51
|
Entamoeba histolytica Interaction with Enteropathogenic Escherichia coli Increases Parasite Virulence and Inflammation in Amebiasis. Infect Immun 2019; 87:IAI.00279-19. [PMID: 31527129 DOI: 10.1128/iai.00279-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1β, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.
Collapse
|
52
|
Sun Y, Liu Z, Song S, Zhu B, Zhao L, Jiang J, Liu N, Wang J, Chen X. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera. Int J Biol Macromol 2019; 146:931-938. [PMID: 31730965 DOI: 10.1016/j.ijbiomac.2019.09.216] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
Abstract
In the present study, the in vitro anti-inflammatory activity of four purified polysaccharides (CLGP1, CLGP2, CLGP3 and CLGP4) extracted from edible green algae Caulerpa lentillifera was evaluated. As a result, CLGP4 exhibited more effectively inhibitory effect on LPS-induced HT29 cells, including reducing the production of IL-1β, TNF-α, SIgA and mucin2, and decreasing the expression of IL-1β and TNF-α. According to the results, CLGP4 showed a better anti-inflammatory effect, might highly related to the presence of sulfate groups. Furthermore, the structure of CLGP4 was analyzed by methylation analysis, GC-MS and NMR spectroscopy. It was found that CLGP4 was a novel xylogalactomanan consisting of β-(1 → 4)-Manp, →2,4)Manp(1→, β-(1 → 2)-Manp, β-(1 → 3)-Galp, β-(1 → 4)-Xylp, terminal β-Galp and terminal β-Xylp residues. Additionally, the sulfate groups were located on C-3 of →4)Xylp(1→, C-6 of →3)Galp(1→ and C-3 of →2)Manp(1→. These results could enlarge the potential application of CLGP4 as functional ingredient to attenuate inflammation.
Collapse
Affiliation(s)
- Yujiao Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhengqi Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Lili Zhao
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co. Ltd., Qingdao 266400, PR China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co. Ltd., Qingdao 266400, PR China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
53
|
Cornick S, Kumar M, Moreau F, Gaisano H, Chadee K. VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nat Commun 2019; 10:4306. [PMID: 31541089 PMCID: PMC6754373 DOI: 10.1038/s41467-019-11811-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
The mucus layer is the first line of innate host defense in the gut that protects the epithelium by spatially separating commensal bacteria. MUC2 mucin is produced and stored by goblet cells that is constitutively exocytosed or hyper secreted upon sensing a threat. How coordinated mucus exocytosis maintains homeostasis in the intestinal epithelium and modulates the immunological landscape remains elusive. Here we describe how the vesicle SNARE protein VAMP8 coordinates mucin exocytosis from goblet cells. Vamp8-/- exhibit a mild pro-inflammatory state basally due to an altered mucus layer and increased encounters with microbial antigens. Microbial diversity shifts to a detrimental microbiota with an increase abundance of pathogenic and mucolytic bacteria. To alleviate the heavy microbial burden and inflammatory state basally, Vamp8-/- skews towards tolerance. Despite this, Vamp8-/- is highly susceptible to both chemical and infectious colitis demonstrating the fragility of the intestinal mucosa without proper mucus exocytosis mechanisms.
Collapse
Affiliation(s)
- Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Herbert Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
54
|
Zhu F, Liu XX, Fan H. Role of NLRP6 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27:1076-1082. [DOI: 10.11569/wcjd.v27.i17.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease of unknown etiology. The symptoms of IBD are prone to recurrent episodes, and there is currently limited treatment and efficacy. Recently, there have been many studies showing that the nucleotide-binding oligomerization domain-like receptor containing the pyrin domain containing protein (NLR family, pyrin domain containing 6, NLRP6) regulates intestinal immunity and microorganisms in inflammatory bowel disease and related tumors. NLRP6 promotes the secretion of interleukin (IL)-18 and antimicrobial peptides, and IL-18 can inhibit the production of IL-22BP, enhance the role of IL-22, and promote the proliferation of epithelial cells through the MyD88 pathway. NLRP6 also regulates the secretion of mucoprotein 2 by goblet cells via Toll-like receptors, clears intestinal bacteria, regulates intestinal immune function, and maintains intestinal flora. Because IBD is associated with a tendency of malignant transformation, and researchers have found that NLRP6 can act on NOTCH and Wnt, activate chemokine ligand 5 and IL-6 signaling, regulate epithelial cell proliferation, and affect the development of IBD-related colorectal cancer. This article reviews the role of NLRP6 in IBD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
55
|
Nicoletti A, Ponziani FR, Biolato M, Valenza V, Marrone G, Sganga G, Gasbarrini A, Miele L, Grieco A. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol 2019; 25:4814-4834. [PMID: 31543676 PMCID: PMC6737313 DOI: 10.3748/wjg.v25.i33.4814] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The intimate connection and the strict mutual cooperation between the gut and the liver realizes a functional entity called gut-liver axis. The integrity of intestinal barrier is crucial for the maintenance of liver homeostasis. In this mutual relationship, the liver acts as a second firewall towards potentially harmful substances translocated from the gut, and is, in turn, is implicated in the regulation of the barrier. Increasing evidence has highlighted the relevance of increased intestinal permeability and consequent bacterial translocation in the development of liver damage. In particular, in patients with non-alcoholic fatty liver disease recent hypotheses are considering intestinal permeability impairment, diet and gut dysbiosis as the primary pathogenic trigger. In advanced liver disease, intestinal permeability is enhanced by portal hypertension. The clinical consequence is an increased bacterial translocation that further worsens liver damage. Furthermore, this pathogenic mechanism is implicated in most of liver cirrhosis complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma. After liver transplantation, the decrease in portal pressure should determine beneficial effects on the gut-liver axis, although are incompletely understood data on the modifications of the intestinal permeability and gut microbiota composition are still lacking. How the modulation of the intestinal permeability could prevent the initiation and progression of liver disease is still an uncovered area, which deserves further attention.
Collapse
Affiliation(s)
- Alberto Nicoletti
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Francesca Romana Ponziani
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Marco Biolato
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Venanzio Valenza
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Gabriele Sganga
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Miele
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Grieco
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
56
|
Sun Y, Cui X, Duan M, Ai C, Song S, Chen X. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
57
|
Hanić M, Trbojević-Akmačić I, Lauc G. Inflammatory bowel disease - glycomics perspective. Biochim Biophys Acta Gen Subj 2019; 1863:1595-1601. [PMID: 31276732 DOI: 10.1016/j.bbagen.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis is still not well understood. It is considered to result from genetic susceptibility, environment, microbiota composition and aberrant immune response. Crohn's disease (CD) and ulcerative colitis (UC), forms of IBD, are sometimes indistinguishable by typical laboratory and clinical characteristics making timely diagnosis and subsequent therapy hit-and-miss. Glycosylation has shown a promising biomarker potential for early IBD diagnosis and effective response to treatment prediction. SCOPE OF REVIEW This mini-review briefly covers present knowledge of IBD pathophysiology, with a focus on recent research on the role of glycosylation in IBD pathogenesis and disease progression. MAJOR CONCLUSIONS Aberrant glycosylation significantly changes functionality of key proteins in intestinal niche and is involved in IBD etiology. GENERAL SIGNIFICANCE Elucidating mechanisms of IBD development is one of critical goals in managing this disease. Glycans are important for fine-tuning of intestinal processes that ensure homeostatic conditions which, if disrupted, lead to IBD.
Collapse
Affiliation(s)
- Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
58
|
Lin R, Sun Y, Ye W, Zheng T, Wen J, Deng Y. T-2 toxin inhibits the production of mucin via activating the IRE1/XBP1 pathway. Toxicology 2019; 424:152230. [PMID: 31170431 DOI: 10.1016/j.tox.2019.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023]
Abstract
T-2 toxin is a trichothecene mycotoxin that widely contaminates food and has a variety of toxic effects. However, the underlying mechanism of T-2 toxin on intestinal mucin remains unclear. In present study, human intestinal Caco-2 cells and HT-29 cells were treated with 100 ng/mL T-2 toxin at one-quarter of the IC50 for 24 h, which caused the inhibition of MUC2 and adhesion of E. coli O157:H7. We found T-2 toxin induced endoplasmic reticulum stress and activated the IRE1/XBP1 pathway, which may be related to the inhibition of MUC2. Interestingly, T-2 toxin activated IRE1α to inhibit IRE1β, which optimized mucin production. Furthermore, overexpression of IRE1β in the cells apparently alleviated the inhibition of MUC2 caused by T-2 toxin. IRE1α knock-down blocked the down-regulation of IRE1β and MUC2 induced by T-2 toxin. We revealed the critical role of IRE1α in the inhibition of intestinal mucin. This finding was confirmed in BALB/c mice which were exposed to T-2 toxin (0.5 mg/kg bw) for 4 weeks. T-2 toxin activated the IRE1/XBP1 pathway to disrupt intestinal mucin, which lead to the imbalance of gut microbiota and an increased risk of host infection by E. coli O157:H7. T-2 toxin exposure also increased the expressions of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in mice, which might respond to IRE1α activation. Importantly, IRE1α activation was a therapeutic target for intestinal inflammation caused by T-2 toxin. This study provided a new perspective to understand the intestinal toxicity of T-2 toxin.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Ting Zheng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
59
|
Yin J, Sheng B, Yang K, Sun L, Xiao W, Yang H. The protective roles of NLRP6 in intestinal epithelial cells. Cell Prolif 2018; 52:e12555. [PMID: 30515917 PMCID: PMC6496424 DOI: 10.1111/cpr.12555] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
The evolution of chronic inflammatory diseases is thought to be due to a combination of host genetic variations and environmental factors that include the alteration of intestinal flora, termed "dysbiosis." The intestinal mucosal barrier includes a chemical barrier and physical barrier that have important roles in protecting the intestine against inflammatory injury. The chemical barrier includes antimicrobial peptides (AMPs), and the physical barrier includes a mucous layer, a monolayer of intestinal epithelial cells and cell junctions. The intestinal mucosal barrier is not a static barrier, but rather, it strongly interacts with the gut microbiome and cells of the immune system. Correct expression of AMPs, together with mucus and balanced epithelial cell proliferation, prevents the occurrence of disease. NLRP6, a member of the nucleotide-binding domain, leucine-rich repeat-containing (NLR) innate immune receptor family, participates in the progression of intestinal inflammation and enteric pathogen infections. It has become apparent in recent years that NLRP6 is important in disease pathogenesis, as it responds to internal ligands that lead to the release of AMPs and mucus, thus regulating the regeneration of intestinal epithelial cells. This review summarizes the activation of NLRP6 and its protective role in the intestinal epithelial cell.
Collapse
Affiliation(s)
- Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Baifa Sheng
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Kunqiu Yang
- Department of General Surgery, Navy General Hospital, Beijing, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
60
|
Leon-Coria A, Kumar M, Moreau F, Chadee K. Defining cooperative roles for colonic microbiota and Muc2 mucin in mediating innate host defense against Entamoeba histolytica. PLoS Pathog 2018; 14:e1007466. [PMID: 30500860 PMCID: PMC6268003 DOI: 10.1371/journal.ppat.1007466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
Amebiasis is caused by the protozoan parasite Entamoeba histolytica (Eh), a potentially fatal disease occurring mainly in developing countries. How Eh interacts with innate host factors in the gut is poorly understood. Eh resides and feed in/on the outer colonic mucus layer and thus share an ecological niche with indigenous microbiota. As gut microbiota regulates innate immune responses, in this study we characterized the cooperative roles that microbiota and the mucus layer play in Eh-induced pro-inflammatory responses in the colon. To study this, we used antibiotics treated and non-treated specific pathogen free Muc2-/- and Muc2+/+ littermates and germ-free mice inoculated with Eh in colonic loops as a short infection model. In antibiotic treated Muc2-/- and Muc2+/+ littermates, Eh elicited robust mucus and water secretions, enhanced pro-inflammatory cytokines and chemokine expression with elevated MPO activity and higher pathology scores as compared to the modest response observed in non-antibiotic treated littermates. Host responses were microbiota specific as mucus secretion and pro-inflammatory responses were attenuated following homologous fecal microbial transplants in antibiotic-treated Muc2+/+ quantified by secretion of 3H-glucosamine newly synthesized mucin, Muc2 mucin immunostaining and immunohistochemistry. Eh-elicited pro-inflammatory responses and suppressed goblet cell transcription factor Math1 as revealed by in vivo imaging of Eh-colonic loops in Math1GFP mice, and in vitro using Eh-stimulated LS174T human colonic goblet cells. Eh in colonic loops increased bacterial translocation of bioluminescent E. coli and indigenous bacteria quantified by FISH and quantitative PCR. In germ-free animals, Eh-induced mucus/water secretory responses, but acute pro-inflammatory responses and MPO activity were severely impaired, allowing the parasite to bind to and disrupt mucosal epithelial cells. These findings have identified key roles for intestinal microbiota and mucus in regulating innate host defenses against Eh, and implicate dysbiosis as a risk factor for amebiasis that leads to exacerbated immune responses to cause life-threatening disease.
Collapse
Affiliation(s)
- Aralia Leon-Coria
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
61
|
Interplay between Endoplasmic Reticular Stress and Survivin in Colonic Epithelial Cells. Cells 2018; 7:cells7100171. [PMID: 30326660 PMCID: PMC6210275 DOI: 10.3390/cells7100171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sustained endoplasmic reticular stress (ERS) is implicated in aggressive metastasis of cancer cells and increased tumor cell proliferation. Cancer cells activate the unfolded protein response (UPR), which aids in cellular survival and adaptation to harsh conditions. Inhibition of apoptosis, in contrast, is a mechanism adopted by cancer cells with the help of the inhibitor of an apoptosis (IAP) class of proteins such as Survivin to evade cell death and gain a proliferative advantage. In this study, we aimed to reveal the interrelation between ERS and Survivin. We initially verified the expression of Survivin in Winnie (a mouse model of chronic ERS) colon tissues by using immunohistochemistry (IHC) and immunofluorescence (IF) in comparison with wild type Blk6 mice. Additionally, we isolated the goblet cells and determined the expression of Survivin by IF and protein validation. Tunicamycin was utilized at a concentration of 10 µg/mL to induce ERS in the LS174T cell line and the gene expression of the ERS markers was measured. This was followed by determination of inflammatory cytokines. Inhibition of ERS was carried out by 4Phenyl Butyric acid (4PBA) at a concentration of 10 mM to assess whether there was a reciprocation effect. The downstream cell death assays including caspase 3/7, Annexin V, and poly(ADP-ribose) polymerase (PARP) cleavage were evaluated in the presence of ERS and absence of ERS, which was followed by a proliferative assay (EdU click) with and without ERS. Correspondingly, we inhibited Survivin by YM155 at a concentration of 100 nM and observed the succeeding ERS markers and inflammatory markers. We also verified the caspase 3/7 assay. Our results demonstrate that ERS inhibition not only significantly reduced the UPR genes (Grp78, ATF6, PERK and XBP1) along with Survivin but also downregulated the inflammatory markers such as IL8, IL4, and IL6, which suggests a positive correlation between ERS and the inhibition of apoptosis. Furthermore, we provided evidence that ERS inhibition promoted apoptosis in LS174T cells and shortened the proliferation rate. Moreover, Survivin inhibition by YM155 led to a comparable effect as that of ERS inhibition, which includes attenuation of ERS genes and inflammatory markers as well as the promotion of programmed cell death via the caspase 3/7 pathway. Together, our results propose the interrelation between ERS and inhibition of apoptosis assigning a molecular and therapeutic target for cancer treatment.
Collapse
|
62
|
High MUC2 Mucin Biosynthesis in Goblet Cells Impedes Restitution and Wound Healing by Elevating Endoplasmic Reticulum Stress and Altered Production of Growth Factors. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2025-2041. [PMID: 29935164 DOI: 10.1016/j.ajpath.2018.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Intestinal epithelial cell wound healing involves cell migration, proliferation, and differentiation. Although numerous studies have analyzed the migration of absorptive epithelial cells during wound healing, it remains unclear how goblet cells restitute and how MUC2 mucin production affects this process. In this study, we examined the role of high MUC2 production in goblet cell migration during wound healing and demonstrated that during high MUC2 output, goblet cells migrated slower because of impaired production of wound healing factors and endoplasmic reticulum (ER) stress. Two goblet cell lines, HT29-H and HT29-L, that produced high and low MUC2 mucin, respectively, were used. HT29-L healed wounds faster than HT29-H cells by producing significantly higher amounts of fibroblast growth factor (FGF) 1, FGF2, vascular endothelial growth factor-C, and matrix metallopeptidase 1. Predictably, treatment of HT29-H cells with recombinant FGF2 significantly enhanced migration and wound healing. High MUC2 biosynthesis in HT29-H cells induced ER stress and delayed migration that was abrogated by inhibiting ER stress with tauroursodeoxycholic acid and IL-22. FGF2- and IL-22-induced wound repair was dependent on STAT1 and STAT3 signaling. During wound healing after dextran sulfate sodium-induced colitis, restitution of Math1M1GFP+ goblet cells occurred earlier in the proximal colon, followed by the middle and then distal colon, where ulceration was severe. We conclude that high MUC2 output during colitis impairs goblet cell migration and wound healing by reducing production of growth factors critical in wound repair.
Collapse
|