51
|
Butenas ALE, Rollins KS, Williams AC, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Thromboxane A 2 receptors contribute to the exaggerated exercise pressor reflex in male rats with heart failure. Physiol Rep 2021; 9:e15052. [PMID: 34558221 PMCID: PMC8461035 DOI: 10.14814/phy2.15052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fiber muscle afferents and produce reflex increases in sympathetic nerve activity and blood pressure during exercise (i.e., the exercise pressor reflex; EPR). The EPR is exaggerated in patients and animals with heart failure with reduced ejection fraction (HF-rEF) and its activation contributes to reduced exercise capacity within this patient population. Accumulating evidence suggests that the exaggerated EPR in HF-rEF is partially attributable to a sensitization of mechanically activated channels produced by thromboxane A2 receptors (TxA2 -Rs) on those sensory endings; however, this has not been investigated. Accordingly, the purpose of this investigation was to determine the role played by TxA2 -Rs on the sensory endings of thin fiber muscle afferents in the exaggerated EPR in rats with HF-rEF induced by coronary artery ligation. In decerebrate, unanesthetized rats, we found that injection of the TxA2 -R antagonist daltroban (80 μg) into the arterial supply of the hindlimb reduced the pressor response to 30 s of electrically induced 1 Hz dynamic hindlimb muscle contraction in HF-rEF (n = 8, peak ∆MAP pre: 22 ± 3; post: 14 ± 2 mmHg; p = 0.01) but not sham (n = 10, peak ∆MAP pre: 13 ± 3; post: 11 ± 2 mmHg; p = 0.68) rats. In a separate group of HF-rEF rats (n = 4), we found that the systemic (intravenous) injection of daltroban had no effect on the EPR (peak ΔMAP pre: 26 ± 7; post: 25 ± 7 mmHg; p = 0.50). Our data suggest that TxA2 -Rs on thin fiber muscle afferents contribute to the exaggerated EPR evoked in response to dynamic muscle contraction in HF-rEF.
Collapse
Affiliation(s)
| | | | - Auni C. Williams
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | | | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - K. Sue Hageman
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - Timothy I. Musch
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - Steven W. Copp
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
52
|
Hibino H, Gorniak SL. Dependence and reduced motor function in heart failure: future directions for well-being. Heart Fail Rev 2021; 27:1043-1051. [PMID: 34302579 DOI: 10.1007/s10741-021-10145-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
While patients with heart failure experience a wide range of symptoms, evidence is mounting that patients with heart failure suffer from reduced functional independence. Given that the number of patients with heart failure is rising and considering the adverse outcomes of reduced functional independence, understanding the underlying mechanisms of reduced functionality in patients with heart failure is of increasing importance. Yet, little information exists on how heart failure negatively affects functional independence, including motor function. This article summarizes reports of reduced independence and highlights its significant adverse outcomes in the patients with heart failure. Finally, this article discusses potential causes of reduced independence based on existing reports of impaired central and peripheral nervous systems in the patients with heart failure. Overall, the article provides a solid foundation for future studies investigating motor impairments in patients with heart failure. Such studies may lead to advances in treatment and prevention of reduced independence associated with heart failure, which ultimately contribute to the well-being of patients with heart failure.
Collapse
Affiliation(s)
- Hidetaka Hibino
- Department of Health and Human Performance, University of Houston, 3855 Holman St., Garrison 104, Houston, TX, 77204-6015, USA
| | - Stacey L Gorniak
- Department of Health and Human Performance, University of Houston, 3855 Holman St., Garrison 104, Houston, TX, 77204-6015, USA.
| |
Collapse
|
53
|
Gama G, Farinatti P, Rangel MVDS, Mira PADC, Laterza MC, Crisafulli A, Borges JP. Muscle metaboreflex adaptations to exercise training in health and disease. Eur J Appl Physiol 2021; 121:2943-2955. [PMID: 34189604 DOI: 10.1007/s00421-021-04756-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Abnormalities in the muscle metaboreflex concur to exercise intolerance and greater cardiovascular risk. Exercise training benefits neurocardiovascular function at rest and during exercise, but its role in favoring muscle metaboreflex in health and disease remains controversial. While some authors demonstrated that exercise training enhanced the sensitization of muscle metabolically afferents and improved neurocardiovascular responses to muscle metaboreflex activation, others reported unaltered responses. This narrative review aimed to: (a) highlight the current evidence on the effects of exercise training upon cardiovascular and autonomic responses to muscle metaboreflex activation; (b) analyze the role of training components and indicate potential mechanisms of metaboreflex adaptations; and (c) address key methodological features for future research. Though limited, accumulated evidence suggests that muscle metaboreflex adaptations depend on the individual clinical status, exercise modality, and training duration. In healthy populations, most trials negated the hypothesis of metaboreflex improvement due to chronic exercise, irrespective of the training duration. Favorable changes in patients with impaired metaboreflex, particularly chronic heart failure, mostly resulted from long-term interventions (> 16 weeks) including aerobic exercise of moderate to high intensity, performed in isolation or within multimodal training. Potential mechanisms of metaboreflex improvements include enhanced sensitivity of channels and receptors, greater antioxidant capacity, lower metabolite accumulation, increased functional sympatholysis, and muscle perfusion. Future research should investigate: (1) the dose-response relationship of training components within different exercise modalities to elicit improvements in individuals showing intact or impaired muscle metaboreflex; and (2) potential and specific underlying mechanisms of metaboreflex improvements in individuals with different medical conditions.
Collapse
Affiliation(s)
- Gabriel Gama
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Marcus Vinicius Dos Santos Rangel
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Pedro Augusto de Carvalho Mira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mateus Camaroti Laterza
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Antonio Crisafulli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil.
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
54
|
Attenuation of autonomic dysreflexia during functional electrical stimulation cycling by neuromuscular electrical stimulation training: case reports. Spinal Cord Ser Cases 2021; 7:44. [PMID: 34045436 DOI: 10.1038/s41394-021-00405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/08/2022] Open
|
55
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
56
|
Grotle AK, Huo Y, Harrison ML, Ybarbo KM, Stone AJ. GsMTx-4 normalizes the exercise pressor reflex evoked by intermittent muscle contraction in early stage type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2021; 320:H1738-H1748. [PMID: 33635166 DOI: 10.1152/ajpheart.00794.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests the exercise pressor reflex is exaggerated in early stage type 1 diabetes mellitus (T1DM). Piezo channels may play a role in this exaggeration, as blocking these channels attenuates the exaggerated pressor response to tendon stretch in T1DM rats. However, tendon stretch constitutes a different mechanical and physiological stimuli than that occurring during muscle contraction. Therefore, the purpose of this study was to determine the contribution of Piezo channels in evoking the pressor reflex during an intermittent muscle contraction in T1DM. In unanesthetized decerebrate rats, we compared the pressor and cardioaccelerator responses to intermittent muscle contraction before and after locally injecting grammostola spatulata mechanotoxin 4 (GsMTx-4, 0.25 µM) into the hindlimb vasculature. Although GsMTx-4 has a high potency for Piezo channels, it has also been suggested to block transient receptor potential cation (TRPC) channels. We, therefore, performed additional experiments to control for this possibility by also injecting SKF 96365 (10 µM), a TRPC channel blocker. We found that local injection of GsMTx-4, but not SKF 96365, attenuated the exaggerated peak pressor (ΔMAP before: 33 ± 3 mmHg, after: 22 ± 3 mmHg, P = 0.007) and pressor index (ΔBPi before: 668 ± 91 mmHg·s, after: 418 ± 81 mmHg·s, P = 0.021) response in streptozotocin (STZ) rats (n = 8). GsMTx-4 attenuated the exaggerated early onset pressor and the pressor response over time, which eliminated peak differences as well as those over time between T1DM and healthy controls. These data suggest that Piezo channels are an effective target to normalize the exercise pressor reflex in T1DM.NEW & NOTEWORTHY This is the first study to demonstrate that blocking Piezo channels is effective in ameliorating the exaggerated exercise pressor reflex evoked by intermittent muscle contraction, commonly occurring during physical activity, in T1DM. Thus, these findings suggest Piezo channels may serve as an effective therapeutic target to reduce the acute and prolonged cardiovascular strain that may occur during dynamic exercise in T1DM.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System/drug effects
- Autonomic Nervous System/metabolism
- Autonomic Nervous System/physiopathology
- Blood Pressure/drug effects
- Cardiovascular System/innervation
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Female
- Heart Rate/drug effects
- Intercellular Signaling Peptides and Proteins/pharmacology
- Ion Channels/antagonists & inhibitors
- Ion Channels/metabolism
- Male
- Membrane Transport Modulators/pharmacology
- Muscle Contraction
- Muscle, Skeletal/innervation
- Physical Conditioning, Animal
- Rats, Sprague-Dawley
- Reflex, Abnormal/drug effects
- Spider Venoms/pharmacology
- Time Factors
- Rats
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
57
|
Abstract
Gestational Diabetes Mellitus (GDM) is defined as any degree of glucose intolerance with onset or first recognition during pregnancy. Regular exercise is important for a healthy pregnancy and can lower the risk of developing GDM. For women with GDM, exercise is safe and can affect the pregnancy outcomes beneficially. A single exercise bout increases skeletal muscle glucose uptake, minimizing hyperglycemia. Regular exercise training promotes mitochondrial biogenesis, improves oxidative capacity, enhances insulin sensitivity and vascular function, and reduces systemic inflammation. Exercise may also aid in lowering the insulin dose in insulin-treated pregnant women. Despite these benefits, women with GDM are usually inactive or have poor participation in exercise training. Attractive individualized exercise programs that will increase adherence and result in optimal maternal and offspring benefits are needed. However, as women with GDM have a unique physiology, more attention is required during exercise prescription. This review (i) summarizes the cardiovascular and metabolic adaptations due to pregnancy and outlines the mechanisms through which exercise can improve glycemic control and overall health in insulin resistance states, (ii) presents the pathophysiological alterations induced by GDM that affect exercise responses, and (iii) highlights cardinal points of an exercise program for women with GDM.
Collapse
|
58
|
Unraveling the Role of Respiratory Muscle Metaboloreceptors under Inspiratory Training in Patients with Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041697. [PMID: 33578776 PMCID: PMC7916511 DOI: 10.3390/ijerph18041697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Exercise intolerance may be considered a hallmark in patients who suffer from heart failure (HF) syndrome. Currently, there is enough scientific evidence regarding functional and structural deterioration of skeletal musculature in these patients. It is worth noting that muscle weakness appears first in the respiratory muscles and then in the musculature of the limbs, which may be considered one of the main causes of exercise intolerance. Functional deterioration and associated atrophy of these respiratory muscles are related to an increased muscle metaboreflex leading to sympathetic–adrenal system hyperactivity and increased pulmonary ventilation. This issue contributes to increased dyspnea and/or fatigue and decreased aerobic function. Consequently, respiratory muscle weakness produces exercise limitations in these patients. In the present review, the key role that respiratory muscle metaboloreceptors play in exercise intolerance is accurately addressed in patients who suffer from HF. In conclusion, currently available scientific evidence seems to affirm that excessive metaboreflex activity of respiratory musculature under HF is the main cause of exercise intolerance and sympathetic–adrenal system hyperactivity. Inspiratory muscle training seems to be a useful personalized medicine intervention to reduce respiratory muscle metaboreflex in order to increase patients’ exercise tolerance under HF condition.
Collapse
|
59
|
Stens NA, Hisdal J, Bakke EF, Kaur N, Sharma A, Stranden E, Thijssen DHJ, Høiseth LØ. Factors mediating the pressor response to isometric muscle contraction: An experimental study in healthy volunteers during lower body negative pressure. PLoS One 2020; 15:e0243627. [PMID: 33296410 PMCID: PMC7725372 DOI: 10.1371/journal.pone.0243627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Whilst both cardiac output (CO) and total peripheral resistance (TPR) determine mean arterial blood pressure (MAP), their relative importance in the pressor response to isometric exercise remains unclear. This study aimed to elucidate the relative importance of these two different factors by examining pressor responses during cardiopulmonary unloading leading to step-wise reductions in CO. Hemodynamics were investigated in 11 healthy individuals before, during and after two-minute isometric exercise during lower body negative pressure (LBNP; -20mmHg and -40mmHg). The blood pressure response to isometric exercise was similar during normal and reduced preload, despite a step-wise reduction in CO during LBNP (-20mmHg and -40mmHg). During -20mmHg LBNP, the decreased stroke volume, and consequently CO, was counteracted by an increased TPR, while heart rate (HR) was unaffected. HR was increased during -40 mmHg LBNP, although insufficient to maintain CO; the drop in CO was perfectly compensated by an increased TPR to maintain MAP. Likewise, transient application of LBNP (-20mmHg and -40mmHg) resulted in a short transient drop in MAP, caused by a decrease in CO, which was compensated by an increase in TPR. This study suggests that, in case of reductions of CO, changes in TPR are primarily responsible for maintaining the pressor response during isometric exercise. This highlights the relative importance of TPR compared to CO in mediating the pressor response during isometric exercise.
Collapse
Affiliation(s)
- Niels A. Stens
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Jonny Hisdal
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Espen F. Bakke
- Institute of Aviation Medicine, Norwegian Armed Forces Medical Service, Oslo, Norway
| | - Narinder Kaur
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
- Dermatology Center Telemark, Porsgrunn, Norway
| | - Archana Sharma
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Einar Stranden
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Dick H. J. Thijssen
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lars Øivind Høiseth
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|