51
|
Wang J, Zhu X, She G, Kong Y, Guo Y, Wang Z, Liu G, Zhao B. Serum hepatokines in dairy cows: periparturient variation and changes in energy-related metabolic disorders. BMC Vet Res 2018; 14:236. [PMID: 30103741 PMCID: PMC6090689 DOI: 10.1186/s12917-018-1560-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/07/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND During peripartum period, dairy cows are highly susceptible to energy metabolism disorders such as fatty liver and ketosis. Angiopoietin-like protein 4 (ANGPTL4) and fibroblast growth factor 21 (FGF21), known as hepatokines, play important roles in lipid metabolism. The purposes of our study were to evaluate variations of serum ANGPTL4 and FGF21 concentrations in periparturient dairy cows and changes in these serum analyte concentrations of energy-related metabolic disorders in early lactation dairy cows. This study was divided into two experiments. Experiment I: Blood parameters were measured in healthy periparturient Holstein cows from 4 wk antepartum to 4 wk postpartum (n = 219). In this experiment, weekly blood samples were obtained from 4 wk before the expected calving date through 4 wk after calving. Experiment II: Blood parameters were measured in healthy cows (n = 30) and cows with clinical ketosis (n = 29) and fatty liver (n = 25) within the first 4 wk of lactation. In the present study, all blood samples were collected from the coccygeal vein in the early morning before feeding. RESULTS Serum ANGPTL4 and FGF21 concentrations peaked at parturition, and declined rapidly over the following 2 wk Serum ANGPTL4 and FGF21 concentrations were positively correlated with serum non-esterified fatty acids (NEFA) concentration (r = 0.856, P = 003; r = 0.848, P = 0.004, respectively). Cows with clinical ketosis and fatty liver had significantly higher serum ANGPTL4 and FGF21 concentrations than healthy cows (P < 0.01). CONCLUSION Serum ANGPTL4 and FGF21 concentrations were elevated during peripartum period, suggesting that energy balance changes that were associated with parturition contributed significantly to these effects. Although FGF21 and ANGPTL4 could play important roles in the adaptation of energy metabolism, they may be involved in the pathological processes of energy metabolism disorders of dairy cows in the peripartum period.
Collapse
Affiliation(s)
- Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,UMR 1195 Inserm and University Paris-Saclay, Kremlin-Bicêtre, France
| | - Guanghui She
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhe Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
52
|
Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, Amadiume SC, Goncalves MD, Hodakoski C, Lundquist MR, Bareja R, Ma Y, Harris EM, Sboner A, Beltran H, Rubin MA, Mukherjee S, Cantley LC. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018; 560:499-503. [PMID: 30051890 PMCID: PMC6197057 DOI: 10.1038/s41586-018-0343-4] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
Mutations in PIK3CA, which encodes the p110α subunit of the insulin-activated phosphatidylinositol-3 kinase (PI3K), and loss of function mutations in PTEN, which encodes a phosphatase that degrades the phosphoinositide lipids generated by PI3K, are among the most frequent events in human cancers1,2. However, pharmacological inhibition of PI3K has resulted in variable clinical responses, raising the possibility of an inherent mechanism of resistance to treatment. As p110α mediates virtually all cellular responses to insulin, targeted inhibition of this enzyme disrupts glucose metabolism in multiple tissues. For example, blocking insulin signalling promotes glycogen breakdown in the liver and prevents glucose uptake in the skeletal muscle and adipose tissue, resulting in transient hyperglycaemia within a few hours of PI3K inhibition. The effect is usually transient because compensatory insulin release from the pancreas (insulin feedback) restores normal glucose homeostasis3. However, the hyperglycaemia may be exacerbated or prolonged in patients with any degree of insulin resistance and, in these cases, necessitates discontinuation of therapy3-6. We hypothesized that insulin feedback induced by PI3K inhibitors may reactivate the PI3K-mTOR signalling axis in tumours, thereby compromising treatment effectiveness7,8. Here we show, in several model tumours in mice, that systemic glucose-insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence of PI3K inhibitors. This insulin feedback can be prevented using dietary or pharmaceutical approaches, which greatly enhance the efficacy/toxicity ratios of PI3K inhibitors. These findings have direct clinical implications for the multiple p110α inhibitors that are in clinical trials and provide a way to increase treatment efficacy for patients with many types of tumour.
Collapse
Affiliation(s)
| | - Chantal Pauli
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Xing Du
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Xiang Li
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - David Wu
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cindy Hodakoski
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Rohan Bareja
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Yan Ma
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Emily M Harris
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Andrea Sboner
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Research and the Center for Precision Medicine, University of Bern and the Inselspital, Bern, Switzerland
| | - Siddhartha Mukherjee
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
53
|
The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1596-1608. [PMID: 29454073 DOI: 10.1016/j.bbadis.2018.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome.
Collapse
|
54
|
Olivares S, Henkel AS. Induction of fibroblast growth factor 21 does not require activation of the hepatic X-box binding protein 1 in mice. Mol Metab 2017; 6:1616-1624. [PMID: 29157602 PMCID: PMC5699917 DOI: 10.1016/j.molmet.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21), a key regulator of the metabolic response to fasting, is highly induced by endoplasmic reticulum (ER) stress. The X-box binding protein 1 (Xbp1) is one of several ER stress proteins that has been shown to directly activate the FGF21 promoter. We aimed to determine whether hepatic Xbp1 is required for induction of hepatic FGF21 in vivo. Methods Mice bearing a hepatocyte-specific deletion of Xbp1 (Xbp1LKO) were subjected to fasting, pharmacologic ER stress, or a ketogenic diet, all potent stimuli of Fgf21 expression. Results Hepatocyte-specific Xbp1 knockout mice demonstrated normal induction of FGF21 in response to fasting or pharmacologic ER stress and enhanced induction of FGF21 in response to a ketogenic diet. Consistent with preserved induction of FGF21, Xbp1LKO mice exhibited normal induction of FGF21 target genes and normal ketogenesis in response to fasting or a ketogenic diet. Conclusion Hepatic Xbp1 is not required for induction of FGF21 under physiologic or pathophysiologic conditions in vivo. Deletion of hepatic Xbp1 in mice allows for normal induction of FGF21 upon fasting. ER stress induces FGF21 independently of hepatic Xbp1. Mice lacking hepatic Xbp1 show enhanced FGF21 induction when fed a ketogenic diet. Hepatic Xbp1 is not required for induction of FGF21 in vivo.
Collapse
Affiliation(s)
- Shantel Olivares
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
55
|
Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketone-Based Metabolic Therapy: Is Increased NAD + a Primary Mechanism? Front Mol Neurosci 2017; 10:377. [PMID: 29184484 PMCID: PMC5694488 DOI: 10.3389/fnmol.2017.00377] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
The ketogenic diet’s (KD) anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s) of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD), a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes) associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.
Collapse
Affiliation(s)
- Marwa Elamin
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - David N Ruskin
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Paola Sacchetti
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
56
|
Tidwell TR, Søreide K, Hagland HR. Aging, Metabolism, and Cancer Development: from Peto's Paradox to the Warburg Effect. Aging Dis 2017; 8:662-676. [PMID: 28966808 PMCID: PMC5614328 DOI: 10.14336/ad.2017.0713] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Medical advances made over the last century have increased our lifespan, but age-related diseases are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. How these epigenetic markers accumulate over time is now being investigated as the possible link between aging and many diseases, such as cancer. The relationship between metabolism and cancer was described as early as the late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. However, when the stepwise gene mutation theory of cancer was presented, Warburg's theories garnered little attention. Only in the last decade, with epigenetic discoveries, have Warburg's data on the metabolic shift in cancers been brought back to life. The stepwise gene mutation theory fails to explain why large animals with more cells, do not have a greater cancer incidence than humans, known as Peto's paradox. The resurgence of research into the Warburg effect has given us insight to what may explain Peto's paradox. In this review, we discuss these connections and how age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control.
Collapse
Affiliation(s)
- Tia R. Tidwell
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hanne R. Hagland
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
57
|
Kephart WC, Mumford PW, Mao X, Romero MA, Hyatt HW, Zhang Y, Mobley CB, Quindry JC, Young KC, Beck DT, Martin JS, McCullough DJ, D'Agostino DP, Lowery RP, Wilson JM, Kavazis AN, Roberts MD. The 1-Week and 8-Month Effects of a Ketogenic Diet or Ketone Salt Supplementation on Multi-Organ Markers of Oxidative Stress and Mitochondrial Function in Rats. Nutrients 2017; 9:nu9091019. [PMID: 28914762 PMCID: PMC5622779 DOI: 10.3390/nu9091019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022] Open
Abstract
We determined the short- and long-term effects of a ketogenic diet (KD) or ketone salt (KS) supplementation on multi-organ oxidative stress and mitochondrial markers. For short-term feedings, 4 month-old male rats were provided isocaloric amounts of KD (n = 10), standard chow (SC) (n = 10) or SC + KS (~1.2 g/day, n = 10). For long-term feedings, 4 month-old male rats were provided KD (n = 8), SC (n = 7) or SC + KS (n = 7) for 8 months and rotarod tested every 2 months. Blood, brain (whole cortex), liver and gastrocnemius muscle were harvested from all rats for biochemical analyses. Additionally, mitochondria from the brain, muscle and liver tissue of long-term-fed rats were analyzed for mitochondrial quantity (maximal citrate synthase activity), quality (state 3 and 4 respiration) and reactive oxygen species (ROS) assays. Liver antioxidant capacity trended higher in short-term KD- and SC + KS-fed versus SC-fed rats, and short-term KD-fed rats exhibited significantly greater serum ketones compared to SC + KS-fed rats indicating that the diet (not KS supplementation) induced ketonemia. In long term-fed rats: (a) serum ketones were significantly greater in KD- versus SC- and SC + KS-fed rats; (b) liver antioxidant capacity and glutathione peroxidase protein was significantly greater in KD- versus SC-fed rats, respectively, while liver protein carbonyls were lowest in KD-fed rats; and (c) gastrocnemius mitochondrial ROS production was significantly greater in KD-fed rats versus other groups, and this paralleled lower mitochondrial glutathione levels. Additionally, the gastrocnemius pyruvate-malate mitochondrial respiratory control ratio was significantly impaired in long-term KD-fed rats, and gastrocnemius mitochondrial quantity was lowest in these animals. Rotarod performance was greatest in KD-fed rats versus all other groups at 2, 4 and 8 months, although there was a significant age-related decline in performance existed in KD-fed rats which was not evident in the other two groups. In conclusion, short- and long-term KD improves select markers of liver oxidative stress compared to SC feeding, although long-term KD feeding may negatively affect skeletal muscle mitochondrial physiology.
Collapse
Affiliation(s)
- Wesley C Kephart
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
| | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
| | - Xuansong Mao
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
| | - Hayden W Hyatt
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
| | - Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | | | - John C Quindry
- Department of Human Health Performance, University of Montana, Missoula, MT 59812, USA.
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36849, USA.
| | - Darren T Beck
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36849, USA.
| | - Jeffrey S Martin
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36849, USA.
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36849, USA.
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33620, USA.
| | - Ryan P Lowery
- Applied Sports Performance Institute, Tampa, FL 33607, USA.
| | - Jacob M Wilson
- Applied Sports Performance Institute, Tampa, FL 33607, USA.
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36849, USA.
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36849, USA.
| |
Collapse
|
58
|
A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab 2017; 26:539-546.e5. [PMID: 28877457 PMCID: PMC5609489 DOI: 10.1016/j.cmet.2017.08.005] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.
Collapse
|
59
|
Newman JC, Covarrubias AJ, Zhao M, Yu X, Gut P, Ng CP, Huang Y, Haldar S, Verdin E. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell Metab 2017; 26:547-557.e8. [PMID: 28877458 PMCID: PMC5605815 DOI: 10.1016/j.cmet.2017.08.004] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Ketogenic diets recapitulate certain metabolic aspects of dietary restriction such as reliance on fatty acid metabolism and production of ketone bodies. We investigated whether an isoprotein ketogenic diet (KD) might, like dietary restriction, affect longevity and healthspan in C57BL/6 male mice. We find that Cyclic KD, KD alternated weekly with the Control diet to prevent obesity, reduces midlife mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet (HF) fed similarly may have an intermediate effect on mortality. Cyclic KD improves memory performance in old age, while modestly improving composite healthspan measures. Gene expression analysis identifies downregulation of insulin, protein synthesis, and fatty acid synthesis pathways as mechanisms common to KD and HF. However, upregulation of PPARα target genes is unique to KD, consistent across tissues, and preserved in old age. In all, we show that a non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging mice.
Collapse
Affiliation(s)
- John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; UCSF Division of Geriatrics, San Francisco, CA 94118, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | | | - Minghao Zhao
- UCSF Global Health Sciences, San Francisco, CA 94158, USA
| | - Xinxing Yu
- UCSF Division of Geriatrics, San Francisco, CA 94118, USA
| | - Philipp Gut
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Che-Ping Ng
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Saptarsi Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; UCSF Division of Geriatrics, San Francisco, CA 94118, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
60
|
Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, Baldi P, Sassone-Corsi P. Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet. Cell Metab 2017; 26:523-538.e5. [PMID: 28877456 DOI: 10.1016/j.cmet.2017.08.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/04/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
The circadian clock orchestrates rhythms in physiology and behavior, allowing organismal adaptation to daily environmental changes. While food intake profoundly influences diurnal rhythms in the liver, how nutritional challenges are differentially interpreted by distinct tissue-specific clocks remains poorly explored. Ketogenic diet (KD) is considered to have metabolic and therapeutic value, though its impact on circadian homeostasis is virtually unknown. We show that KD has profound and differential effects on liver and intestine clocks. Specifically, the amplitude of clock-controlled genes and BMAL1 chromatin recruitment are drastically altered by KD in the liver, but not in the intestine. KD induces nuclear accumulation of PPARα in both tissues but with different circadian phase. Also, gut and liver clocks respond differently to carbohydrate supplementation to KD. Importantly, KD induces serum and intestinal β-hydroxyl-butyrate levels to robustly oscillate in a circadian manner, an event coupled to tissue-specific cyclic histone deacetylase (HDAC) activity and histone acetylation.
Collapse
Affiliation(s)
- Paola Tognini
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA
| | - Mari Murakami
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA
| | - Yu Liu
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kristin L Eckel-Mahan
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA; Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - John C Newman
- Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Eric Verdin
- Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
61
|
Hutfles LJ, Wilkins HM, Koppel SJ, Weidling IW, Selfridge JE, Tan E, Thyfault JP, Slawson C, Fenton AW, Zhu H, Swerdlow RH. A bioenergetics systems evaluation of ketogenic diet liver effects. Appl Physiol Nutr Metab 2017; 42:955-962. [PMID: 28514599 PMCID: PMC5857360 DOI: 10.1139/apnm-2017-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for 1 month on a ketogenic or standard chow diet. Compared with the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns. SIRT3 protein decreased while SIRT5 protein increased, and gluconeogenesis, oxidative phosphorylation, and mitochondrial biogenesis pathway proteins were variably and likely strategically altered. The pattern of changes observed can be used to inform a broader systems overview of how ketogenic diets affect liver bioenergetics.
Collapse
Affiliation(s)
- Lewis J. Hutfles
- Kansas City University of Medicine and Biosciences, Kansas City, MO 64106
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Scott J. Koppel
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ian W. Weidling
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - J. Eva Selfridge
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Eephie Tan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Kansas City VA Medical Center, Kansas City, MO 64128
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Aron W. Fenton
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66150
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
62
|
Aminzadeh-Gohari S, Feichtinger RG, Vidali S, Locker F, Rutherford T, O'Donnel M, Stöger-Kleiber A, Mayr JA, Sperl W, Kofler B. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model. Oncotarget 2017; 8:64728-64744. [PMID: 29029389 PMCID: PMC5630289 DOI: 10.18632/oncotarget.20041] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum. Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - René Günther Feichtinger
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - Felix Locker
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | | | - Maura O'Donnel
- Clinical Nutrition Vitaflo International, Liverpool, United Kingdom
| | | | | | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
63
|
Douris N, Desai BN, Fisher FM, Cisu T, Fowler AJ, Zarebidaki E, Nguyen NLT, Morgan DA, Bartness TJ, Rahmouni K, Flier JS, Maratos-Flier E. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice. Mol Metab 2017; 6:854-862. [PMID: 28752049 PMCID: PMC5518722 DOI: 10.1016/j.molmet.2017.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE We have previously shown that the consumption of a low-carbohydrate ketogenic diet (KD) by mice leads to a distinct physiologic state associated with weight loss, increased metabolic rate, and improved insulin sensitivity [1]. Furthermore, we identified fibroblast growth factor 21 (FGF21) as a necessary mediator of the changes, as mice lacking FGF21 fed KD gain rather than lose weight [2]. FGF21 activates the sympathetic nervous system (SNS) [3], which is a key regulator of metabolic rate. Thus, we considered that the SNS may play a role in mediating the metabolic adaption to ketosis. METHODS To test this hypothesis, we measured the response of mice lacking all three β-adrenergic receptors (β-less mice) to KD feeding. RESULTS In contrast to wild-type (WT) controls, β-less mice gained weight, increased adipose tissue depots mass, and did not increase energy expenditure when consuming KD. Remarkably, despite weight-gain, β-less mice were insulin sensitive. KD-induced changes in hepatic gene expression of β-less mice were similar to those seen in WT controls eating KD. Expression of FGF21 mRNA rose over 60-fold in both WT and β-less mice fed KD, and corresponding circulating FGF21 levels were 12.5 ng/ml in KD-fed wild type controls and 35.5 ng/ml in KD-fed β-less mice. CONCLUSIONS The response of β-less mice distinguishes at least two distinct categories of physiologic effects in mice consuming KD. In the liver, KD regulates peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways through an action of FGF21 independent of the SNS and beta-adrenergic receptors. In sharp contrast, induction of interscapular brown adipose tissue (BAT) and increased energy expenditure absolutely require SNS signals involving action on one or more β-adrenergic receptors. In this way, the key metabolic actions of FGF21 in response to KD have diverse effector mechanisms.
Collapse
Key Words
- BAT, brown adipose tissue
- EE, energy expenditure
- FGF21, fibroblast growth factor 21
- IP, intraperitoneal
- ITT, insulin tolerance test
- IWAT, inguinal white adipose tissue
- KD, ketogenic diet
- Ketogenic diet
- PPARα, peroxisome proliferator-activated receptor alpha
- SEM, standard error of the mean
- SNA, sympathetic nerve activity
- SNS, sympathetic nervous system
- Sympathetic nervous system
- UCP1, uncoupling protein 1
- Weight loss
- β-Adrenergic receptors
- β-less, lacking β1, β2, β3 adrenergic receptors
Collapse
Affiliation(s)
- Nicholas Douris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bhavna N Desai
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ffolliott M Fisher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Theodore Cisu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan J Fowler
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eleen Zarebidaki
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Ngoc Ly T Nguyen
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Timothy J Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
64
|
Onishi JC, Campbell S, Moreau M, Patel F, Brooks AI, Zhou YX, Häggblom MM, Storch J. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets. MICROBIOLOGY-SGM 2017; 163:1189-1197. [PMID: 28742010 DOI: 10.1099/mic.0.000496] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined.
Collapse
Affiliation(s)
- Janet C Onishi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Sara Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | - Yin Xiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
65
|
Martin FPJ, Montoliu I, Kussmann M. Metabonomics of ageing – Towards understanding metabolism of a long and healthy life. Mech Ageing Dev 2017; 165:171-179. [DOI: 10.1016/j.mad.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022]
|
66
|
Kosinski C, Jornayvaz FR. Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies. Nutrients 2017; 9:nu9050517. [PMID: 28534852 PMCID: PMC5452247 DOI: 10.3390/nu9050517] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022] Open
Abstract
The treatment of obesity and cardiovascular diseases is one of the most difficult and important challenges nowadays. Weight loss is frequently offered as a therapy and is aimed at improving some of the components of the metabolic syndrome. Among various diets, ketogenic diets, which are very low in carbohydrates and usually high in fats and/or proteins, have gained in popularity. Results regarding the impact of such diets on cardiovascular risk factors are controversial, both in animals and humans, but some improvements notably in obesity and type 2 diabetes have been described. Unfortunately, these effects seem to be limited in time. Moreover, these diets are not totally safe and can be associated with some adverse events. Notably, in rodents, development of nonalcoholic fatty liver disease (NAFLD) and insulin resistance have been described. The aim of this review is to discuss the role of ketogenic diets on different cardiovascular risk factors in both animals and humans based on available evidence.
Collapse
Affiliation(s)
- Christophe Kosinski
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital (CHUV), Avenue de la Sallaz 8, 1011 Lausanne, Switzerland.
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
67
|
An obesogenic refined low-fat diet disrupts attentional and behavioral control processes in a vigilance task in rats. Behav Processes 2017; 138:142-151. [DOI: 10.1016/j.beproc.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 01/07/2023]
|
68
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
69
|
Wang X, Liu Q, Zhou J, Wu X, Zhu Q. β hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats. Exp Anim 2017; 66:177-182. [PMID: 28100888 PMCID: PMC5411304 DOI: 10.1538/expanim.16-0090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A high-fat, low-carbohydrate diet (KD) or calorie restriction in the form of every-other-day fasting (EODF) results in ketone body metabolism with an increasing β-hydroxybutyrate (βOHB) level. Previous studies have supported that a KD and EODF have a neuroprotective effect. However, the βOHB levels in the cerebrospinal fluid (CSF) resulting from a KD and EODF remain unknown. The aim of this study was to detect βOHB levels in rats fed a KD, EODF diet, and every-other-day ketogenic diet (EODKD) and to compare the serum βOHB level with the CSF βOHB level. Twenty-four male Sprague-Dawley rats were randomly divided into KD, EODF, EODKD, and standard diet (SD) groups. A customized food with a ratio of carbohydrates to fats of 1:4 was used in the KD and EODKD groups. The βOHB level was measured using ELISA kits in 200 µl serum and 100 µl CSF samples for each rat after feeding for 2 weeks. The KD, EODF, and EODKD resulted in a significant increase in βOHB levels in both the serum and CSF. The βOHB levels in the EODKD group were the highest. The CSF βOHB level was, on average, 69% of the serum βOHB level. There was a positive correlation between the overall βOHB levels in serum and that in cerebrospinal fluid. This study demonstrated that the KD, EODF, and EODKD resulted in ketone body metabolism, as the βOHB levels increased significantly compared with those resulting from the standard diet. Our results suggested that the serum βOHB level was an indicator of the CSF βOHB level, and that the EODKD was an effective diet to enhance ketogenic metabolism.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Spinal Surgery, Longyan First Hospital, Fujian, P.R.China
| | - Qi Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jian Zhou
- Department of Spinal Surgery, Nanchang Hongdu Hospital of TCM, Jiangxi, P.R.China
| | - Xiuhua Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qingan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
70
|
Hopkins BD, Goncalves MD, Cantley LC. Obesity and Cancer Mechanisms: Cancer Metabolism. J Clin Oncol 2016; 34:4277-4283. [PMID: 27903152 DOI: 10.1200/jco.2016.67.9712] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor for cancer development and is associated with poor prognosis in multiple tumor types. The positive energy balance linked with obesity induces a variety of systemic changes including altered levels of insulin, insulin-like growth factor-1, leptin, adiponectin, steroid hormones, and cytokines. Each of these factors alters the nutritional milieu and has the potential to create an environment that favors tumor initiation and progression. Although the complete ramifications of obesity as it relates to cancer are still unclear, there is convincing evidence that reducing the magnitude of the systemic hormonal and inflammatory changes has significant clinical benefits. This review will examine the changes that occur in the obese state and review the biologic mechanisms that connect these changes to increased cancer risk. Understanding the metabolic changes that occur in obese individuals may also help to elucidate more effective treatment options for these patients when they develop cancer. Moving forward, targeted clinical trials examining the effects of behavioral modifications such as reduced carbohydrate intake, caloric restriction, structured exercise, and/or pharmacologic interventions such as the use of metformin, in obese populations may help to reduce their cancer risk.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- All authors: Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Marcus D Goncalves
- All authors: Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Lewis C Cantley
- All authors: Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
71
|
Rajendran J, Tomašić N, Kotarsky H, Hansson E, Velagapudi V, Kallijärvi J, Fellman V. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency. Int J Mol Sci 2016; 17:E1824. [PMID: 27809283 PMCID: PMC5133825 DOI: 10.3390/ijms17111824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose) will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21) than those on standard diet (33 ± 3.8 days, n = 30), and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders.
Collapse
Affiliation(s)
- Jayasimman Rajendran
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00014 Helsinki, Finland.
- Institute of Clinical Medicine, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| | - Nikica Tomašić
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
- Department of Neonatology, Karolinska University Hospital, 17176 Solna, Sweden.
| | - Heike Kotarsky
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
| | - Eva Hansson
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
| | - Vidya Velagapudi
- Finnish Institute of Molecular Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00014 Helsinki, Finland.
| | - Vineta Fellman
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00014 Helsinki, Finland.
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, 22185 Lund, Sweden.
- Institute of Clinical medicine, Children's Hospital, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland.
| |
Collapse
|
72
|
Gavrieli A, Mantzoros CS. Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss. Endocrinol Metab (Seoul) 2016; 31:361-372. [PMID: 27469065 PMCID: PMC5053046 DOI: 10.3803/enm.2016.31.3.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022] Open
Abstract
Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss.
Collapse
Affiliation(s)
- Anna Gavrieli
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
73
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|