, Uy NS, Chatterjee D, Kil BH, Nestor JG, Felice V, Robinson D, Whyte D, Gharavi AG, Appel GB, Radhakrishnan J, Santoriello D, Bomback A, Lin F, D’Agati VD, Jobanputra V, Sanna-Cherchi S. Implementation and Feasibility of Clinical Genome Sequencing Embedded Into the Outpatient Nephrology Care for Patients With Proteinuric Kidney Disease. Kidney Int Rep 2023; 8:1638-1647. [PMID: 37547535 PMCID: PMC10403677 DOI: 10.1016/j.ekir.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The diagnosis and management of proteinuric kidney diseases such as focal segmental glomerulosclerosis (FSGS) are challenging. Genetics holds the promise to improve clinical decision making for these diseases; however, it is often performed too late to enable timely clinical action and it is not implemented within routine outpatient nephrology visits. Methods We sought to test the implementation and feasibility of clinical rapid genome sequencing (GS) in guiding decision making in patients with proteinuric kidney disease in real-time and embedded in the outpatient nephrology setting. Results We enrolled 10 children or young adults with biopsy-proven FSGS (9 cases) or minimal change disease (1 case). The mean age at enrollment was 16.2 years (range 2-30). The workflow did not require referral to external genetics clinics but was conducted entirely during the nephrology standard-of-care appointments. The total turn-around-time from enrollment to return-of-results and clinical decision averaged 21.8 days (12.4 for GS), which is well within a time frame that allows clinically relevant treatment decisions. A monogenic or APOL1-related form of kidney disease was diagnosed in 5 of 10 patients. The genetic findings resulted in a rectified diagnosis in 6 patients. Both positive and negative GS findings determined a change in pharmacological treatment. In 3 patients, the results were instrumental for transplant evaluation, donor selection, and the immunosuppressive treatment. All patients and families received genetic counseling. Conclusion Clinical GS is feasible and can be implemented in real-time in the outpatient care to help guiding clinical management. Additional studies are needed to confirm the cost-effectiveness and broader utility of clinical GS across the phenotypic and demographic spectrum of kidney diseases.
Collapse
Affiliation(s)
- Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | | | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | | | - Namrata G. Jain
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, USA
| | - Patricia L. Weng
- Division of Pediatric Nephrology, Department of Pediatrics, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, California, USA
| | - Stacy E. Piva
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Hilda E. Fernandez
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Natalie S. Uy
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, USA
| | - Debanjana Chatterjee
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Byum H. Kil
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Jordan G. Nestor
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | | | | | - Dilys Whyte
- Pediatric Specialty Center of Good Samaritan Hospital Medical Center, Babylon, New York, USA
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Gerald B. Appel
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Jai Radhakrishnan
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Dominick Santoriello
- Department of Pathology and Cell Biology, Renal Pathology Division, Columbia University Medical Center, New York, USA
| | - Andrew Bomback
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Renal Pathology Division, Columbia University Medical Center, New York, USA
| | - Vaidehi Jobanputra
- The New York Genome Center, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| |
Collapse
|
64
|
Dragojlovic N, Borle K, Kopac N, Nisselle A, Nuk J, Jevon M, Friedman JM, Elliott AM, Lynd LD. Workforce Implications of Increased Referrals to Hereditary Cancer Services in Canada: A Scenario-Based Analysis. Curr Oncol 2023; 30:7241-7251. [PMID: 37623006 PMCID: PMC10453026 DOI: 10.3390/curroncol30080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Over the last decade, utilization of clinical genetics services has grown rapidly, putting increasing pressure on the workforce available to deliver genetic healthcare. To highlight the policy challenges facing Canadian health systems, a needs-based workforce requirements model was developed to determine the number of Canadian patients in 2030 for whom an assessment of hereditary cancer risk would be indicated according to current standards and the numbers of genetic counsellors, clinical geneticists and other physicians with expertise in genetics needed to provide care under a diverse set of scenarios. Our model projects that by 2030, a total of 90 specialist physicians and 326 genetic counsellors (1.7-fold and 1.6-fold increases from 2020, respectively) will be required to provide Canadians with indicated hereditary cancer services if current growth trends and care models remain unchanged. However, if the expansion in eligibility for hereditary cancer assessment accelerates, the need for healthcare providers with expertise in genetics would increase dramatically unless alternative care models are widely adopted. Increasing capacity through service delivery innovation, as well as mainstreaming of cancer genetics care, will be critical to Canadian health systems' ability to meet this challenge.
Collapse
Affiliation(s)
- Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (N.D.)
| | - Kennedy Borle
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (N.D.)
| | - Nicola Kopac
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (N.D.)
| | - Amy Nisselle
- Australian Genomics Health Alliance, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Department of Pediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jennifer Nuk
- Hereditary Cancer Program, BC Cancer, Vancouver, BC V5Z 1J2, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Mandy Jevon
- Hereditary Cancer Program, BC Cancer, Vancouver, BC V5Z 1J2, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Alison M. Elliott
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Women’s Health Research Institute, Vancouver, BC V6H 3N1, Canada
| | - Larry D. Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (N.D.)
- Centre for Health Evaluation & Outcome Sciences, Providence Health, Vancouver, BC V6Z IY6, Canada
| |
Collapse
|
65
|
Green RC, Shah N, Genetti CA, Yu T, Zettler B, Uveges MK, Ceyhan-Birsoy O, Lebo MS, Pereira S, Agrawal PB, Parad RB, McGuire AL, Christensen KD, Schwartz TS, Rehm HL, Holm IA, Beggs AH. Actionability of unanticipated monogenic disease risks in newborn genomic screening: Findings from the BabySeq Project. Am J Hum Genet 2023; 110:1034-1045. [PMID: 37279760 PMCID: PMC10357495 DOI: 10.1016/j.ajhg.2023.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.
Collapse
Affiliation(s)
- Robert C Green
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ariadne Labs, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Nidhi Shah
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Dartmouth Health Children's, Lebanon, NH 03756, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Timothy Yu
- Harvard Medical School, Boston, MA 02215, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bethany Zettler
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA; Ariadne Labs, Boston, MA 02215, USA
| | - Melissa K Uveges
- William F. Connell School of Nursing, Boston College, Chestnut Hill, MA 02467, USA
| | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew S Lebo
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine; Houston, TX, USA
| | - Pankaj B Agrawal
- Harvard Medical School, Boston, MA 02215, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Richard B Parad
- Harvard Medical School, Boston, MA 02215, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine; Houston, TX, USA
| | - Kurt D Christensen
- Harvard Medical School, Boston, MA 02215, USA; Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Talia S Schwartz
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ingrid A Holm
- Harvard Medical School, Boston, MA 02215, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alan H Beggs
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
66
|
Balciuniene J, Liu R, Bean L, Guo F, Nallamilli BRR, Guruju N, Chen-Deutsch X, Yousaf R, Fura K, Chin E, Mathur A, Ma Z, Carmichael J, da Silva C, Collins C, Hegde M. At-Risk Genomic Findings for Pediatric-Onset Disorders From Genome Sequencing vs Medically Actionable Gene Panel in Proactive Screening of Newborns and Children. JAMA Netw Open 2023; 6:e2326445. [PMID: 37523181 PMCID: PMC10391308 DOI: 10.1001/jamanetworkopen.2023.26445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures Molecular findings indicative of genetic disease risk. Results Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.
Collapse
Affiliation(s)
| | - Ruby Liu
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Lora Bean
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Fen Guo
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Naga Guruju
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Rizwan Yousaf
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Kristina Fura
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Ephrem Chin
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Abhinav Mathur
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Zeqiang Ma
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | | | | | - Madhuri Hegde
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| |
Collapse
|
67
|
Milko LV, Berg JS. Age-Based Genomic Screening during Childhood: Ethical and Practical Considerations in Public Health Genomics Implementation. Int J Neonatal Screen 2023; 9:36. [PMID: 37489489 PMCID: PMC10366892 DOI: 10.3390/ijns9030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Genomic sequencing offers an unprecedented opportunity to detect inherited variants that are implicated in rare Mendelian disorders, yet there are many challenges to overcome before this technology can routinely be applied in the healthy population. The age-based genomic screening (ABGS) approach is a novel alternative to genome-scale sequencing at birth that aims to provide highly actionable genetic information to parents over the course of their child's routine health care. ABGS utilizes an established metric to identify conditions with high clinical actionability and incorporates information about the age of onset and age of intervention to determine the optimal time to screen for any given condition. Ongoing partnerships with parents and providers are instrumental to the co-creation of educational resources and strategies to address potential implementation barriers. Implementation science frameworks and informative empirical data are used to evaluate strategies to establish this unique clinical application of targeted genomic sequencing. Ultimately, a pilot project conducted in primary care pediatrics clinics will assess patient and implementation outcomes, parent and provider perspectives, and the feasibility of ABGS. A validated, stakeholder-informed, and practical ABGS program will include hundreds of conditions that are actionable during infancy and childhood, setting the stage for a longitudinal implementation that can assess clinical and health economic outcomes.
Collapse
Affiliation(s)
- Laura V. Milko
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Rd., Chapel Hill, NC 27599-7264, USA;
| | | |
Collapse
|
68
|
Kingsmore SF, Smith LD, Kunard CM, Bainbridge M, Batalov S, Benson W, Blincow E, Caylor S, Chambers C, Del Angel G, Dimmock DP, Ding Y, Ellsworth K, Feigenbaum A, Frise E, Green RC, Guidugli L, Hall KP, Hansen C, Hobbs CA, Kahn SD, Kiel M, Van Der Kraan L, Krilow C, Kwon YH, Madhavrao L, Le J, Lefebvre S, Mardach R, Mowrey WR, Oh D, Owen MJ, Powley G, Scharer G, Shelnutt S, Tokita M, Mehtalia SS, Oriol A, Papadopoulos S, Perry J, Rosales E, Sanford E, Schwartz S, Tran D, Reese MG, Wright M, Veeraraghavan N, Wigby K, Willis MJ, Wolen AR, Defay T. Response to Grosse et al. Am J Hum Genet 2023; 110:1017. [PMID: 37267897 PMCID: PMC10256999 DOI: 10.1016/j.ajhg.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Affiliation(s)
- Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Keck Graduate Institute, Claremont, CA 91711, USA.
| | - Laurie D Smith
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | - Matthew Bainbridge
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sergey Batalov
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Wendy Benson
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Eric Blincow
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sara Caylor
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Christina Chambers
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | | | - David P Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Yan Ding
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Katarzyna Ellsworth
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Annette Feigenbaum
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Erwin Frise
- Fabric Genomics, Inc., Oakland, CA 94612, USA
| | - Robert C Green
- Mass General Brigham, Broad Institute, Ariadne Labs and Harvard Medical School, Boston, MA 02115, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Christian Hansen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Mark Kiel
- Genomenon, Inc., Ann Arbor, MI 48108, USA
| | - Lucita Van Der Kraan
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Yong H Kwon
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lakshminarasimha Madhavrao
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jennie Le
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Rebecca Mardach
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | | | - Danny Oh
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mallory J Owen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | | | - Gunter Scharer
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | - Mari Tokita
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Albert Oriol
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - James Perry
- Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Edwin Rosales
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Erica Sanford
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | - Duke Tran
- Illumina, Inc., San Diego, CA 92122, USA
| | | | - Meredith Wright
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Narayanan Veeraraghavan
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Kristen Wigby
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Mary J Willis
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | - Thomas Defay
- Alexion, Astra Zeneca Rare Disease, Boston, MA 02210, USA
| |
Collapse
|
69
|
Grosse SD, Cuthbert C, Gaffney M, Gaviglio A, Hinton CF, Kellar-Guenther Y, Kemper AR, McKasson S, Ojodu J, Riley C, Singh S, Sontag MK, Shapira SK. Progress in expanding newborn screening in the United States. Am J Hum Genet 2023; 110:1015-1016. [PMID: 37267896 PMCID: PMC10257000 DOI: 10.1016/j.ajhg.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023] Open
Affiliation(s)
- Scott D Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Carla Cuthbert
- Division of Laboratory Services, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marcus Gaffney
- Division of Laboratory Services, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amy Gaviglio
- Division of Laboratory Services, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA; Association of Public Health Laboratories, Silver Spring, MD, USA
| | - Cynthia F Hinton
- Division of Laboratory Services, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Alex R Kemper
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sarah McKasson
- Association of Public Health Laboratories, Silver Spring, MD, USA
| | - Jelili Ojodu
- Association of Public Health Laboratories, Silver Spring, MD, USA
| | - Catharine Riley
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sikha Singh
- Association of Public Health Laboratories, Silver Spring, MD, USA
| | - Marci K Sontag
- Center for Public Health Innovation, CI International, Littleton, CO, USA
| | - Stuart K Shapira
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
70
|
Kini U. Genetics and orofacial clefts: a clinical perspective. Br Dent J 2023; 234:947-952. [PMID: 37349452 PMCID: PMC10287552 DOI: 10.1038/s41415-023-5994-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Orofacial clefts (OFCs) are the most common congenital craniofacial anomaly seen in humans. Most OFCs are sporadic and isolated - these are thought to be multifactorial in origin. Chromosomal and monogenic variants account for the syndromic forms and for some of the non-syndromic inherited forms. This review discusses the importance of genetic testing and the current clinical strategy to deliver a genomics service that is of direct benefit to patients and their families.
Collapse
Affiliation(s)
- Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals, UK; Spires Cleft Service, Oxford University Hospitals, UK; NDCLS, Radcliffe Department of Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
71
|
Terry SF. Who Are the Experts? Genet Test Mol Biomarkers 2023; 27:131-132. [PMID: 37257179 DOI: 10.1089/gtmb.2023.29071.persp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
|
72
|
King JR, Grill K, Hammarström L. Genomic-Based Newborn Screening for Inborn Errors of Immunity: Practical and Ethical Considerations. Int J Neonatal Screen 2023; 9:ijns9020022. [PMID: 37092516 PMCID: PMC10123688 DOI: 10.3390/ijns9020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Inborn errors of immunity (IEI) are a group of over 450 genetically distinct conditions associated with significant morbidity and mortality, for which early diagnosis and treatment improve outcomes. Newborn screening for severe combined immunodeficiency (SCID) is currently underway in several countries, utilising a DNA-based technique to quantify T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC). This strategy will only identify those infants with an IEI associated with T and/or B cell lymphopenia. Other severe forms of IEI will not be detected. Up-front, first-tier genomic-based newborn screening has been proposed as a potential approach by which to concurrently screen infants for hundreds of monogenic diseases at birth. Given the clinical, phenotypic and genetic heterogeneity of IEI, a next-generation sequencing-based newborn screening approach would be suitable. There are, however, several ethical, legal and social issues which must be evaluated in detail prior to adopting a genomic-based newborn screening approach, and these are discussed herein in the context of IEI.
Collapse
Affiliation(s)
- Jovanka R King
- Department of Allergy & Clinical Immunology, Women's and Children's Hospital Network, North Adelaide, SA 5006, Australia
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, SA 5006, Australia
| | - Kalle Grill
- Department of Historical, Philosophical and Religious Studies, Umeå University, SE-90187 Umeå, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, SE-14183 Huddinge, Sweden
| |
Collapse
|
73
|
Vockley J, Defay T, Goldenberg AJ, Gaviglio AM. Scaling genetic resources: New paradigms for diagnosis and treatment of rare genetic disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:77-86. [PMID: 36448938 PMCID: PMC10038858 DOI: 10.1002/ajmg.c.32016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Development of genetic tests for rare genetic diseases has traditionally focused on individual diseases. Similarly, development of new therapies occurred one disease at a time. With >10,000 rare genetic diseases, this approach is not feasible. Diagnosis of genetic disorders has already transcended old paradigms as whole exome and genome sequencing have allowed expedient interrogation of all relevant genes in a single test. The growth of newborn screening has allowed identification of diseases in presymptomatic babies. Similarly, the ability to develop therapies is rapidly expanding due to technologies that leverage platform technology that address multiple diseases. However, movement from the basic science laboratory to clinical trials is still hampered by a regulatory system rooted in traditional trial design, requiring a fresh assessment of safe ways to obtain approval for new drugs. Ultimately, the number of nucleic acid-based therapies will challenge the ability of clinics focused on rare diseases to deliver them safely with appropriate evaluation and long-term follow-up. This manuscript summarizes discussions arising from a recent National Institutes of Health conference on nucleic acid therapy, with a focus on scaling technologies for diagnosis of rare disorders and provision of therapies across the age and disease spectrum.
Collapse
Affiliation(s)
- Jerry Vockley
- University of Pittsburgh Schools of Medicine and Public Health, Pittsburgh, Pennsylvania, USA
| | - Thomas Defay
- Alexion AstraZeneca Rare Diseases, Boston, Massachusetts, USA
| | - Aaron J Goldenberg
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
74
|
Vockley J, Aartsma-Rus A, Cohen JL, Cowsert LM, Howell RR, Yu TW, Wasserstein MP, Defay T. Whole-genome sequencing holds the key to the success of gene-targeted therapies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:19-29. [PMID: 36453229 DOI: 10.1002/ajmg.c.32017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Rare genetic disorders affect as many as 3%-5% of all babies born. Approximately 10,000 such disorders have been identified or hypothesized to exist. Treatment is supportive except in a limited number of instances where specific therapies exist. Development of new therapies has been hampered by at least two major factors: difficulty in diagnosing diseases early enough to enable treatment before irreversible damage occurs, and the high cost of developing new drugs and getting them approved by regulatory agencies. Whole-genome sequencing (WGS) techniques have become exponentially less expensive and more rapid since the beginning of the human genome project, such that return of clinical data can now be achieved in days rather than years and at a cost that is comparable to other less expansive genetic testing. Thus, it is likely that WGS will ultimately become a mainstream, first-tier NBS technique at least for those disorders without appropriate high-throughput functional tests. However, there are likely to be several steps in the evolution to this end. The clinical implications of these advances are profound but highlight the bottlenecks in drug development that still limit transition to treatments. This article summarizes discussions arising from a recent National Institute of Health conference on nucleic acid therapy, with a focus on the impact of WGS in the identification of diagnosis and treatment of rare genetic disorders.
Collapse
Affiliation(s)
- Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | - Jennifer L Cohen
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Lex M Cowsert
- National Phenylketonuria Alliance, Eau Claire, Wisconsin, USA
| | - R Rodney Howell
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Timothy W Yu
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa P Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| | - Thomas Defay
- Alexion AstraZeneca Rare Diseases, Boston, Massachusetts, USA
| |
Collapse
|
75
|
Ding Y, Owen M, Le J, Batalov S, Chau K, Kwon YH, Van Der Kraan L, Bezares-Orin Z, Zhu Z, Veeraraghavan N, Nahas S, Bainbridge M, Gleeson J, Baer RJ, Bandoli G, Chambers C, Kingsmore SF. Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots. NPJ Genom Med 2023; 8:5. [PMID: 36788231 PMCID: PMC9929090 DOI: 10.1038/s41525-023-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/05/2023] [Indexed: 02/16/2023] Open
Abstract
Universal newborn screening (NBS) is a highly successful public health intervention. Archived dried bloodspots (DBS) collected for NBS represent a rich resource for population genomic studies. To fully harness this resource in such studies, DBS must yield high-quality genomic DNA (gDNA) for whole genome sequencing (WGS). In this pilot study, we hypothesized that gDNA of sufficient quality and quantity for WGS could be extracted from archived DBS up to 20 years old without PCR (Polymerase Chain Reaction) amplification. We describe simple methods for gDNA extraction and WGS library preparation from several types of DBS. We tested these methods in DBS from 25 individuals who had previously undergone diagnostic, clinical WGS and 29 randomly selected DBS cards collected for NBS from the California State Biobank. While gDNA from DBS had significantly less yield than from EDTA blood from the same individuals, it was of sufficient quality and quantity for WGS without PCR. All samples DBS yielded WGS that met quality control metrics for high-confidence variant calling. Twenty-eight variants of various types that had been reported clinically in 19 samples were recapitulated in WGS from DBS. There were no significant effects of age or paper type on WGS quality. Archived DBS appear to be a suitable sample type for WGS in population genomic studies.
Collapse
Affiliation(s)
- Yan Ding
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Mallory Owen
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
| | - Jennie Le
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Sergey Batalov
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Kevin Chau
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Yong Hyun Kwon
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Lucita Van Der Kraan
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Zaira Bezares-Orin
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Zhanyang Zhu
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Narayanan Veeraraghavan
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Shareef Nahas
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Matthew Bainbridge
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Joe Gleeson
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| | - Rebecca J. Baer
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA ,grid.266102.10000 0001 2297 6811California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA USA
| | - Gretchen Bandoli
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| | - Christina Chambers
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| | - Stephen F. Kingsmore
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| |
Collapse
|
76
|
Djafar JV, Johnson AM, Elvidge KL, Farrar MA. Childhood Dementia: A Collective Clinical Approach to Advance Therapeutic Development and Care. Pediatr Neurol 2023; 139:76-85. [PMID: 36571866 DOI: 10.1016/j.pediatrneurol.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Childhood dementias are a group of over 100 rare and ultra-rare pediatric conditions that are clinically characterized by chronic global neurocognitive decline. This decline is associated with a progressive loss of skills and shortened life expectancy. With an estimated incidence of one in 2800 births and less than 5% of the conditions having disease-modifying therapies, the impact is profound for patients and their families. Traditional research, care, and advocacy efforts have focused on individual disorders, or groups classified by molecular pathogenesis, and this has established robust foundations for further progress and collaboration. This review describes the shared and disease-specific clinical changes contributing to childhood dementia and considers these as potential indicators of underlying pathophysiologic processes. Like adult neurodegenerative syndromes, the heterogeneous phenotypes extend beyond cognitive decline and may involve changes in eating, motor function, pain, sleep, and behavior, mediated by physiological changes in neural networks. Importantly, these physiological phenotypes are associated with significant carer stress, anxiety, and challenges in care. These phenotypes are also pertinent for the development of therapeutics and optimization of best practice management. A collective approach to childhood dementia is anticipated to identify relevant biomarkers of prognosis or therapeutic efficacy, streamline the path from preclinical studies to clinical trials, increase opportunities for the development of multiple therapeutics, and refine clinical care.
Collapse
Affiliation(s)
- Jason V Djafar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | | | - Michelle A Farrar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia.
| |
Collapse
|
77
|
Owen MJ, Wright MS, Batalov S, Kwon Y, Ding Y, Chau KK, Chowdhury S, Sweeney NM, Kiernan E, Richardson A, Batton E, Baer RJ, Bandoli G, Gleeson JG, Bainbridge M, Chambers CD, Kingsmore SF. Reclassification of the Etiology of Infant Mortality With Whole-Genome Sequencing. JAMA Netw Open 2023; 6:e2254069. [PMID: 36757698 PMCID: PMC9912130 DOI: 10.1001/jamanetworkopen.2022.54069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/27/2022] [Indexed: 02/10/2023] Open
Abstract
Importance Understanding the causes of infant mortality shapes public health, surveillance, and research investments. However, the association of single-locus (mendelian) genetic diseases with infant mortality is poorly understood. Objective To determine the association of genetic diseases with infant mortality. Design, Setting, and Participants This cohort study was conducted at a large pediatric hospital system in San Diego County (California) and included 546 infants (112 infant deaths [20.5%] and 434 infants [79.5%] with acute illness who survived; age, 0 to 1 year) who underwent diagnostic whole-genome sequencing (WGS) between January 2015 and December 2020. Data analysis was conducted between 2015 and 2022. Exposure Infants underwent WGS either premortem or postmortem with semiautomated phenotyping and diagnostic interpretation. Main Outcomes and Measures Proportion of infant deaths associated with single-locus genetic diseases. Results Among 112 infant deaths (54 girls [48.2%]; 8 [7.1%] African American or Black, 1 [0.9%] American Indian or Alaska Native, 8 [7.1%] Asian, 48 [42.9%] Hispanic, 1 [0.9%] Native Hawaiian or Pacific Islander, and 34 [30.4%] White infants) in San Diego County between 2015 and 2020, single-locus genetic diseases were the most common identifiable cause of infant mortality, with 47 genetic diseases identified in 46 infants (41%). Thirty-nine (83%) of these diseases had been previously reported to be associated with childhood mortality. Twenty-eight death certificates (62%) for 45 of the 46 infants did not mention a genetic etiology. Treatments that can improve outcomes were available for 14 (30%) of the genetic diseases. In 5 of 7 infants in whom genetic diseases were identified postmortem, death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission. Conclusions and Relevance In this cohort study of 112 infant deaths, the association of genetic diseases with infant mortality was higher than previously recognized. Strategies to increase neonatal diagnosis of genetic diseases and immediately implement treatment may decrease infant mortality. Additional study is required to explore the generalizability of these findings and measure reduction in infant mortality.
Collapse
Affiliation(s)
- Mallory J. Owen
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Meredith S. Wright
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Sergey Batalov
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Yonghyun Kwon
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Yan Ding
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Kevin K. Chau
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Shimul Chowdhury
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Nathaly M. Sweeney
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Elizabeth Kiernan
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Andrew Richardson
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Emily Batton
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Rebecca J. Baer
- Department of Pediatrics, University of California, San Diego, La Jolla
- California Preterm Birth Initiative, University of California, San Francisco
| | - Gretchen Bandoli
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Joseph G. Gleeson
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Matthew Bainbridge
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | | | - Stephen F. Kingsmore
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| |
Collapse
|
78
|
Chien YH, Hwu WL. The modern face of newborn screening. Pediatr Neonatol 2023; 64 Suppl 1:S22-S29. [PMID: 36481189 DOI: 10.1016/j.pedneo.2022.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) has been developed for years to identify newborns with severe but treatable conditions. Taiwan's NBS system, after the initial setup for a total coverage of newborns in 1990s, was later optimized to ensure the timely return of results in infants with abnormal results. Advancements in techniques such as Tandem mass spectrometry enable the screening into a multiplex format and increase the conditions to be screened. Furthermore, advances in therapies, such as enzyme replacement therapy, stem cell transplantation, and gene therapy, significantly expand the needs for newborn screening. Advances in genomics and biomarkers discovery improve the test accuracy with the assistance of second-tier tests, and have the potential to be the first-tier test in the future. Therefore, challenge of NBS now is the knowledge gap, including the evidence of the long-term clinical benefits in large cohorts especially in conditions with new therapies, phenotypic variations and the corresponding management of some screened diseases, and cost-effectiveness of extended NBS programs. A short-term and a long-term follow-up program should be implemented to gather those outcomes better especially in the genomic era. Ethical and psychosocial issues are also potentially encountered frequently. Essential education and better informed consent should be considered fundamental to parallel those new tests into future NBS.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
79
|
May ML, Osowicki J, Gaafar D, Suthers G. Using a bedside test to detect genetic susceptibility to aminoglycoside-induced hearing loss: Has the future arrived? J Paediatr Child Health 2023; 59:9-11. [PMID: 36465032 PMCID: PMC10107546 DOI: 10.1111/jpc.16302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Aminoglycosides are among the most commonly prescribed antibiotics in hospitalised Australian adults and children. A proportion of individuals with an underlying genetic predisposition to aminoglycoside-induced hearing loss (AIHL) can develop bilateral sensorineural hearing loss that is immediate and profound after just a single standard dose of an aminoglycoside. A recent publication described the use of a rapid point-of-care test (POCT) in a neonatal nursery in the United Kingdom for real-time detection of infants at risk of AIHL, in whom exposure to aminoglycosides could then be avoided. This proof of concept study should provide a catalyst for further development of similar assays that would be suitable for Australia's genetically diverse population. The barriers to mitigating the impact of AIHL on Australian children are not primarily technical, but involve a lack of data on the prevalence of the MT-RNR1 mutations in our current neonatal and paediatric populations and intensive care nurseries.
Collapse
Affiliation(s)
- Meryta L May
- Department of Microbiology, Sullivan Nicolaides Pathology, Sonic Healthcare Australia, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Duaa Gaafar
- Department of Paediatrics, Ballarat Base Hospital, Ballarat Central, Victoria, Australia.,Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Graeme Suthers
- Sonic Healthcare Australia - Pathology, Sydney, New South Wales, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
80
|
Giugliani R, Castillo Taucher S, Hafez S, Oliveira JB, Rico-Restrepo M, Rozenfeld P, Zarante I, Gonzaga-Jauregui C. Opportunities and challenges for newborn screening and early diagnosis of rare diseases in Latin America. Front Genet 2022; 13:1053559. [PMID: 36568372 PMCID: PMC9773081 DOI: 10.3389/fgene.2022.1053559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Rare diseases (RDs) cause considerable death and disability in Latin America. Still, there is no consensus on their definition across the region. Patients with RDs face a diagnostic odyssey to find a correct diagnosis, which may last many years and creates a burden for caregivers, healthcare systems, and society. These diagnostic delays have repercussions on the health and economic burden created by RDs and continue to represent an unmet medical need. This review analyzes barriers to the widespread adoption of newborn screening (NBS) programs and early diagnostic methods for RDs in Latin America and provides recommendations to achieve this critical objective. Increasing the adoption of NBS programs and promoting early diagnosis of RDs are the first steps to improving health outcomes for patients living with RDs. A coordinated, multistakeholder effort from leaders of patient organizations, government, industry, medical societies, academia, and healthcare services is required to increase the adoption of NBS programs. Patients' best interests should remain the guiding principle for decisions regarding NBS implementation and early diagnosis for RDs.
Collapse
Affiliation(s)
- Roberto Giugliani
- Department of Genetics UFRGS, Medical Genetics Service HCPA, DASA and Casa dos Raros, Porto Alegre, Brazil,*Correspondence: Roberto Giugliani, ; Claudia Gonzaga-Jauregui,
| | - Silvia Castillo Taucher
- Clinical Geneticist, Hospital Clínico Universidad de Chile, Clínica Alemana de Santiago, Santiago, Chile
| | | | - Joao Bosco Oliveira
- Laboratório de Genética Molecular, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Paula Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Ignacio Zarante
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, México,*Correspondence: Roberto Giugliani, ; Claudia Gonzaga-Jauregui,
| |
Collapse
|
81
|
Liquid Chromatography-Tandem Mass Spectrometry in Newborn Screening Laboratories. Int J Neonatal Screen 2022; 8:ijns8040062. [PMID: 36547379 PMCID: PMC9781967 DOI: 10.3390/ijns8040062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Tandem mass spectrometry (MS/MS) is the most universal platform currently available for the analysis of enzymatic activities and biomarkers in dried blood spots (DBS) for applications in newborn screening (NBS). Among the MS/MS applications in NBS, the most common is flow-injection analysis (FIA-) MS/MS, where the sample is introduced as a bolus injection into the mass spectrometer without the prior fractionation of analytes. Liquid chromatography combined with MS/MS (LC-MS/MS) has been employed for second-tier tests to reduce the false-positive rate associated with several nonspecific screening markers, beginning two decades ago. More recently, LC-MS/MS has been applied to primary screening for new conditions for which FIA-MS/MS or other methods, including genomic screening, are not yet adequate. In addition to providing a list of the currently used LC-MS/MS-based assays for NBS, the authors share their experience regarding the maintenance requirements of LC-MS/MS vs. FIA-MS/MS systems. The consensus is that the maintenance of LC-MS/MS and FIA-MS/MS instrumentation is similar, and LC-MS/MS has the advantage of allowing for a larger number of diseases to be screened for in a multiplex, cost-effective fashion with a high throughput and an adequate turnaround time.
Collapse
|
82
|
Walton NA, Hafen B, Graceffo S, Sutherland N, Emmerson M, Palmquist R, Formea CM, Purcell M, Heale B, Brown MA, Danford CJ, Rachamadugu SI, Person TN, Shortt KA, Christensen GB, Evans JM, Raghunath S, Johnson CP, Knight S, Le VT, Anderson JL, Van Meter M, Reading T, Haslem DS, Hansen IC, Batcher B, Barker T, Sheffield TJ, Yandava B, Taylor DP, Ranade-Kharkar P, Giauque CC, Eyring KR, Breinholt JW, Miller MR, Carter PR, Gillman JL, Gunn AW, Knowlton KU, Bonkowsky JL, Stefansson K, Nadauld LD, McLeod HL. The Development of an Infrastructure to Facilitate the Use of Whole Genome Sequencing for Population Health. J Pers Med 2022; 12:jpm12111867. [PMID: 36579594 PMCID: PMC9693138 DOI: 10.3390/jpm12111867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The clinical use of genomic analysis has expanded rapidly resulting in an increased availability and utility of genomic information in clinical care. We have developed an infrastructure utilizing informatics tools and clinical processes to facilitate the use of whole genome sequencing data for population health management across the healthcare system. Our resulting framework scaled well to multiple clinical domains in both pediatric and adult care, although there were domain specific challenges that arose. Our infrastructure was complementary to existing clinical processes and well-received by care providers and patients. Informatics solutions were critical to the successful deployment and scaling of this program. Implementation of genomics at the scale of population health utilizes complicated technologies and processes that for many health systems are not supported by current information systems or in existing clinical workflows. To scale such a system requires a substantial clinical framework backed by informatics tools to facilitate the flow and management of data. Our work represents an early model that has been successful in scaling to 29 different genes with associated genetic conditions in four clinical domains. Work is ongoing to optimize informatics tools; and to identify best practices for translation to smaller healthcare systems.
Collapse
Affiliation(s)
- Nephi A. Walton
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
- Correspondence:
| | - Brent Hafen
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Sara Graceffo
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Nykole Sutherland
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Melanie Emmerson
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Rachel Palmquist
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
- Center for Personalized Medicine, Primary Children’s Hospital, Intermountain Healthcare, Salt Lake City, UT 84113, USA
| | - Christine M. Formea
- Department of Pharmacy, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Maricel Purcell
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Bret Heale
- Humanized Health Consulting, Salt Lake City, UT 84102, USA
| | | | | | - Sumathi I. Rachamadugu
- Department of Bioinformatics and Genomics, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas N. Person
- John Hopkins Genomics—DNA Diagnostics Laboratory, Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - G. Bryce Christensen
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Jared M. Evans
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Sharanya Raghunath
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Christopher P. Johnson
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Stacey Knight
- Department of Cardiology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Viet T. Le
- Department of Cardiology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Jeffrey L. Anderson
- Department of Cardiology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Margaret Van Meter
- Department of Medical Oncology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Teresa Reading
- Department of Surgery, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Derrick S. Haslem
- Department of Cardiology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Ivy C. Hansen
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Betsey Batcher
- Department of Endocrinology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Tyler Barker
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Travis J. Sheffield
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Bhaskara Yandava
- Digital Technology Services, Intermountain Healthcare, Salt Lake City, UT 84130, USA
| | - David P. Taylor
- Digital Technology Services, Intermountain Healthcare, Salt Lake City, UT 84130, USA
| | | | - Christopher C. Giauque
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Kenneth R. Eyring
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Jesse W. Breinholt
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Mickey R. Miller
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Payton R. Carter
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Jason L. Gillman
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Andrew W. Gunn
- Center for Personalized Medicine, Primary Children’s Hospital, Intermountain Healthcare, Salt Lake City, UT 84113, USA
| | - Kirk U. Knowlton
- Department of Cardiology, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Joshua L. Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
- Center for Personalized Medicine, Primary Children’s Hospital, Intermountain Healthcare, Salt Lake City, UT 84113, USA
| | | | - Lincoln D. Nadauld
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| | - Howard L. McLeod
- Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT 84107, USA
| |
Collapse
|
83
|
Yıldız Bölükbaşı E, Karolak JA, Szafranski P, Gambin T, Willard N, Abman SH, Galambos C, Kinsella JP, Stankiewicz P. High-level gonosomal mosaicism for a pathogenic non-coding CNV deletion of the lung-specific FOXF1 enhancer in an unaffected mother of an infant with ACDMPV. Mol Genet Genomic Med 2022; 10:e2062. [PMID: 36124617 PMCID: PMC9651602 DOI: 10.1002/mgg3.2062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) results from haploinsufficiency of the mesenchymal transcription factor FOXF1 gene. To date, only one case of an ACDMPV-causative CNV deletion inherited from a very-low level somatic mosaic mother has been reported. METHODS Clinical, histopathological, and molecular studies, including whole genome sequencing, chromosomal microarray analysis, qPCR, and Sanger sequencing, followed by in vitro fertilization (IVF) with preimplantation genetic testing (PGT) were used to study a family with a deceased neonate with ACDMPV. RESULTS A pathogenic CNV deletion of the lung-specific FOXF1 enhancer in the proband was found to be inherited from an unaffected mother, 36% mosaic for this deletion in her peripheral blood cells. The qPCR analyses of saliva, buccal cells, urine, nail, and hair samples revealed 19%, 18%, 15%, 19%, and 27% variant allele fraction, respectively, indicating a high recurrence risk. Grandparental studies revealed that the deletion arose on the mother's paternal chromosome 16. PGT studies revealed 44% embryos with the deletion, reflecting high-level germline mosaicism. CONCLUSION Our data further demonstrate the importance of parental testing in ACDMPV families and reproductive usefulness of IVF with PGT in families with high-level parental gonosomal mosaicism.
Collapse
Affiliation(s)
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznan University of Medical SciencesPoznanPoland
| | | | - Tomasz Gambin
- Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
| | - Nicholas Willard
- Department of Pathology and Laboratory MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven H. Abman
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Csaba Galambos
- Department of Pathology and Laboratory MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA,Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - John P. Kinsella
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Paweł Stankiewicz
- Department of Molecular & Human GeneticsBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
84
|
Kingsmore SF, The BeginNGS Consortium. Dispatches from Biotech beginning BeginNGS: Rapid newborn genome sequencing to end the diagnostic and therapeutic odyssey. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:243-256. [PMID: 36218021 PMCID: PMC9588745 DOI: 10.1002/ajmg.c.32005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
In this Dispatch from Biotech, we briefly review the urgent need for extensive expansion of newborn screening (NBS) by genomic sequencing, and the reasons why early attempts had limited success. During the next decade transformative developments will continue in society and in the pharmaceutical, biotechnology, informatics, and medical sectors that enable prompt addition of genetic disorders to NBS by rapid whole genome sequencing (rWGS) upon introduction of new therapies that qualify them according to the Wilson and Jungner criteria (Wilson, J. M. G., & Jungner, G., World Health Organization. (1968). Principles and Practice of Screening for Disease. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/37650). Herein we describe plans, progress, and clinical trial designs for BeginNGS (Newborn Genome Sequencing to end the diagnostic and therapeutic odyssey), a new international, pre-competitive, public-private consortium that proposes to implement a self-learning healthcare delivery system for screening all newborns for over 400 hundred genetic diseases, diagnostic confirmation, implementation of effective treatment, and acceleration of orphan drug development. We invite investigators and stakeholders worldwide to join the consortium in a prospective, multi-center, international trial of the clinical utility and cost effectiveness of BeginNGS.
Collapse
Affiliation(s)
- Stephen F. Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's HospitalSan DiegoCaliforniaUSA
| | | |
Collapse
|