51
|
Serum of Post-COVID-19 Syndrome Patients with or without ME/CFS Differentially Affects Endothelial Cell Function In Vitro. Cells 2022; 11:cells11152376. [PMID: 35954219 PMCID: PMC9367589 DOI: 10.3390/cells11152376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
A proportion of COVID-19 reconvalescent patients develop post-COVID-19 syndrome (PCS) including a subgroup fulfilling diagnostic criteria of Myalgic encephalomyelitis/Chronic Fatigue Syndrome (PCS/CFS). Recently, endothelial dysfunction (ED) has been demonstrated in these patients, but the mechanisms remain elusive. Therefore, we investigated the effects of patients’ sera on endothelia cells (ECs) in vitro. PCS (n = 17), PCS/CFS (n = 13), and healthy controls (HC, n = 14) were screened for serum anti-endothelial cell autoantibodies (AECAs) and dysregulated cytokines. Serum-treated ECs were analysed for the induction of activation markers and the release of small molecules by flow cytometry. Moreover, the angiogenic potential of sera was measured in a tube formation assay. While only marginal differences between patient groups were observed for serum cytokines, AECA binding to ECs was significantly increased in PCS/CFS patients. Surprisingly, PCS and PCS/CFS sera reduced surface levels of several EC activation markers. PCS sera enhanced the release of molecules associated with vascular remodelling and significantly promoted angiogenesis in vitro compared to the PCS/CFS and HC groups. Additionally, sera from both patient cohorts induced the release of molecules involved in inhibition of nitric oxide-mediated endothelial relaxation. Overall, PCS and PCS/CFS patients′ sera differed in their AECA content and their functional effects on ECs, i.e., secretion profiles and angiogenic potential. We hypothesise a pro-angiogenic effect of PCS sera as a compensatory mechanism to ED which is absent in PCS/CFS patients.
Collapse
|
52
|
Metabolomic Evidence for Peroxisomal Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2022; 23:ijms23147906. [PMID: 35887252 PMCID: PMC9320121 DOI: 10.3390/ijms23147906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.
Collapse
|
53
|
Zong C, Yang M, Guo X, Ji W. Chronic restraint stress promotes gastric epithelial malignant transformation by activating the Akt/p53 signaling pathway via ADRB2. Oncol Lett 2022; 24:300. [PMID: 35949623 PMCID: PMC9353258 DOI: 10.3892/ol.2022.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
The etiology of gastric cancer is associated with infectious, environmental and dietary factors, as well as genetic background. Additionally, emerging evidence has supported the vital role of chronic emotional stress on gastric carcinogenesis; however, the underlying mechanism remains unclear. The present study aimed to investigate the effects of chronic stress and a detrimental diet on gastric malignant epithelial transformation in rats. Therefore, 26 Wistar rats were randomly divided into the following four groups: i) Control; ii) detrimental diet (DD); iii) detrimental diet with chronic restraint (DR) and iv) detrimental diet with chronic restraint and propranolol treatment (DRP). ELISA was performed to detect the serum levels of epinephrine and norepinephrine. Epithelial cell apoptosis was analyzed using the TUNEL assay. The mRNA and protein expression levels of Akt and p53 were detected using reverse transcription quantitative PCR and western blotting, respectively. Pathological changes were analyzed using hematoxylin and eosin staining (H&E). The H&E staining results showed that dysplasia in the gastric mucosa occurred in two of eight rats in the DD group and in four of five rats in the DR group, whereas no dysplasia was detected in the DRP group. The apoptotic ratios of gastric epithelial cells were significantly decreased in all treatment groups compared with the control group. Adrenoceptor β2 (ADRB2) protein expression levels were increased significantly only in the DR group and this effect was significantly reduced in the DRP group. The mRNA expression levels of Akt and p53 were significantly upregulated in the DD group, and Akt mRNA expression was further elevated in the DR group. With regard to protein expression, the levels of Akt and p-Akt were significantly increased in the DR group, whereas these effects were reversed in the DRP group. Furthermore, the ratio of p-p53/p53 protein was significantly reduced in the DD or DR groups, but was reversed in the DRP group. Collectively, the findings of the present study suggested that chronic restraint stress potentially aggravates the gastric epithelial malignant transformation induced by a detrimental diet, at least partially via the Akt/p53 signaling pathway mediated via ADRB2.
Collapse
Affiliation(s)
- Chuanju Zong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Maoquan Yang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiaojing Guo
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
54
|
Wu REY, Khan FM, Hockin BCD, Lobban TCA, Sanatani S, Claydon VE. Faintly tired: a systematic review of fatigue in patients with orthostatic syncope. Clin Auton Res 2022; 32:185-203. [PMID: 35689118 PMCID: PMC9186485 DOI: 10.1007/s10286-022-00868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Orthostatic syncope (transient loss of conscious when standing-fainting) is common and negatively impacts quality of life. Many patients with syncope report experiencing fatigue, sometimes with "brain fog", which may further impact their quality of life, but the incidence and severity of fatigue in patients with syncope remain unclear. In this systematic review, we report evidence on the associations between fatigue and conditions of orthostatic syncope. METHODS We performed a comprehensive literature search of four academic databases to identify articles that evaluated the association between orthostatic syncope [postural orthostatic tachycardia syndrome (POTS), vasovagal syncope (VVS), orthostatic hypotension (OH)] and fatigue. Studies were independently screened using a multi-stage approach by two researchers to maintain consistency and limit bias. RESULTS Our initial search identified 2797 articles, of which 13 met our inclusion criteria (POTS n = 10; VVS n = 1; OH n = 1; VVS and POTS n = 1). Fatigue scores were significantly higher in patients with orthostatic syncope than healthy controls, and were particularly severe in those with POTS. Fatigue associated with orthostatic syncope disorders spanned multiple domains, with each dimension contributing equally to increased fatigue. "Brain fog" was an important symptom of POTS, negatively affecting productivity and cognition. Finally, fatigue was negatively associated with mental health in patients with POTS. CONCLUSION In conditions of orthostatic syncope, fatigue is prevalent and debilitating, especially in patients with POTS. The consideration of fatigue in patients with orthostatic disorders is essential to improve diagnosis and management of symptoms, thus improving quality of life for affected individuals.
Collapse
Affiliation(s)
- Ryan E Y Wu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Farhaan M Khan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Brooke C D Hockin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Trudie C A Lobban
- Syncope Trust and Reflex Anoxic Seizures Group (STARS) and Arrhythmia Alliance, Stratford-upon-Avon, Warwickshire, UK
| | - Shubhayan Sanatani
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
55
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
56
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
57
|
Haffke M, Freitag H, Rudolf G, Seifert M, Doehner W, Scherbakov N, Hanitsch L, Wittke K, Bauer S, Konietschke F, Paul F, Bellmann-Strobl J, Kedor C, Scheibenbogen C, Sotzny F. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J Transl Med 2022; 20:138. [PMID: 35317812 PMCID: PMC8938726 DOI: 10.1186/s12967-022-03346-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS. Methods We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers. Results Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs. Conclusion A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03346-2.
Collapse
Affiliation(s)
- Milan Haffke
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.
| | - Helma Freitag
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Gordon Rudolf
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Martina Seifert
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfram Doehner
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Nadja Scherbakov
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Leif Hanitsch
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Kirsten Wittke
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Sandra Bauer
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Claudia Kedor
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Franziska Sotzny
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
58
|
Dyspnea in Post-COVID Syndrome Following Mild Acute COVID-19 Infections: Potential Causes and Consequences for a Therapeutic Approach. Medicina (B Aires) 2022; 58:medicina58030419. [PMID: 35334595 PMCID: PMC8951558 DOI: 10.3390/medicina58030419] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Dyspnea, shortness of breath, and chest pain are frequent symptoms of post-COVID syndrome (PCS). These symptoms are unrelated to organ damage in most patients after mild acute COVID infection. Hyperventilation has been identified as a cause of exercise-induced dyspnea in PCS. Since there is a broad overlap in symptomatology with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), causes for dyspnea and potential consequences can be deduced by a stringent application of assumptions made for ME/CFS in our recent review papers. One of the first stimuli of respiration in exercise is caused by metabolic feedback via skeletal muscle afferents. Hyperventilation in PCS, which occurs early on during exercise, can arise from a combined disturbance of a poor skeletal muscle energetic situation and autonomic dysfunction (overshooting respiratory response), both found in ME/CFS. The exaggerated respiratory response aggravating dyspnea does not only limit the ability to exercise but further impairs the muscular energetic situation: one of the buffering mechanisms to respiratory alkalosis is a proton shift from intracellular to extracellular space via the sodium–proton-exchanger subtype 1 (NHE1), thereby loading cells with sodium. This adds to two other sodium loading mechanisms already operative, namely glycolytic metabolism (intracellular acidosis) and impaired Na+/K+ATPase activity. High intracellular sodium has unfavorable effects on mitochondrial calcium and metabolism via sodium–calcium-exchangers (NCX). Mitochondrial calcium overload by high intracellular sodium reversing the transport mode of NCX to import calcium is a key driver for fatigue and chronification. Prevention of hyperventilation has a therapeutic potential by keeping intracellular sodium below the threshold where calcium overload occurs.
Collapse
|
59
|
Welte T. Post-COVID Syndrome- More Questions Than Answers. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:165-166. [PMID: 35583038 PMCID: PMC9215270 DOI: 10.3238/arztebl.m2022.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Tobias Welte
- Department of Respiratory; Medicine; and Member of the; German Center of; Lung Research,; Hanover Medical; School
| |
Collapse
|
60
|
Sustained Impairment in Cardiopulmonary Exercise Capacity Testing in Patients after COVID-19: A Single Center Experience. Can Respir J 2022; 2022:2466789. [PMID: 35242250 PMCID: PMC8886771 DOI: 10.1155/2022/2466789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background Following COVID-19, patients often present with ongoing symptoms comparable to chronic fatigue and subjective deterioration of exercise capacity (EC), which has been recently described as postacute COVID-19 syndrome. Objective To objectify the reduced EC after COVID-19 and to evaluate for pathologic limitations. Methods Thirty patients with subjective limitation of EC performed cardiopulmonary exercise testing (CPET). If objectively limited in EC or deteriorated in oxygen pulse, we offered cardiac stress magnetic resonance imaging (MRI) and a follow-up CPET. Results Eighteen male and 12 female patients were included. Limited relative EC was detected in 11/30 (36.7%) patients. Limitation correlated with reduced body weight-indexed peak oxygen (O2) uptake (peakV̇O2/kg) (mean 74.7 (±7.1) % vs. 103.6 (±14.9) %, p < 0.001). Reduced peakV̇O2/kg was found in 18/30 (60.0%) patients with limited EC. Patients with reduced EC widely presented an impaired maximum O2 pulse (75.7% (±5.6) vs. 106.8% (±13.9), p < 0.001). Abnormal gas exchange was absent in all limited EC patients. Moreover, no patient showed signs of reduced pulmonary perfusion. Using cardiac MRI, diminished biventricular ejection fraction was ruled out in 16 patients as a possible cause for reduced O2 pulse. Despite noncontrolled training exercises, follow-up CPET did not reveal any exercise improvements. Conclusions Deterioration of EC was not associated with ventilatory or pulmonary vascular limitation. Exercise limitation was related to both reduced O2 pulse and peakV̇O2/kg, which, however, did not correlate with the initial severity of COVID-19. We hypothesize that impaired microcirculation or limited peripheral O2 utilization might be causative for prolonged deterioration of EC following acute COVID-19 infection.
Collapse
|
61
|
Westermeier F, Lacerda EM, Scheibenbogen C, Sepúlveda N. Editorial: Current Insights Into Complex Post-infection Fatigue Syndromes With Unknown Aetiology: The Case of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Beyond. Front Med (Lausanne) 2022; 9:862953. [PMID: 35280890 PMCID: PMC8907997 DOI: 10.3389/fmed.2022.862953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
|
62
|
Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35043127 PMCID: PMC8764736 DOI: 10.1101/2021.06.14.21258895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. Methods Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. Results In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). Conclusion Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.
Collapse
|
63
|
Vernon SD, Funk S, Bateman L, Stoddard GJ, Hammer S, Sullivan K, Bell J, Abbaszadeh S, Lipkin WI, Komaroff AL. Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:917019. [PMID: 35847821 PMCID: PMC9285104 DOI: 10.3389/fmed.2022.917019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Some patients with acute COVID-19 are left with persistent, debilitating fatigue, cognitive impairment ("brain fog"), orthostatic intolerance (OI) and other symptoms ("Long COVID"). Many of the symptoms are like those of other post-infectious fatigue syndromes and may meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Common diagnostic laboratory tests are often unrevealing. Methods We evaluated whether a simple, standardized, office-based test of OI, the 10-min NASA Lean Test (NLT), would aggravate symptoms and produce objective hemodynamic and cognitive abnormalities, the latter being evaluated by a simple smart phone-based app. Participants People with Long COVID (N = 42), ME/CFS (N = 26) and healthy control subjects (N = 20) were studied just before, during, immediately after, 2 and 7 days following completion of the NLT. Results The NLT provoked a worsening of symptoms in the two patient groups but not in healthy control subjects, and the severity of all symptoms was similar and significantly worse in the two patient groups than in the control subjects (p < 0.001). In the two patient groups, particularly those with Long COVID, the NLT provoked a marked and progressive narrowing in the pulse pressure. All three cognitive measures of reaction time worsened in the two patient groups immediately following the NLT, compared to the healthy control subjects, particularly in the Procedural Reaction Time (p < 0.01). Conclusions A test of orthostatic stress easily performed in an office setting reveals different symptomatic, hemodynamic and cognitive abnormalities in people with Long COVID and ME/CFS, compared to healthy control subjects. Thus, an orthostatic challenge easily performed in an office setting, and the use of a smart phone app to assess cognition, can provide objective confirmation of the orthostatic intolerance and brain fog reported by patients with Long COVID and ME/CFS.
Collapse
Affiliation(s)
- Suzanne D. Vernon
- The Bateman Horne Center of Excellence, Salt Lake City, UT, United States
| | - Sherlyn Funk
- Department of Family & Preventive Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Lucinda Bateman
- The Bateman Horne Center of Excellence, Salt Lake City, UT, United States
| | - Gregory J. Stoddard
- Department of Family & Preventive Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah Hammer
- The Bateman Horne Center of Excellence, Salt Lake City, UT, United States
| | - Karen Sullivan
- The Bateman Horne Center of Excellence, Salt Lake City, UT, United States
| | - Jennifer Bell
- The Bateman Horne Center of Excellence, Salt Lake City, UT, United States
| | - Saeed Abbaszadeh
- The Bateman Horne Center of Excellence, Salt Lake City, UT, United States
| | - W. Ian Lipkin
- Center for Solutions for ME/CFS, Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anthony L. Komaroff
- Division of General Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Anthony L. Komaroff
| |
Collapse
|
64
|
Stanculescu D, Sepúlveda N, Lim CL, Bergquist J. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol 2021; 12:789784. [PMID: 34966354 PMCID: PMC8710546 DOI: 10.3389/fneur.2021.789784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences - and despite heat stroke being an acute condition - the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.
Collapse
Affiliation(s)
| | - Nuno Sepúlveda
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden
- The ME/CFS Collaborative Research Center at Uppsala University, Uppsala, Sweden
| |
Collapse
|
65
|
The microvascular hypothesis underlying neurologic manifestations of long COVID-19 and possible therapeutic strategies. Cardiovasc Endocrinol Metab 2021; 10:193-203. [PMID: 34765889 PMCID: PMC8575441 DOI: 10.1097/xce.0000000000000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
With the ongoing distribution of the coronavirus disease (COVID) vaccines, the pandemic of our age is ending, leaving the world to deal with its well-documented aftereffects. Long COVID comprises a variety of symptoms, of which the neurological component prevails. The most permeating theory on the genesis of these symptoms builds upon the development of microvascular dysfunction similar to that seen in numerous vascular diseases such as diabetes. This can occur through the peripheral activation of angiotensin-converting enzyme 2 receptors, or through exacerbations of pro-inflammatory cytokines that can remain in circulation even after the infection diminishes. Several drugs have been identified to act on the neurovascular unit to promote repair, such as gliptins, and others. They also succeeded in improving neurologic outcome in diabetic patients. The repurposing of such drugs for treatment of long COVID-19 can possibly shorten the time to recovery of long COVID-19 syndrome.
Collapse
|
66
|
Kiprov DD, Herskowitz A, Kim D, Lieb M, Liu C, Watanabe E, Hoffman JC, Rohe R, Conboy MJ, Conboy IM. Case Report: Therapeutic and immunomodulatory effects of plasmapheresis in long-haul COVID. F1000Res 2021; 10:1189. [PMID: 35464182 PMCID: PMC9021669 DOI: 10.12688/f1000research.74534.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 02/15/2024] Open
Abstract
Many patients with COVID-19 experience a range of debilitating symptoms months after being infected, a syndrome termed long-haul COVID. A 68-year-old male presented with lung opacity, fatigue, physical and cognitive weaknesses, loss of smell and lymphocytopenia. After rounds of therapeutic plasma exchange (TPE), the patient returned to normal activities and work. Mechanistically in the patient's peripheral blood mononuclear cells (PBMCs), markers of inflammatory macrophages diminished and markers of lymphocytes, including natural killer (NK) cells and cytotoxic CD8 T-cells, increased. Circulating inflammatory proteins diminished, while positive regulators of tissue repair increased. This case study suggests that TPE has the capacity to treat long-haul COVID.
Collapse
Affiliation(s)
- Dobri D. Kiprov
- California Medical Pacific Center, San Francisco, CA, 94109, USA
| | - Ahvie Herskowitz
- California Medical Pacific Center, San Francisco, CA, 94109, USA
| | - Daehwan Kim
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Michael Lieb
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Chao Liu
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | | | - Jan C. Hoffman
- Department of Laboratory Medicine, UCSF, San Francisco, CA, San Francisco, USA
| | - Regina Rohe
- California Medical Pacific Center, San Francisco, CA, 94109, USA
| | | | | |
Collapse
|
67
|
Kiprov DD, Herskowitz A, Kim D, Lieb M, Liu C, Watanabe E, Hoffman JC, Rohe R, Conboy MJ, Conboy IM. Case Report: Therapeutic and immunomodulatory effects of plasmapheresis in long-haul COVID. F1000Res 2021; 10:1189. [PMID: 35464182 PMCID: PMC9021669 DOI: 10.12688/f1000research.74534.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Many patients with COVID-19 experience a range of debilitating symptoms months after being infected, a syndrome termed long-haul COVID. A 68-year-old male presented with lung opacity, fatigue, physical and cognitive weaknesses, loss of smell and lymphocytopenia. After rounds of therapeutic plasma exchange (TPE), the patient returned to normal activities and work. Mechanistically in the patient's peripheral blood mononuclear cells (PBMCs), markers of inflammatory macrophages diminished and markers of lymphocytes, including natural killer (NK) cells and cytotoxic CD8 T-cells, increased. Circulating inflammatory proteins diminished, while positive regulators of tissue repair increased. This case study suggests that TPE has the capacity to treat long-haul COVID.
Collapse
Affiliation(s)
- Dobri D. Kiprov
- California Medical Pacific Center, San Francisco, CA, 94109, USA
| | - Ahvie Herskowitz
- California Medical Pacific Center, San Francisco, CA, 94109, USA
| | - Daehwan Kim
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Michael Lieb
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Chao Liu
- Bioengineering, UC Berkeley, Berkeley, CA, 94720, USA
| | | | - Jan C. Hoffman
- Department of Laboratory Medicine, UCSF, San Francisco, CA, San Francisco, USA
| | - Regina Rohe
- California Medical Pacific Center, San Francisco, CA, 94109, USA
| | | | | |
Collapse
|
68
|
Wirth KJ, Scheibenbogen C, Paul F. An attempt to explain the neurological symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Transl Med 2021; 19:471. [PMID: 34809664 PMCID: PMC8607226 DOI: 10.1186/s12967-021-03143-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023] Open
Abstract
There is accumulating evidence of endothelial dysfunction, muscle and cerebral hypoperfusion in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). In this paper we deduce the pathomechanisms resulting in central nervous pathology and the myriad of neurocognitive symptoms. We outline tentative mechanisms of impaired cerebral blood flow, increase in intracranial pressure and central adrenergic hyperactivity and how they can well explain the key symptoms of cognitive impairment, brain fog, headache, hypersensitivity, sleep disturbances and dysautonomia.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
69
|
Varesi A, Deumer US, Ananth S, Ricevuti G. The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications. J Clin Med 2021; 10:jcm10215077. [PMID: 34768601 PMCID: PMC8584653 DOI: 10.3390/jcm10215077] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
The well-known symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are chronic pain, cognitive dysfunction, post-exertional malaise and severe fatigue. Another class of symptoms commonly reported in the context of ME/CFS are gastrointestinal (GI) problems. These may occur due to comorbidities such as Crohn's disease or irritable bowel syndrome (IBS), or as a symptom of ME/CFS itself due to an interruption of the complex interplay between the gut microbiota (GM) and the host GI tract. An altered composition and overall decrease in diversity of GM has been observed in ME/CFS cases compared to controls. In this review, we reflect on genetics, infections, and other influences that may factor into the alterations seen in the GM of ME/CFS individuals, we discuss consequences arising from these changes, and we contemplate the therapeutic potential of treating the gut to alleviate ME/CFS symptoms holistically.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Sanjana Ananth
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Giovanni Ricevuti
- Department of Drug Sciences, School of Pharmacy, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| |
Collapse
|
70
|
Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J Clin Med 2021; 10:4786. [PMID: 34682909 PMCID: PMC8538807 DOI: 10.3390/jcm10204786] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic systemic disease that manifests via various symptoms such as chronic fatigue, post-exertional malaise, and cognitive impairment described as "brain fog". These symptoms often prevent patients from keeping up their pre-disease onset lifestyle, as extended periods of physical or mental activity become almost impossible. However, the disease presents heterogeneously with varying severity across patients. Therefore, consensus criteria have been designed to provide a diagnosis based on symptoms. To date, no biomarker-based tests or diagnoses are available, since the molecular changes observed also largely differ from patient to patient. In this review, we discuss the infectious, genetic, and hormonal components that may be involved in CFS pathogenesis, we scrutinize the role of gut microbiota in disease progression, we highlight the potential of non-coding RNA (ncRNA) for the development of diagnostic tools and briefly mention the possibility of SARS-CoV-2 infection causing CFS.
Collapse
Affiliation(s)
- Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, 37129 Verona, Italy;
| | - Paulina López-Carrasco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | | | - Sakshi Prasad
- National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Giovanni Ricevuti
- School of Pharmacy, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
71
|
Evaluation of Immune Dysregulation in an Austrian Patient Cohort Suffering from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomolecules 2021; 11:biom11091359. [PMID: 34572574 PMCID: PMC8465819 DOI: 10.3390/biom11091359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multi-systemic disease characterized by debilitating fatigue that is not relieved by rest. The causes of the disease are still largely unexplained, and no causative treatment is currently available. Changes in the immune response are considered as fundamental in the development of ME/CFS. Thus, we aimed to evaluate the immunological profile of ME/CFS patients in a retrospective data analysis. As part of the routine workup for ME/CFS patients, a differential blood count, leukocyte subtyping, and quantification of immunoglobulins and IgG subclasses, as well as a complement analysis, was performed. Out of 262 ME/CFS patients, 64.9% had a reduction or deficiency in at least one of the listed immune parameters. In contrast, 26.3% showed signs of immune activation or inflammation. A total of 17.6% of the ME/CFS patients had an unclassified antibody deficiency, with IgG3 and IgG4 subclass deficiencies as the most common phenotypes. Reduced MBL (mannose-binding lectin) levels were found in 32% of ME/CFS patients, and MBL deficiency in 7%. In summary, the present results confirmed the relevance of immune dysfunction in ME/CFS patients underlining the involvement of a dysfunctional immune response in the disease. Thus, immune parameters are relevant disease biomarkers, which might lead to targeted therapeutic approaches in the future.
Collapse
|
72
|
Hirschenberger M, Hunszinger V, Sparrer KMJ. Implications of Innate Immunity in Post-Acute Sequelae of Non-Persistent Viral Infections. Cells 2021; 10:2134. [PMID: 34440903 PMCID: PMC8391718 DOI: 10.3390/cells10082134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-persistent viruses classically cause transient, acute infections triggering immune responses aimed at the elimination of the pathogen. Successful viruses evolved strategies to manipulate and evade these anti-viral defenses. Symptoms during the acute phase are often linked to dysregulated immune responses that disappear once the patient recovers. In some patients, however, symptoms persist or new symptoms emerge beyond the acute phase. Conditions resulting from previous transient infection are termed post-acute sequelae (PAS) and were reported for a wide range of non-persistent viruses such as rota-, influenza- or polioviruses. Here we provide an overview of non-persistent viral pathogens reported to be associated with diverse PAS, among them chronic fatigue, auto-immune disorders, or neurological complications and highlight known mechanistic details. Recently, the emergence of post-acute sequelae of COVID-19 (PASC) or long COVID highlighted the impact of PAS. Notably, PAS of non-persistent infections often resemble symptoms of persistent viral infections, defined by chronic inflammation. Inflammation maintained after the acute phase may be a key driver of PAS of non-persistent viruses. Therefore, we explore current insights into aberrant activation of innate immune signaling pathways in the post-acute phase of non-persistent viruses. Finally, conclusions are drawn and future perspectives for treatment and prevention of PAS are discussed.
Collapse
|
73
|
Freitag H, Szklarski M, Lorenz S, Sotzny F, Bauer S, Philippe A, Kedor C, Grabowski P, Lange T, Riemekasten G, Heidecke H, Scheibenbogen C. Autoantibodies to Vasoregulative G-Protein-Coupled Receptors Correlate with Symptom Severity, Autonomic Dysfunction and Disability in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2021; 10:3675. [PMID: 34441971 PMCID: PMC8397061 DOI: 10.3390/jcm10163675] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an acquired complex disease with patients suffering from the cardinal symptoms of fatigue, post-exertional malaise (PEM), cognitive impairment, pain and autonomous dysfunction. ME/CFS is triggered by an infection in the majority of patients. Initial evidence for a potential role of natural regulatory autoantibodies (AAB) to beta-adrenergic (AdR) and muscarinic acetylcholine receptors (M-AChR) in ME/CFS patients comes from a few studies. METHODS Here, we analyzed the correlations of symptom severity with levels of AAB to vasoregulative AdR, AChR and Endothelin-1 type A and B (ETA/B) and Angiotensin II type 1 (AT1) receptor in a Berlin cohort of ME/CFS patients (n = 116) by ELISA. The severity of disease, symptoms and autonomic dysfunction were assessed by questionnaires. RESULTS We found levels of most AABs significantly correlated with key symptoms of fatigue and muscle pain in patients with infection-triggered onset. The severity of cognitive impairment correlated with AT1-R- and ETA-R-AAB and severity of gastrointestinal symptoms with alpha1/2-AdR-AAB. In contrast, the patients with non-infection-triggered ME/CFS showed fewer and other correlations. CONCLUSION Correlations of specific AAB against G-protein-coupled receptors (GPCR) with symptoms provide evidence for a role of these AAB or respective receptor pathways in disease pathomechanism.
Collapse
Affiliation(s)
- Helma Freitag
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Marvin Szklarski
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Sebastian Lorenz
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Sandra Bauer
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Aurélie Philippe
- Department of Nephrology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany; (T.L.); (G.R.)
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany; (T.L.); (G.R.)
| | | | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
74
|
Fluge Ø, Tronstad KJ, Mella O. Pathomechanisms and possible interventions in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Clin Invest 2021; 131:e150377. [PMID: 34263741 DOI: 10.1172/jci150377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science and
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science and
| |
Collapse
|
75
|
Froehlich L, Hattesohl DB, Cotler J, Jason LA, Scheibenbogen C, Behrends U. Causal attributions and perceived stigma for myalgic encephalomyelitis/chronic fatigue syndrome. J Health Psychol 2021; 27:2291-2304. [PMID: 34240650 PMCID: PMC9434257 DOI: 10.1177/13591053211027631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic disease with the hallmark symptom of post-exertional malaise. Evidence for physiological causes is converging, however, currently no diagnostic test or biomarker is available. People with ME/CFS experience stigmatization, including the perception that the disease is psychosomatic. In a sample of 499 participants with self-diagnosed ME/CFS, we investigated perceived stigma as a pathway through which perceived others' causal attributions relate to lower satisfaction with social roles and activities and functional status. Higher perceived attributions by others to controllable and unstable causes predicted lower health-related and social outcomes via higher perceived stigma.
Collapse
|
76
|
Scordo KA, Richmond MM, Munro N. Post-COVID-19 Syndrome: Theoretical Basis, Identification, and Management. AACN Adv Crit Care 2021; 32:188-194. [PMID: 33942071 DOI: 10.4037/aacnacc2021492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
As COVID-19 continues to spread, with the United States surpassing 29 million cases, health care workers are beginning to see patients who have been infected with SARS-CoV-2 return seeking treatment for its longer-term physical and mental effects. The term long-haulers is used to identify patients who have not fully recovered from the illness after weeks or months. Although the acute symptoms of COVID-19 have been widely described, the longer-term effects are less well known because of the relatively short history of the pandemic. Symptoms may be due to persistent chronic inflammation (eg, fatigue), sequelae of organ damage (eg, pulmonary fibrosis, chronic kidney disease), and hospitalization and social isolation (eg, muscle wasting, malnutrition). Health care providers are instrumental in developing a comprehensive plan for identifying and managing post-COVID-19 complications. This article addresses the possible etiology of postviral syndromes and describes reported symptoms and suggested management of post-COVID syndrome.
Collapse
Affiliation(s)
- Kristine Anne Scordo
- Kristine Anne Scordo is Professor Emeritus, Wright State University, Dayton, Ohio, and Acute Care Nurse Practitioner, Infectious Diseases, TriHealth,10506A Montgomery Rd, Cincinnati, OH 45242
| | - Misty M Richmond
- Misty M. Richmond is Assistant Professor, Wright State University, Dayton, Ohio
| | - Nancy Munro
- Nancy Munro is Acute Care Nurse Practitioner, Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
77
|
Domingues TD, Grabowska AD, Lee JS, Ameijeiras-Alonso J, Westermeier F, Scheibenbogen C, Cliff JM, Nacul L, Lacerda EM, Mouriño H, Sepúlveda N. Herpesviruses Serology Distinguishes Different Subgroups of Patients From the United Kingdom Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Biobank. Front Med (Lausanne) 2021; 8:686736. [PMID: 34291062 PMCID: PMC8287507 DOI: 10.3389/fmed.2021.686736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022] Open
Abstract
The evidence of an association between Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and chronic herpesviruses infections remains inconclusive. Two reasons for the lack of consistent evidence are the large heterogeneity of the patients' population with different disease triggers and the use of arbitrary cutoffs for defining seropositivity. In this work we re-analyzed previously published serological data related to 7 herpesvirus antigens. Patients with ME/CFS were subdivided into four subgroups related to the disease triggers: S0-42 patients who did not know their disease trigger; S1-43 patients who reported a non-infection trigger; S2-93 patients who reported an infection trigger, but that infection was not confirmed by a lab test; and S3-48 patients who reported an infection trigger and that infection was confirmed by a lab test. In accordance with a sensitivity analysis, the data were compared to those from 99 healthy controls allowing the seropositivity cutoffs to vary within a wide range of possible values. We found a negative association between S1 and seropositivity to Epstein-Barr virus (VCA and EBNA1 antigens) and Varicella-Zoster virus using specific seropositivity cutoff. However, this association was not significant when controlling for multiple testing. We also found that S3 had a lower seroprevalence to the human cytomegalovirus when compared to healthy controls for all cutoffs used for seropositivity and after adjusting for multiple testing using the Benjamini-Hochberg procedure. However, this association did not reach statistical significance when using Benjamini-Yekutieli procedure. In summary, herpesviruses serology could distinguish subgroups of ME/CFS patients according to their disease trigger, but this finding could be eventually affected by the problem of multiple testing.
Collapse
Affiliation(s)
- Tiago Dias Domingues
- Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CEAUL–Centro de Estatística e Aplicações da Universidade de Lisboa, Lisboa, Portugal
| | - Anna D. Grabowska
- Department of Biophysics, Physiology, and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Ji-Sook Lee
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jose Ameijeiras-Alonso
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jacqueline M. Cliff
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Complex Chronic Diseases Program, British Columbia Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helena Mouriño
- Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CMAFcIO–Center of Mathematics, Fundamental Applications and Operations Research, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Sepúlveda
- CEAUL–Centro de Estatística e Aplicações da Universidade de Lisboa, Lisboa, Portugal
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
78
|
Moghimi N, Di Napoli M, Biller J, Siegler JE, Shekhar R, McCullough LD, Harkins MS, Hong E, Alaouieh DA, Mansueto G, Divani AA. The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 infection. Curr Neurol Neurosci Rep 2021; 21:44. [PMID: 34181102 PMCID: PMC8237541 DOI: 10.1007/s11910-021-01130-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health challenge. This review aims to summarize the incidence, risk factors, possible pathophysiology, and proposed management of neurological manifestations of post-acute sequelae of SARS-CoV-2 infection (PASC) or neuro-PASC based on the published literature. RECENT FINDINGS The National Institutes of Health has noted that PASC is a multi-organ disorder ranging from mild symptoms to an incapacitating state that can last for weeks or longer following recovery from initial infection with SARS-CoV-2. Various pathophysiological mechanisms have been proposed as the culprit for the development of PASC. These include, but are not limited to, direct or indirect invasion of the virus into the brain, immune dysregulation, hormonal disturbances, elevated cytokine levels due to immune reaction leading to chronic inflammation, direct tissue damage to other organs, and persistent low-grade infection. A multidisciplinary approach for the treatment of neuro-PASC will be required to diagnose and address these symptoms. Tailored rehabilitation and novel cognitive therapy protocols are as important as pharmacological treatments to treat neuro-PASC effectively. With recognizing the growing numbers of COVID-19 patients suffering from neuro-PASC, there is an urgent need to identify affected individuals early to provide the most appropriate and efficient treatments. Awareness among the general population and health care professionals about PASC is rising, and more efforts are needed to understand and treat this new emerging challenge. In this review, we summarize the relevant scientific literature about neuro-PASC.
Collapse
Affiliation(s)
- Narges Moghimi
- Department of Neurology, School of Medicine, 1 University of New Mexico, MSC10-5620, Albuquerque, NM 87131 USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L’Aquila, Italy
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL USA
| | - James E. Siegler
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103 USA
| | - Rahul Shekhar
- Department of Medicine, School of Medicine, University of New Mexico, Albuquerque, NM USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas USA
| | - Michelle S. Harkins
- Department of Medicine, School of Medicine, University of New Mexico, Albuquerque, NM USA
| | - Emily Hong
- Department of Neurology, School of Medicine, 1 University of New Mexico, MSC10-5620, Albuquerque, NM 87131 USA
| | - Danielle A. Alaouieh
- Department of Neurology, School of Medicine, 1 University of New Mexico, MSC10-5620, Albuquerque, NM 87131 USA
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, University of Campania, Naples, Italy
| | - Afshin A. Divani
- Department of Neurology, School of Medicine, 1 University of New Mexico, MSC10-5620, Albuquerque, NM 87131 USA
| |
Collapse
|
79
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
80
|
Froehlich L, Hattesohl DBR, Jason LA, Scheibenbogen C, Behrends U, Thoma M. Medical Care Situation of People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Germany. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:646. [PMID: 34201825 PMCID: PMC8306083 DOI: 10.3390/medicina57070646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Background and Objective: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a severe illness with the hallmark symptom of Post-Exertional Malaise (PEM). Currently, no biomarkers or established diagnostic tests for ME/CFS exist. In Germany, it is estimated that over 300,000 people are affected by ME/CFS. Research from the United States and the UK shows that patients with ME/CFS are medically underserved, as they face barriers to medical care access and are dissatisfied with medical care. The first aim of the current research was to investigate whether patients with ME/CFS are medically underserved in Germany in terms of access to and satisfaction with medical care. Second, we aimed at providing a German-language version of the DePaul Symptom Questionnaire Short Form (DSQ-SF) as a tool for ME/CFS diagnostics and research in German-speaking countries. Materials and Methods: The current research conducted an online questionnaire study in Germany investigating the medical care situation of patients with ME/CFS. The questionnaire was completed by 499 participants who fulfilled the Canadian Consensus Criteria and reported PEM of 14 h or longer. Results: Participants frequently reported geographic and financial reasons for not using the available medical services. Furthermore, they reported low satisfaction with medical care by the physician they most frequently visited due to ME/CFS. The German version of the DSQ-SF showed good reliability, a one-factorial structure and construct validity, demonstrated by correlations with the SF-36 as a measure of functional status. Conclusions: Findings provide evidence that patients with ME/CFS in Germany are medically underserved. The German-language translation of the DSQ-SF provides a brief, reliable and valid instrument to assess ME/CFS symptoms to be used for research and clinical practice in German-speaking countries. Pathways to improve the medical care of patients with ME/CFS are discussed.
Collapse
Affiliation(s)
- Laura Froehlich
- Research Cluster DL, FernUniversität in Hagen, 58097 Hagen, Germany
| | | | - Leonard A. Jason
- Center for Community Research, DePaul University, Chicago, IL 60614, USA;
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Uta Behrends
- Department of Pediatrics, School of Medicine, Technical University of Munich, 80333 München, Germany;
| | - Manuel Thoma
- German Association for ME/CFS, 20146 Hamburg, Germany; (D.B.R.H.); (M.T.)
| |
Collapse
|
81
|
Noor N, Urits I, Degueure A, Rando L, Kata V, Cornett EM, Kaye AD, Imani F, Narimani-Zamanabadi M, Varrassi G, Viswanath O. A Comprehensive Update of the Current Understanding of Chronic Fatigue Syndrome. Anesth Pain Med 2021; 11:e113629. [PMID: 34540633 PMCID: PMC8438707 DOI: 10.5812/aapm.113629] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
This is a comprehensive literature review of chronic fatigue syndrome (CFS). We provide a description of the background, etiology, pathogenesis, diagnosis, and management regarding CFS. CFS is a multifaceted illness that has many symptoms and a wide array of clinical presentations. As of recent, CFS has been merged with myalgic encephalomyelitis (ME). Much of the difficulty in its management has stemmed from a lack of a concrete understanding of its etiology and pathogenesis. There is a potential association between dysfunction of the autoimmune, neuroendocrine, or autonomic nervous systems and the development of CFS. Possible triggering events, such as infections followed by an immune dysregulation resulting have also been proposed. In fact, ME/CFS was first described following Epstein Barr virus (EBV) infections, but it was later determined that it was not always preceded by EBV infection. Patient diagnosed with CFS have shown a noticeably earlier activation of anaerobic metabolism as a source of energy, which is suggestive of impaired oxygen consumption. The differential diagnoses range from tick-borne illnesses to psychiatric disorders to thyroid gland dysfunction. Given the many overlapping symptoms of CFS with other illnesses makes diagnosing it far from an easy task. The Centers for Disease Control and Prevention (CDC) considers it a diagnosing of exclusion, stating that self-reported fatigue for at minimum of six months and four of the following symptoms are necessary for a proper diagnosis: memory problems, sore throat, post-exertion malaise, tender cervical or axillary lymph nodes, myalgia, multi-joint pain, headaches, and troubled sleep. In turn, management of CFS is just as difficult. Treatment ranges from conservative, such as cognitive behavioral therapy (CBT) and antidepressants, to minimally invasive management. Minimally invasive management involving ranscutaneous electrical acupoint stimulation of target points has demonstrated significant improvement in fatigue and associated symptoms in a 2017 randomized controlled study. The understanding of CFS is evolving before us as we continue to learn more about it. As further reliable studies are conducted, providing a better grasp of what the syndrome encompasses, we will be able to improve our diagnosis and management of it.
Collapse
Affiliation(s)
- Nazir Noor
- Mount Sinai Medical Center, Department of Anesthesiology, Miami Beach, FL, USA
| | - Ivan Urits
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
- Southcoast Health, Southcoast Physician Group Pain Medicine, MA, USA
| | - Arielle Degueure
- Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - Lauren Rando
- Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - Vijay Kata
- Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - Elyse M. Cornett
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Alan D. Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Omar Viswanath
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
- Valley Anesthesiology and Pain Consultants – Envision Physician Services, Phoenix, AZ, USA
- Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
82
|
Kujawski S, Słomko J, Hodges L, Pheby DFH, Murovska M, Newton JL, Zalewski P. Post-Exertional Malaise May Be Related to Central Blood Pressure, Sympathetic Activity and Mental Fatigue in Chronic Fatigue Syndrome Patients. J Clin Med 2021; 10:2327. [PMID: 34073494 PMCID: PMC8198768 DOI: 10.3390/jcm10112327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/18/2023] Open
Abstract
Post-exertional malaise (PEM) is regarded as the hallmark symptom in chronic fatigue syndrome (CFS). The aim of the current study is to explore differences in CFS patients with and without PEM in indicators of aortic stiffness, autonomic nervous system function, and severity of fatigue. One-hundred and one patients met the Fukuda criteria. A Chronic Fatigue Questionnaire (CFQ) and Fatigue Impact Scale (FIS) were used to assess the level of mental and physical fatigue. Aortic systolic blood pressure (sBPaortic) and the autonomic nervous system were measured with the arteriograph and Task Force Monitor, respectively. Eighty-two patients suffered prolonged PEM according to the Fukuda criteria, while 19 did not. Patients with PEM had higher FIS scores (p = 0.02), lower central systolic blood pressure (p = 0.02) and higher mental fatigue (p = 0.03). For a one-point increase in the mental fatigue component of the CFQ scale, the risk of PEM increases by 34%. For an sBPaortic increase of 1 mmHg, the risk of PEM decreases by 5%. For a one unit increase in sympathovagal balance, the risk of PEM increases by 330%. Higher mental fatigue and sympathetic activity in rest are related to an increased risk of PEM, while higher central systolic blood pressure is related to a reduced risk of PEM. However, none of the between group differences were significant after FDR correction, and therefore conclusions should be treated with caution and replicated in further studies.
Collapse
Affiliation(s)
- Sławomir Kujawski
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Education, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (J.S.); (P.Z.)
| | - Joanna Słomko
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Education, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (J.S.); (P.Z.)
| | - Lynette Hodges
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North 4442, New Zealand;
| | - Derek F. H. Pheby
- Society and Health, Buckinghamshire New University (Retired), High Wycombe HP11 2JZ, UK;
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradiņš University, LV-1067 Riga, Latvia;
| | - Julia L. Newton
- Population Health Sciences Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4AX, UK;
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Education, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (J.S.); (P.Z.)
| |
Collapse
|
83
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
84
|
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 2021; 19:162. [PMID: 33882940 PMCID: PMC8058748 DOI: 10.1186/s12967-021-02833-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic Fatigue Syndrome or Myalgic Encephaloymelitis (ME/CFS) is a frequent debilitating disease with an enigmatic etiology. The finding of autoantibodies against ß2-adrenergic receptors (ß2AdR) prompted us to hypothesize that ß2AdR dysfunction is of critical importance in the pathophysiology of ME/CFS. Our hypothesis published previously considers ME/CFS as a disease caused by a dysfunctional autonomic nervous system (ANS) system: sympathetic overactivity in the presence of vascular dysregulation by ß2AdR dysfunction causes predominance of vasoconstrictor influences in brain and skeletal muscles, which in the latter is opposed by the metabolically stimulated release of endogenous vasodilators (functional sympatholysis). An enigmatic bioenergetic disturbance in skeletal muscle strongly contributes to this release. Excessive generation of these vasodilators with algesic properties and spillover into the systemic circulation could explain hypovolemia, suppression of renin (paradoxon) and the enigmatic symptoms. In this hypothesis paper the mechanisms underlying the energetic disturbance in muscles will be explained and merged with the first hypothesis. The key information is that ß2AdR also stimulates the Na+/K+-ATPase in skeletal muscles. Appropriate muscular perfusion as well as function of the Na+/K+-ATPase determine muscle fatigability. We presume that dysfunction of the ß2AdR also leads to an insufficient stimulation of the Na+/K+-ATPase causing sodium overload which reverses the transport direction of the sodium-calcium exchanger (NCX) to import calcium instead of exporting it as is also known from the ischemia-reperfusion paradigm. The ensuing calcium overload affects the mitochondria, cytoplasmatic metabolism and the endothelium which further worsens the energetic situation (vicious circle) to explain postexertional malaise, exercise intolerance and chronification. Reduced Na+/K+-ATPase activity is not the only cause for cellular sodium loading. In poor energetic situations increased proton production raises intracellular sodium via sodium-proton-exchanger subtype-1 (NHE1), the most important proton-extruder in skeletal muscle. Finally, sodium overload is due to diminished sodium outward transport and enhanced cellular sodium loading. As soon as this disturbance would have occurred in a severe manner the threshold for re-induction would be strongly lowered, mainly due to an upregulated NHE1, so that it could repeat at low levels of exercise, even by activities of everyday life, re-inducing mitochondrial, metabolic and vascular dysfunction to perpetuate the disease.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
85
|
Jäkel B, Kedor C, Grabowski P, Wittke K, Thiel S, Scherbakov N, Doehner W, Scheibenbogen C, Freitag H. Hand grip strength and fatigability: correlation with clinical parameters and diagnostic suitability in ME/CFS. J Transl Med 2021; 19:159. [PMID: 33874961 PMCID: PMC8056497 DOI: 10.1186/s12967-021-02774-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and debilitating disease accompanied by muscular fatigue and pain. A functional measure to assess muscle fatigability of ME/CFS patients is, however, not established in clinical routine. The aim of this study is to evaluate by assessing repeat maximum handgrip strength (HGS), muscle fatigability as a diagnostic tool and its correlation with clinical parameters. METHODS We assessed the HGS of 105 patients with ME/CFS, 18 patients with Cancer related fatigue (CRF) and 66 healthy controls (HC) using an electric dynamometer assessing maximal (Fmax) and mean force (Fmean) of ten repetitive measurements. Results were correlated with clinical parameters, creatinine kinase (CK) and lactate dehydrogenase (LDH). Further, maximum isometric quadriceps strength measurement was conducted in eight ME/CFS patients and eight HC. RESULTS ME/CFS patients have a significantly lower Fmax and Fmean HGS compared to HC (p < 0.0001). Further, Fatigue Ratio assessing decline in strength during repeat maximal HGS measurement (Fmax/Fmean) was higher (p ≤ 0.0012). The Recovery Ratio after an identical second testing 60 min later was significantly lower in ME/CFS compared to HC (Fmean2/Fmean1; p ≤ 0.0020). Lower HGS parameters correlated with severity of disease, post-exertional malaise and muscle pain and with higher CK and LDH levels after exertion. CONCLUSION Repeat HGS assessment is a sensitive diagnostic test to assess muscular fatigue and fatigability and an objective measure to assess disease severity in ME/CFS.
Collapse
Affiliation(s)
- Bianka Jäkel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
- MVZ Onkologie Havelhöhe, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Silvia Thiel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Nadja Scherbakov
- Department of Cardiology (Virchow Klinikum), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfram Doehner
- Department of Cardiology (Virchow Klinikum), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Helma Freitag
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany.
| |
Collapse
|
86
|
Malato J, Sotzny F, Bauer S, Freitag H, Fonseca A, Grabowska AD, Graça L, Cordeiro C, Nacul L, Lacerda EM, Castro-Marrero J, Scheibenbogen C, Westermeier F, Sepúlveda N. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: analysis of high-throughput epigenetic and gene expression studies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.23.21254175. [PMID: 33791744 PMCID: PMC8010776 DOI: 10.1101/2021.03.23.21254175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients affected by Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) show specific epigenetic and gene expression signatures of the disease. However, it is unknown whether these signatures include abnormal levels of the human angiotensin-converting enzymes, ACE and ACE2, the latter being the main receptor described for the host-cell invasion by SARS-CoV-2. To investigate that, we first re-analyzed available case-control epigenome-wide association studies based on DNA methylation data, and case-control gene expression studies based on microarray data. From these published studies, we found an association between ME/CFS and 4 potentially hypomethylated probes located in the ACE locus. We also found another disease association with one hypomethylated probe located in the transcription start site of ACE2. The same disease associations were obtained for women but not for men after performing sex-specific analyses. In contrast, a meta-analysis of gene expression levels could not provide evidence for a differentially expression of ACE and ACE2 in affected patients when compared to healthy controls. In line with this negative finding, the analysis of a new data set on the gene expression of ACE and ACE2 in peripheral blood mononuclear cells did not find any differences between a female cohort of 37 patients and 34 age-matched healthy controls. Future studies should be conducted to extend this investigation to other potential receptors used by SARS-CoV-2. These studies will help researchers and clinicians to improve the understanding of the health risk imposed by this virus when infecting patients affected by this debilitating disease.
Collapse
Affiliation(s)
- João Malato
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Franziska Sotzny
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Sandra Bauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Helma Freitag
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - André Fonseca
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Anna D Grabowska
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Luís Graça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Clara Cordeiro
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Luís Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Complex Chronic Diseases Program, British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Eliana M Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jesus Castro-Marrero
- Vall d’Hebron Hospital Research Institute, Division of Rheumatology, ME/CFS Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Scheibenbogen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Francisco Westermeier
- Institute of Biomedical Science, FH Joanneum University of Applied Sciences, Graz, Austria
- Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Nuno Sepúlveda
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
87
|
Toogood PL, Clauw DJ, Phadke S, Hoffman D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol Res 2021; 165:105465. [PMID: 33529750 DOI: 10.1016/j.phrs.2021.105465] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease characterized by severe and disabling fatigue that fails to improve with rest; it is commonly accompanied by multifocal pain, as well as sleep disruption, and cognitive dysfunction. Even mild exertion can exacerbate symptoms. The prevalence of ME/CFS in the U.S. is estimated to be 0.5-1.5 % and is higher among females. Viral infection is an established trigger for the onset of ME/CFS symptoms, raising the possibility of an increase in ME/CFS prevalence resulting from the ongoing COVID-19 pandemic. Current treatments are largely palliative and limited to alleviating symptoms and addressing the psychological sequelae associated with long-term disability. While ME/CFS is characterized by broad heterogeneity, common features include immune dysregulation and mitochondrial dysfunction. However, the underlying mechanistic basis of the disease remains poorly understood. Herein, we review the current understanding, diagnosis and treatment of ME/CFS and summarize past clinical studies aimed at identifying effective therapies. We describe the current status of mechanistic studies, including the identification of multiple targets for potential pharmacological intervention, and ongoing efforts towards the discovery of new medicines for ME/CFS treatment.
Collapse
Affiliation(s)
- Peter L Toogood
- Michigan Drug Discovery, University of Michigan, Life Science Institute, 210 Washtenaw Avenue, Ann Arbor, MI, 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States.
| | - Daniel J Clauw
- Departments of Anesthesiology, Internal Medicine (Rheumatology) and Psychiatry, University of Michigan/Michigan Medicine, Chronic Pain and Fatigue Center, 24 Frank Lloyd Wright Drive, P.O. Box 3885, Ann Arbor, MI, 48109, United States
| | - Sameer Phadke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States
| | - David Hoffman
- Cayman Chemical Company, 1180 E. Ellsworth Road, Ann Arbor, MI, 48108, United States
| |
Collapse
|
88
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
89
|
Abou-Donia MB, Lapadula ES, Krengel MH, Quinn E, LeClair J, Massaro J, Conboy LA, Kokkotou E, Abreu M, Klimas NG, Nguyen DD, Sullivan K. Using Plasma Autoantibodies of Central Nervous System Proteins to Distinguish Veterans with Gulf War Illness from Healthy and Symptomatic Controls. Brain Sci 2020; 10:E610. [PMID: 32899468 PMCID: PMC7563126 DOI: 10.3390/brainsci10090610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
For the past 30 years, there has been a lack of objective tools for diagnosing Gulf War Illness (GWI), which is largely characterized by central nervous system (CNS) symptoms emerging from 1991 Gulf War (GW) veterans. In a recent preliminary study, we reported the presence of autoantibodies against CNS proteins in the blood of veterans with GWI, suggesting a potential objective biomarker for the disorder. Now, we report the results of a larger, confirmatory study of these objective biomarkers in 171 veterans with GWI compared to 60 healthy GW veteran controls and 85 symptomatic civilian controls (n = 50 myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and n = 35 irritable bowel syndrome (IBS)). Specifically, we compared plasma markers of CNS autoantibodies for diagnostic characteristics of the four groups (GWI, GW controls, ME/CFS, IBS). For veterans with GWI, the results showed statistically increased levels of nine of the ten autoantibodies against neuronal "tubulin, neurofilament protein (NFP), Microtubule Associated Protein-2 (MAP-2), Microtubule Associated Protein-Tau (Tau), alpha synuclein (α-syn), calcium calmodulin kinase II (CaMKII)" and glial proteins "Glial Fibrillary Acidic Protein (GFAP), Myelin Associated Glycoprotein (MAG), Myelin Basic Protein (MBP), S100B" compared to healthy GW controls as well as civilians with ME/CFS and IBS. Next, we summed all of the means of the CNS autoantibodies for each group into a new index score called the Neurodegeneration Index (NDI). The NDI was calculated for each tested group and showed veterans with GWI had statistically significantly higher NDI values than all three control groups. The present study confirmed the utility of the use of plasma autoantibodies for CNS proteins to distinguish among veterans with GWI and other healthy and symptomatic control groups.
Collapse
Affiliation(s)
- Mohamed B. Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.A.-D.); (E.S.L.)
| | - Elizabeth S. Lapadula
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.A.-D.); (E.S.L.)
| | - Maxine H. Krengel
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Emily Quinn
- Departments of Biostatistics and Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (J.L.); (J.M.); (D.D.N.)
| | - Jessica LeClair
- Departments of Biostatistics and Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (J.L.); (J.M.); (D.D.N.)
| | - Joseph Massaro
- Departments of Biostatistics and Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (J.L.); (J.M.); (D.D.N.)
| | - Lisa A. Conboy
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (L.A.C.); (E.K.)
| | - Efi Kokkotou
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (L.A.C.); (E.K.)
| | - Maria Abreu
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (N.G.K.)
- Department of Immunology, Miami VA Medical Center, Miami, FL 33125, USA
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuroimmune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (N.G.K.)
- Department of Immunology, Miami VA Medical Center, Miami, FL 33125, USA
| | - Daniel D. Nguyen
- Departments of Biostatistics and Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (J.L.); (J.M.); (D.D.N.)
| | - Kimberly Sullivan
- Departments of Biostatistics and Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (J.L.); (J.M.); (D.D.N.)
| |
Collapse
|
90
|
Tölle M, Freitag H, Antelmann M, Hartwig J, Schuchardt M, van der Giet M, Eckardt KU, Grabowski P, Scheibenbogen C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Efficacy of Repeat Immunoadsorption. J Clin Med 2020; 9:E2443. [PMID: 32751659 PMCID: PMC7465279 DOI: 10.3390/jcm9082443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
(1) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex neuroimmunological disease. There is evidence for an autoimmune mechanism for ME/CFS with an infection-triggered onset and dysfunction of ß2-adrenoreceptor antibodies (ß2AR-AB). In a first proof-of-concept study, we could show that IA was effective to reduce ß2AR-AB and led to improvement of various symptoms. (2) Five of the ME/CFS patients who had clinical improvement following treatment with a five-day IA were retreated in the current study about two years later with a modified IA protocol. The severity of symptoms was assessed by disease specific scores during a follow-up period of 12 months. The antibodies were determined by ELISA. (3) The modified IA treatment protocol resulted in a remarkable similar clinical response. The treatment was well tolerated and 80-90% decline of total IgG and ß2AR-AB was achieved. Four patients showed a rapid improvement in several clinical symptoms during IA therapy, lasting for six to 12 months. One patient had no improvement. (4) We could provide further evidence that IA has clinical efficacy in patients with ME/CFS. Data from our pilot trial warrant further controlled studies in ME/CFS.
Collapse
Affiliation(s)
- Markus Tölle
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Helma Freitag
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Michaela Antelmann
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Jelka Hartwig
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Markus van der Giet
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| |
Collapse
|
91
|
The Roles of Autoimmunity and Biotoxicosis in Sick Building Syndrome as a "Starting Point" for Irreversible Dampness and Mold Hypersensitivity Syndrome. Antibodies (Basel) 2020; 9:antib9020026. [PMID: 32580407 PMCID: PMC7345570 DOI: 10.3390/antib9020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The terminology of "sick building syndrome" (SBS), meaning that a person may feel sick in a certain building, but when leaving the building, the symptoms will reverse, is imprecise. Many different environmental hazards may cause the feeling of sickness, such as high indoor air velocity, elevated noise, low or high humidity, vapors or dust. The Aim: To describe SBS in connection with exposure to indoor air dampness microbiota (DM). Methods: A search through Medline/Pubmed. Results and Conclusions: Chronic course of SBS may be avoided. By contrast, persistent or cumulative exposure to DM may make SBS potentially life-threatening and lead to irreversible dampness and mold hypersensitivity syndrome (DMHS). The corner feature of DMHS is acquired by dysregulation of the immune system in the direction of hypersensitivities (types I-IV) and simultaneous deprivation of immunity that manifests as increased susceptibility to infections. DMHS is a systemic low-grade inflammation and a biotoxicosis. There is already some evidence that DMHS may be linked to autoimmunity. Autoantibodies towards, e.g., myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, smooth muscle cells and antinuclear autoantibodies were reported in mold-related illness. DMHS is also a mitochondropathy and endocrinopathy. The association of autoimmunity with DMHS should be confirmed through cohort studies preferably using chip-based technology.
Collapse
|