51
|
Steinmann E, Pietschmann T. Hepatitis C virus p7-a viroporin crucial for virus assembly and an emerging target for antiviral therapy. Viruses 2010; 2:2078-2095. [PMID: 21994720 PMCID: PMC3185753 DOI: 10.3390/v2092078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 12/17/2022] Open
Abstract
The hepatitis C virus (HCV), a hepatotropic plus-strand RNA virus of the family Flaviviridae, encodes a set of 10 viral proteins. These viral factors act in concert with host proteins to mediate virus entry, and to coordinate RNA replication and virus production. Recent evidence has highlighted the complexity of HCV assembly, which not only involves viral structural proteins but also relies on host factors important for lipoprotein synthesis, and a number of viral assembly co-factors. The latter include the integral membrane protein p7, which oligomerizes and forms cation-selective pores. Based on these properties, p7 was included into the family of viroporins comprising viral proteins from multiple virus families which share the ability to manipulate membrane permeability for ions and to facilitate virus production. Although the precise mechanism as to how p7 and its ion channel function contributes to virus production is still elusive, recent structural and functional studies have revealed a number of intriguing new facets that should guide future efforts to dissect the role and function of p7 in the viral replication cycle. Moreover, a number of small molecules that inhibit production of HCV particles, presumably via interference with p7 function, have been reported. These compounds should not only be instrumental in increasing our understanding of p7 function, but may, in the future, merit further clinical development to ultimately optimize HCV-specific antiviral treatments.
Collapse
Affiliation(s)
| | - Thomas Pietschmann
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-511-220027-130; Fax: +49-511-220027-139
| |
Collapse
|
52
|
Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, Lemon SM, Weinman SA. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog 2010; 6:e1001087. [PMID: 20824094 PMCID: PMC2932723 DOI: 10.1371/journal.ppat.1001087] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/04/2010] [Indexed: 01/27/2023] Open
Abstract
The hepatitis C virus (HCV) p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H(+)) conductance in vesicles and was able to rapidly equilibrate H(+) gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5) vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H(+) channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H(+) permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection, possibly through protecting nascent virus particles during an as yet uncharacterized maturation process.
Collapse
Affiliation(s)
- Ann L. Wozniak
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Neuroscience and Cell Biology, Institute for Human Infections and Immunity, University of Texas-Medical Branch, Galveston, Texas, United States of America
| | - Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Molecular Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - David Rowlands
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - MinKyung Yi
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas-Medical Branch, Galveston, Texas, United States of America
| | - Stanley M. Lemon
- Center for Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
53
|
Liang X, Li ZY. Ion channels as antivirus targets. Virol Sin 2010; 25:267-80. [PMID: 20960300 DOI: 10.1007/s12250-010-3136-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022] Open
Abstract
Ion channels are membrane proteins that are found in a number of viruses and which are of crucial physiological importance in the viral life cycle. They have one common feature in that their action mode involves a change of electrochemical or proton gradient across the bilayer lipid membrane which modulates viral or cellular activity. We will discuss a group of viral channel proteins that belong to the viroproin family, and which participate in a number of viral functions including promoting the release of viral particles from cells. Blocking these channel-forming proteins may be "lethal", which can be a suitable and potential therapeutic strategy. In this review we discuss seven ion channels of viruses which can lead serious infections in human beings: M2 of influenza A, NB and BM2 of influenza B, CM2 of influenza C, Vpu of HIV-1, p7 of HCV and 2B of picornaviruses.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | |
Collapse
|
54
|
Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP, Ebel C, Sapay N, Renisio JG, Böckmann A, Steinmann E, Pietschmann T, Dubuisson J, Chipot C, Penin F. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 2010; 285:31446-61. [PMID: 20667830 DOI: 10.1074/jbc.m110.122895] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly α-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by (1)H and (13)C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal α-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism.
Collapse
Affiliation(s)
- Roland Montserret
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS, Université de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Carter SD, Dent KC, Atkins E, Foster TL, Verow M, Gorny P, Harris M, Hiscox JA, Ranson NA, Griffin S, Barr JN. Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Lett 2010; 584:2786-90. [PMID: 20471980 PMCID: PMC2896471 DOI: 10.1016/j.febslet.2010.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 12/02/2022]
Abstract
Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin. For the first time, we directly observed functional SH protein using electron microscopy, which revealed SH forms multimeric ring-like objects with a prominent central stained region. Based on current and existing functional data, we propose this region represents the channel that mediates membrane permeability. Structured summary MINT-7890792, MINT-7890805: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by chromatography technology (MI:0091) MINT-7890784, MINT-7890776: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by electron microscopy (MI:0040)
Collapse
Affiliation(s)
- Stephen D Carter
- Institute for Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Wang K, Xie S, Sun B. Viral proteins function as ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:510-5. [PMID: 20478263 PMCID: PMC7094589 DOI: 10.1016/j.bbamem.2010.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/30/2010] [Accepted: 05/06/2010] [Indexed: 11/26/2022]
Abstract
Viral ion channels are short membrane proteins with 50–120 amino acids and play an important role either in regulating virus replication, such as virus entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. This review summarizes the recent advances in viral encoded ion channel proteins (or viroporins), including PBCV-1 KcV, influenza M2, HIV-1 Vpu, HCV p7, picornavirus 2B, and coronavirus E and 3a. We focus on their function and mechanisms, and also discuss viral ion channel protein serving as a potential drug target.
Collapse
Affiliation(s)
- Kai Wang
- Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
| | | | | |
Collapse
|
57
|
Jones DM, McLauchlan J. Hepatitis C virus: assembly and release of virus particles. J Biol Chem 2010; 285:22733-9. [PMID: 20457608 DOI: 10.1074/jbc.r110.133017] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus is a blood-borne virus that typically establishes a chronic infection in the liver, which often results in cirrhosis and hepatocellular carcinoma. Progress in understanding the complete virus life cycle has been greatly enhanced by the recent availability of a tissue culture system that produces infectious virus progeny. Thus, it is now possible to gain insight into the roles played by viral components in assembly and egress and the cellular pathways that contribute to virion formation. This minireview describes the key determining viral and host factors that are needed to produce infectious virus.
Collapse
Affiliation(s)
- Daniel M Jones
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | |
Collapse
|
58
|
Luscombe CA, Huang Z, Murray MG, Miller M, Wilkinson J, Ewart GD. A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-alpha-2b and nucleoside analogues. Antiviral Res 2010; 86:144-53. [PMID: 20156486 DOI: 10.1016/j.antiviral.2010.02.312] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/21/2009] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
Abstract
The novel small molecule, BIT225 (N-[5-(1-methyl-1H-pyrazol-4-yl)-napthalene-2-carbonyl]-guanidine: CAS No. 917909-71-8), was initially identified using a screening strategy designed to detect inhibitors of Hepatitis C virus (HCV) p7 ion channel activity. Here we report that BIT225 has potent stand-alone antiviral activity against the HCV model pestivirus bovine viral diarrhea virus (BVDV) with an IC(50) of 314nM. Combinations of BIT225 with recombinant interferon alpha-2b (rIFNalpha-2b) show synergistic antiviral action against BVDV and the synergy is further enhanced by addition of ribavirin. Synergy was also observed between BIT225 and two nucleoside analogues known to inhibit the HCV RNA-dependent RNA polymerase. BIT225 has successfully completed a phase Ia dose escalating, single dose safety trial in healthy volunteers and a phase Ib/IIa trial to evaluate the safety and pharmacokinetics of repeated dosing for selected doses of BIT225 in HCV-infected persons. A modest, but statistically significant drop in patient viral load was detected over the 7 days of dosing (ref. www.biotron.com.au). Given the critical role of the p7 protein in the HCV life cycle and pathogenicity, our data indicate that molecules like BIT225, representing a new class of antiviral compounds, may be developable for therapeutic use against HCV infection, either as monotherapy, or in combination with other HCV drugs.
Collapse
|
59
|
Cook GA, Opella SJ. NMR studies of p7 protein from hepatitis C virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1097-104. [PMID: 19727701 PMCID: PMC2878448 DOI: 10.1007/s00249-009-0533-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/22/2009] [Accepted: 08/04/2009] [Indexed: 01/10/2023]
Abstract
The p7 protein of hepatitis C virus (HCV) plays an important role in the viral lifecycle. Like other members of the viroporin family of small membrane proteins, the amino acid sequence of p7 is largely conserved over the entire range of genotypes, and it forms ion channels that can be blocked by a number of established channel-blocking compounds. Its characteristics as a membrane protein make it difficult to study by most structural techniques, since it requires the presence of lipids to fold and function properly. Purified p7 can be incorporated into phospholipid bilayers and micelles. Initial solid-state nuclear magnetic resonance (NMR) studies of p7 in 14-O-PC/6-O-PC bicelles indicate that the protein contains helical segments that are tilted approximately 10° and 25° relative to the bilayer normal. A truncated construct corresponding to the second transmembrane domain of p7 is shown to have properties similar to those of the full-length protein, and was used to determine that the helix segment tilted at 10° is in the C-terminal portion of the protein. The addition of the channel blocker amantadine to the full-length protein resulted in selective chemical shift changes, demonstrating that NMR has a potential role in the development of drugs targeted to p7.
Collapse
Affiliation(s)
- Gabriel A Cook
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
60
|
StGelais C, Foster TL, Verow M, Atkins E, Fishwick CWG, Rowlands D, Harris M, Griffin S. Determinants of hepatitis C virus p7 ion channel function and drug sensitivity identified in vitro. J Virol 2009; 83:7970-81. [PMID: 19493992 PMCID: PMC2715780 DOI: 10.1128/jvi.00521-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/28/2009] [Indexed: 01/11/2023] Open
Abstract
Hepatitis C virus (HCV) chronically infects 170 million individuals, causing severe liver disease. Although antiviral chemotherapy exists, the current regimen is ineffective in 50% of cases due to high levels of innate virus resistance. New, virus-specific therapies are forthcoming although their development has been slow and they are few in number, driving the search for new drug targets. The HCV p7 protein forms an ion channel in vitro and is critical for the secretion of infectious virus. p7 displays sensitivity to several classes of compounds, making it an attractive drug target. We recently demonstrated that p7 compound sensitivity varies according to viral genotype, yet little is known of the residues within p7 responsible for channel activity or drug interactions. Here, we have employed a liposome-based assay for p7 channel function to investigate the genetic basis for compound sensitivity. We demonstrate using chimeric p7 proteins that neither the two trans-membrane helices nor the p7 basic loop individually determines compound sensitivity. Using point mutation analysis, we identify amino acids important for channel function and demonstrate that null mutants exert a dominant negative effect over wild-type protein. We show that, of the three hydrophilic regions within the amino-terminal trans-membrane helix, only the conserved histidine at position 17 is important for genotype 1b p7 channel activity. Mutations predicted to play a structural role affect both channel function and oligomerization kinetics. Lastly, we identify a region at the p7 carboxy terminus which may act as a specific sensitivity determinant for the drug amantadine.
Collapse
Affiliation(s)
- Corine StGelais
- Institute of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Leeds, West Yorkshire, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
61
|
The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc Natl Acad Sci U S A 2009; 106:12712-6. [PMID: 19590017 PMCID: PMC2722341 DOI: 10.1073/pnas.0905966106] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infection with the hepatitis C virus (HCV) has a huge impact on global health putting more than 170 million people at risk of developing severe liver disease. The HCV encoded p7 ion channel is essential for the production of infectious viruses. Despite a growing body of functional data, little is known about the 3-dimensional (3D) structure of the channel. Here, we present the 3D structure of a full-length viroporin, the detergent-solubilized hexameric 42 kDa form of the HCV p7 ion channel, as determined by single-particle electron microscopy using the random conical tilting approach. The reconstruction of such a small protein complex was made possible by a combination of high-contrast staining, the symmetry, and the distinct structural features of the channel. The orientation of the p7 monomers within the density was established using immunolabeling with N and C termini specific F(ab) fragments. The density map at a resolution of approximately 16 A reveals a flower-shaped protein architecture with protruding petals oriented toward the ER lumen. This broadest part of the channel presents a comparatively large surface area providing potential interaction sites for cellular and virally encoded ER resident proteins.
Collapse
|
62
|
Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2009; 6:699-708. [PMID: 18587411 DOI: 10.1038/nrmicro1928] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viruses of the Flaviviridae family, including hepatitis C, dengue and bovine viral diarrhoea, are responsible for considerable morbidity and mortality worldwide. Recent advances in our understanding of virion assembly have uncovered commonalities among distantly related members of this family. We discuss the emerging hypothesis that physical virion components are not alone in forming the infectious particle, but that non-structural proteins are intimately involved in orchestrating morphogenesis. Pinpointing the roles of Flaviviridae proteins in virion production could reveal new avenues for antiviral therapeutics.
Collapse
|
63
|
Meshkat Z, Audsley M, Beyer C, Gowans EJ, Haqshenas G. Reverse genetic analysis of a putative, influenza virus M2 HXXXW-like motif in the p7 protein of hepatitis C virus. J Viral Hepat 2009; 16:187-94. [PMID: 19175872 DOI: 10.1111/j.1365-2893.2008.01064.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The p7 protein of hepatitis C virus (HCV) has been classified into a family of viral proteins, designated viroporins that form ion channels. The M2 protein of influenza virus is the prototype viroporin and encodes a HXXXW motif that constitutes the main functional element of the M2 channels. Alignment of different p7 proteins revealed that a HXXXW sequence (positions 17-21) is also highly conserved among some HCV genotypes. To study the putative HXXXW motif in p7, five mutants of the Japanese fulminant hepatitis 1 strain of HCV that encoded H17A, H17G, H17E, Y21A and Y21W were generated. After transfection of human hepatoma cells with the mutant transcripts, unlike H17A and H17G that produced up to 1 log lower viral titres than wild type, H17E and Y21W showed slightly higher infectivity. In conclusion, this study demonstrated that the HXXXW sequence exists in the p7 proteins of some HCV genotypes and that H17 plays an important role in virus replication.
Collapse
Affiliation(s)
- Z Meshkat
- The Macfarlane Burnet Institute, Melbourne, Vic, Australia
| | | | | | | | | |
Collapse
|
64
|
Abstract
Channel-forming proteins are found in a number of viral genomes. In some cases, their role in the viral life cycle is well understood, in some cases it needs still to be elucidated. A common theme is that their mode of action involves a change of electrochemical or proton gradient across the lipid membrane which modulates the viral or cellular activity. Blocking these proteins can be a suitable therapeutic strategy as for some viruses this may be "lethal." Besides the many biological relevant questions still to be answered, there are also many open questions concerning the biophysical side as well as structural information and the mechanism of function on a molecular level. The immanent biophysical issues are addressed and the work in the field is summarized.
Collapse
|
65
|
Griffin S, StGelais C, Owsianka AM, Patel AH, Rowlands D, Harris M. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 2008; 48:1779-90. [PMID: 18828153 PMCID: PMC7615706 DOI: 10.1002/hep.22555] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED The hepatitis C virus (HCV) p7 protein plays a critical role during particle formation in cell culture and is required for virus replication in chimpanzees. The discovery that it displayed cation channel activity in vitro led to its classification within the "viroporin" family of virus-coded ion channel proteins, which includes the influenza A virus (IAV) M2 protein. Like M2, p7 was proposed as a potential target for much needed new HCV therapies, and this was supported by our finding that the M2 inhibitor, amantadine, blocked its activity in vitro. Since then, further compounds have been shown to inhibit p7 function but the relationship between inhibitory effects in vitro and efficacy against infectious virus is controversial. Here, we have sought to validate multiple p7 inhibitor compounds using a parallel approach combining the HCV infectious culture system and a rapid throughput in vitro assay for p7 function. We identify a genotype-dependent and subtype-dependent sensitivity of HCV to p7 inhibitors, in which results in cell culture largely mirror the sensitivity of recombinant protein in vitro; thus building separate sensitivity profiles for different p7 sequences. Inhibition of virus entry also occurred, suggesting that p7 may be a virion component. Second site effects on both cellular and viral processes were identified for several compounds in addition to their efficacy against p7 in vitro. Nevertheless, for some compounds antiviral effects were specific to a block of ion channel function. CONCLUSION These data validate p7 inhibitors as prototype therapies for chronic HCV disease. (HEPATOLOGY 2008;48:1779-1790.).
Collapse
Affiliation(s)
- Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Corine StGelais
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ania M. Owsianka
- Medical Research Council Virology Unit, Church Street, Glasgow, UK
| | - Arvind H. Patel
- Medical Research Council Virology Unit, Church Street, Glasgow, UK
| | - David Rowlands
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
66
|
Griffin S, Trowbridge R, Thommes P, Parry N, Rowlands D, Harris M, Bright H. Chimeric GB virus B genomes containing hepatitis C virus p7 are infectious in vivo. J Hepatol 2008; 49:908-15. [PMID: 18845353 PMCID: PMC3098382 DOI: 10.1016/j.jhep.2008.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/20/2008] [Accepted: 07/07/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS The development of new therapies for hepatitis C virus (HCV) infection has been hampered by the lack of a small animal model. GB virus B (GBV-B), which infects new world monkeys, has been proposed as a surrogate system for HCV replication. Despite their short genetic distance, however, difficulties exist when extrapolating results from GBV-B to the HCV system. One way of addressing this is the creation of chimeric GBV-B containing HCV elements. METHODS Construction and analysis of GBV-B chimeras in which the p13 ion channel was replaced by its HCV counterpart, p7. RESULTS Replacing all, or part of, the GBV-B p13 protein with HCV p7 resulted in viable chimeras which replicated at wild-type levels in marmosets following intra-hepatic RNA injection. Serum from one animal injected with chimeric RNA was infectious in three naïve recipients, indicating that chimeras formed fully infectious virions. Amantadine, which blocks the ion channel activity of both HCV and GBV-B proteins in vitro, also inhibited GBV-B replication in primary hepatocytes. CONCLUSIONS These viruses highlight the potential for chimeric GBV-B in the development of HCV-specific therapies and will provide a means of developing HCV p7 as a therapeutic target.
Collapse
Affiliation(s)
- Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
67
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
68
|
Davis MP, Bottley G, Beales LP, Killington RA, Rowlands DJ, Tuthill TJ. Recombinant VP4 of human rhinovirus induces permeability in model membranes. J Virol 2008; 82:4169-74. [PMID: 18256154 PMCID: PMC2293005 DOI: 10.1128/jvi.01070-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 01/21/2008] [Indexed: 11/20/2022] Open
Abstract
In common with all nonenveloped viruses, the mechanism of picornavirus membrane penetration during cell entry is poorly understood. The small, myristylated capsid protein VP4 has been implicated in this process. Here we show that recombinant VP4 of human rhinovirus 16 has the ability to associate with and induce membrane permeability in otherwise intact liposomes. This provides further evidence that VP4 plays a key role in picornavirus cell entry.
Collapse
Affiliation(s)
- Matthew P Davis
- Institute for Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | |
Collapse
|