51
|
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12:85-104. [PMID: 32006251 PMCID: PMC7040159 DOI: 10.1007/s12551-020-00619-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides. We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is prone to false positives and negatives.
Collapse
Affiliation(s)
- Kai Gao
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Oerlemans
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Matthew R Groves
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
52
|
Kunz P, Ortale A, Mücke N, Zinner K, Hoheisel JD. Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation. Protein Eng Des Sel 2019; 32:241-249. [PMID: 31340035 DOI: 10.1093/protein/gzz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/09/2019] [Accepted: 06/29/2019] [Indexed: 12/30/2022] Open
Abstract
The antigen-binding domains of camelid heavy-chain antibodies, also called nanobodies, gained strong attention because of their unique functional and biophysical properties. They gave rise to an entire spectrum of applications in biotechnology, research and medicine. Despite several reports about reversibly refolding nanobodies, protein aggregation plays a major role in nanobody thermoresistance, asking for strategies to engineer their refolding behavior. Here, we use measurements of nanobody aggregation kinetics to validate structural features in the nanobody fold that are suppressing heat-induced nanobody aggregation. Furthermore, the kinetic measurements yielded a detailed insight into the concept of the ΔTm shift, a metric for protein aggregation propensities obtained from differential scanning fluorimetry measurements. By relating the equilibrium measurements of the ΔTm shift to the kinetic measurements of heat-induced nanobody aggregation, a distinct relationship could be identified that allows a prediction of nanobody aggregation rates from a simple equilibrium measurement of ΔTm.
Collapse
Affiliation(s)
- Patrick Kunz
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Aurelio Ortale
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Norbert Mücke
- Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Katinka Zinner
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany
| |
Collapse
|
53
|
Rainard JM, Pandarakalam GC, McElroy SP. Using Microscale Thermophoresis to Characterize Hits from High-Throughput Screening: A European Lead Factory Perspective. SLAS DISCOVERY 2019; 23:225-241. [PMID: 29460707 PMCID: PMC5824829 DOI: 10.1177/2472555217744728] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-throughput screening (HTS) is a proven method for discovering new lead matter for drug discovery and chemical biology. To maximize the likelihood of identifying genuine binders to a molecular target, and avoid wasting resources following up compounds with unproductive/nonspecific mechanisms of action, it is important to employ a range of assays during an HTS campaign that build confidence of target engagement for hit compounds. Biophysical methods that measure direct target/compound engagement have established themselves as key techniques in generating this confidence, and they are now integral to the latter stages of HTS triage at the European Lead Factory (ELF). One relatively new technique that the ELF is using is microscale thermophoresis (MST), which measures the differences in rate of movement through a temperature gradient that are caused when single molecular species form complexes. Here we provide an overview of the MST assay development workflow that the ELF employs and a perspective of our experience to date of using MST to triage the output of HTS campaigns and how it compares and contrasts with the use of other biophysical techniques.
Collapse
Affiliation(s)
- Julie M Rainard
- 1 European Screening Centre Newhouse, Biocity Scotland, University of Dundee, Newhouse, UK
| | - George C Pandarakalam
- 1 European Screening Centre Newhouse, Biocity Scotland, University of Dundee, Newhouse, UK
| | - Stuart P McElroy
- 1 European Screening Centre Newhouse, Biocity Scotland, University of Dundee, Newhouse, UK
| |
Collapse
|
54
|
Kwan TOC, Reis R, Siligardi G, Hussain R, Cheruvara H, Moraes I. Selection of Biophysical Methods for Characterisation of Membrane Proteins. Int J Mol Sci 2019; 20:E2605. [PMID: 31137900 PMCID: PMC6566885 DOI: 10.3390/ijms20102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Over the years, there have been many developments and advances in the field of integral membrane protein research. As important pharmaceutical targets, it is paramount to understand the mechanisms of action that govern their structure-function relationships. However, the study of integral membrane proteins is still incredibly challenging, mostly due to their low expression and instability once extracted from the native biological membrane. Nevertheless, milligrams of pure, stable, and functional protein are always required for biochemical and structural studies. Many modern biophysical tools are available today that provide critical information regarding to the characterisation and behaviour of integral membrane proteins in solution. These biophysical approaches play an important role in both basic research and in early-stage drug discovery processes. In this review, it is not our objective to present a comprehensive list of all existing biophysical methods, but a selection of the most useful and easily applied to basic integral membrane protein research.
Collapse
Affiliation(s)
- Tristan O C Kwan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Rosana Reis
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Harish Cheruvara
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
55
|
Lee GY, Bong JH, Kim JY, Yoo G, Park M, Kang MJ, Jose J, Pyun JC. Thermophoretic diagnosis of autoimmune diseases based on Escherichia coli with autodisplayed autoantigens. Anal Chim Acta 2019; 1055:106-114. [DOI: 10.1016/j.aca.2018.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
|
56
|
Chattopadhyay G, Varadarajan R. Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci 2019; 28:1127-1134. [PMID: 30993730 DOI: 10.1002/pro.3622] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
With advancements in high-throughput generation of phenotypic data on mutant proteins, it has become important to individually characterize different proteins or their variants rapidly and with minimal sample consumption. We have made use of a nano differential scanning fluorimetric device, from NanoTemper technologies, to rapidly carry out isothermal chemical denaturation and measure folding/unfolding kinetics of proteins and compared these to corresponding data obtained from conventional spectrofluorimetry. We show that using sample volumes 10-50-fold lower than with conventional fluorimetric techniques, one can rapidly and accurately measure thermodynamic and kinetic stability, as well as folding/unfolding kinetics. This method also facilitates characterization of proteins that are difficult to express and purify.
Collapse
Affiliation(s)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
57
|
Xu H, Clairfeuille T, Jao CC, Ho H, Sweeney Z, Payandeh J, Koth CM. A Flexible and Scalable High-Throughput Platform for Recombinant Membrane Protein Production. Methods Mol Biol 2019; 2025:389-402. [PMID: 31267463 DOI: 10.1007/978-1-4939-9624-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Integral membrane proteins (MP) are implicated in many disease processes and are the primary targets of numerous marketed drugs. Despite recent advances in the areas of MP solubilization, stabilization, and reconstitution, it remains a time-consuming task to identify the combination of constructs and purification conditions that will enable MP structure-function studies outside of the lipid bilayer. In this chapter, we describe a strategy for rapidly identifying and optimizing the solubilization and purification conditions for nearly any recombinant MP, based on the use of a noninvasive fluorescent probe (His-Glow) that specifically binds to the common hexahistidine affinity tag of expressed targets. This His-Glow approach permits fluorescent size-exclusion chromatography (FSEC) without the need for green fluorescent protein (GFP) fusion. A two-stage detergent screening strategy is employed at the solubilization stage, whereby appropriate detergent families are identified first, followed by optimization within these families. Screening up to 96 unique combinations of solubilization conditions and constructs can be achieved in less than 24 h. At the outset of each new project, we screen six different detergents for each construct and the subsequent implementation of a simple thermostability challenge further aids in the identification of constructs and conditions suitable for large-scale production. Our strategy streamlines the parallel optimization of appropriate production conditions for multiple MP targets to rapidly enable downstream biochemical, immunization, or structural studies.
Collapse
Affiliation(s)
- Hui Xu
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christine C Jao
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Hoangdung Ho
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Zachary Sweeney
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Christopher M Koth
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
58
|
Magnusson AO, Szekrenyi A, Joosten HJ, Finnigan J, Charnock S, Fessner WD. nanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J 2018; 286:184-204. [PMID: 30414312 PMCID: PMC7379660 DOI: 10.1111/febs.14696] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Enzymes are attractive tools for synthetic applications. To be viable for industrial use, enzymes need sufficient stability towards the desired reaction conditions such as high substrate and cosolvent concentration, non-neutral pH and elevated temperatures. Thermal stability is an attractive feature not only because it allows for protein purification by thermal treatment and higher process temperatures but also due to the associated higher stability against other destabilising factors. Therefore, high-throughput screening (HTS) methods are desirable for the identification of thermostable biocatalysts by discovery from nature or by protein engineering but current methods have low throughput and require time-demanding purification of protein samples. We found that nanoscale differential scanning fluorimetry (nanoDSF) is a valuable tool to rapidly and reliably determine melting points of native proteins. To avoid intrinsic problems posed by crude protein extracts, hypotonic extraction of overexpressed protein from bacterial host cells resulted in higher sample quality and accurate manual determination of several hundred melting temperatures per day. We have probed the use of nanoDSF for HTS of a phylogenetically diverse aldolase library to identify novel thermostable enzymes from metagenomic sources and for the rapid measurements of variants from saturation mutagenesis. The feasibility of nanoDSF for the screening of synthetic reaction conditions was proved by studies of cosolvent tolerance, which showed protein melting temperature to decrease linearly with increasing cosolvent concentration for all combinations of six enzymes and eight water-miscible cosolvents investigated, and of substrate affinity, which showed stabilisation of hexokinase by sugars in the absence of ATP cofactor. ENZYMES: Alcohol dehydrogenase (NADP+ ) (EC 1.1.1.2), transketolase (EC 2.2.1.1), hexokinase (EC 2.7.1.1), 2-deoxyribose-5-phosphate aldolase (EC 4.1.2.4), fructose-6-phosphate aldolase (EC 4.1.2.n).
Collapse
Affiliation(s)
- Anders O Magnusson
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Germany
| | - Anna Szekrenyi
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Germany
| | | | | | | | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Germany
| |
Collapse
|
59
|
Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain. Sci Rep 2018; 8:9272. [PMID: 29915179 PMCID: PMC6006247 DOI: 10.1038/s41598-018-27606-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.
Collapse
|
60
|
Kopp MR, Arosio P. Microfluidic Approaches for the Characterization of Therapeutic Proteins. J Pharm Sci 2018; 107:1228-1236. [DOI: 10.1016/j.xphs.2018.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/01/2017] [Accepted: 01/03/2018] [Indexed: 01/31/2023]
|
61
|
Wanner R, Breitsprecher D, Duhr S, Baaske P, Winter G. Thermo-Optical Protein Characterization for Straightforward Preformulation Development. J Pharm Sci 2017. [DOI: 10.1016/j.xphs.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
62
|
Sommer M, Xie H, Michel H. Pseudomonas stutzeri as an alternative host for membrane proteins. Microb Cell Fact 2017; 16:157. [PMID: 28931397 PMCID: PMC5607611 DOI: 10.1186/s12934-017-0771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that in some cases hosts other than E. coli are more appropriate for certain target proteins. Results Here we have developed an expression system for the heterologous production of membrane proteins using a single plasmid-based approach. The gammaproteobacterium Pseudomonas stutzeri was employed as a new production host. We investigated several basic microbiological features crucial for its handling in the laboratory. The organism belonging to bio-safety level one is a close relative of the human pathogen Pseudomonas aeruginosa. Pseudomonas stutzeri is comparable to E. coli regarding its growth and cultivation conditions. Several effective antibiotics were identified and a protocol for plasmid transformation was established. We present a workflow including cloning of the target proteins, small-scale screening for the best production conditions and finally large-scale production in the milligram range. The GFP folding assay was used for the rapid analysis of protein folding states. In summary, out of 36 heterologous target proteins, 20 were produced at high yields. Additionally, eight transporters derived from P. aeruginosa could be obtained with high yields. Upscaling of protein production and purification of a Gluconate:H+ Symporter (GntP) family transporter (STM2913) from Salmonella enterica to high purity was demonstrated. Conclusions Pseudomonas stutzeri is an alternative production host for membrane proteins with success rates comparable to E. coli. However, some proteins were produced with high yields in P. stutzeri but not in E. coli and vice versa. Therefore, P. stutzeri extends the spectrum of useful production hosts for membrane proteins and increases the success rate for highly produced proteins. Using the new pL2020 vector no additional cloning is required to test both hosts in parallel. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Sommer
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Hao Xie
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
63
|
Ries F, Carius Y, Rohr M, Gries K, Keller S, Lancaster CRD, Willmund F. Structural and molecular comparison of bacterial and eukaryotic trigger factors. Sci Rep 2017; 7:10680. [PMID: 28878399 PMCID: PMC5587573 DOI: 10.1038/s41598-017-10625-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/11/2017] [Indexed: 12/04/2022] Open
Abstract
A considerably small fraction of approximately 60–100 proteins of all chloroplast proteins are encoded by the plastid genome. Many of these proteins are major subunits of complexes with central functions within plastids. In comparison with other subcellular compartments and bacteria, many steps of chloroplast protein biogenesis are not well understood. We report here on the first study of chloroplast-localised trigger factor. In bacteria, this molecular chaperone is known to associate with translating ribosomes to facilitate the folding of newly synthesized proteins. Chloroplast trigger factors of the unicellular green algae Chlamydomonas reinhardtii and the vascular land plant Arabidopsis thaliana were characterized by biophysical and structural methods and compared to the Escherichia coli isoform. We show that chloroplast trigger factor is mainly monomeric and displays only moderate stability against thermal unfolding even under mild heat-stress conditions. The global shape and conformation of these proteins were determined in solution by small-angle X-ray scattering and subsequent ab initio modelling. As observed for bacteria, plastidic trigger factors have a dragon-like structure, albeit with slightly altered domain arrangement and flexibility. This structural conservation despite low amino acid sequence homology illustrates a remarkable evolutionary robustness of chaperone conformations across various kingdoms of life.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, 67663, Kaiserslautern, Germany
| | - Yvonne Carius
- Department of Structural Biology, Saarland University, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine Building 60, 66421, Homburg, Germany
| | - Marina Rohr
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, 67663, Kaiserslautern, Germany
| | - Karin Gries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, 67663, Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - C Roy D Lancaster
- Department of Structural Biology, Saarland University, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine Building 60, 66421, Homburg, Germany.
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, 67663, Kaiserslautern, Germany.
| |
Collapse
|
64
|
Oertwig K, Ulbricht D, Hanke S, Pippel J, Bellmann-Sickert K, Sträter N, Heiker JT. Glycosylation of human vaspin (SERPINA12) and its impact on serpin activity, heparin binding and thermal stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1188-1194. [PMID: 28668641 DOI: 10.1016/j.bbapap.2017.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
Vaspin is a glycoprotein with three predicted glycosylation sites at asparagine residues located in proximity to the reactive center loop and close to domains that play important roles in conformational changes underlying serpin function. In this study, we have investigated the glycosylation of human vaspin and its effects on biochemical properties relevant to vaspin function. We show that vaspin is modified at all three sites and biochemical data demonstrate that glycosylation does not hinder inhibition of the target protease kallikrein 7. Although binding affinity to heparin is slightly decreased, the protease inhibition reaction is still significantly accelerated in the presence of heparin. Glycosylation did not affect thermal stability.
Collapse
Affiliation(s)
- Kathrin Oertwig
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - David Ulbricht
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Stefanie Hanke
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jan Pippel
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - John T Heiker
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
65
|
Abstract
BACKGROUND Variable domains of camelid heavy-chain antibodies, commonly named nanobodies, have high biotechnological potential. In view of their broad range of applications in research, diagnostics and therapy, engineering their stability is of particular interest. One important aspect is the improvement of thermostability, because it can have immediate effects on conformational stability, protease resistance and aggregation propensity of the protein. METHODS We analyzed the sequences and thermostabilities of 78 purified nanobody binders. From this data, potentially stabilizing amino acid variations were identified and studied experimentally. RESULTS Some mutations improved the stability of nanobodies by up to 6.1°C, with an average of 2.3°C across eight modified nanobodies. The stabilizing mechanism involves an improvement of both conformational stability and aggregation behavior, explaining the variable degree of stabilization in individual molecules. In some instances, variations predicted to be stabilizing actually led to thermal destabilization of the proteins. The reasons for this contradiction between prediction and experiment were investigated. CONCLUSIONS The results reveal a mutational strategy to improve the biophysical behavior of nanobody binders and indicate a species-specificity of nanobody architecture. GENERAL SIGNIFICANCE This study illustrates the potential and limitations of engineering nanobody thermostability by merging sequence information with stability data, an aspect that is becoming increasingly important with the recent development of high-throughput biophysical methods.
Collapse
|
66
|
Crystal structures of an archaeal thymidylate kinase from Sulfolobus tokodaii provide insights into the role of a conserved active site Arginine residue. J Struct Biol 2017; 197:236-249. [DOI: 10.1016/j.jsb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022]
|
67
|
Shukla E, Agrawal SB, Gaikwad SM. Conformational and functional transitions and in silico analysis of a serine protease from Conidiobolus brefeldianus (MTCC 5185). Int J Biol Macromol 2017; 98:387-397. [PMID: 28153464 DOI: 10.1016/j.ijbiomac.2017.01.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 11/25/2022]
Abstract
This work describes functional and structural transitions of a novel protease isolated from Conidiobolus brefeldianus MTCC 5185 (Cprot), in detail using biophysical and bioinformatics tools. The commercial importance of Cprot in silk and leather industries made it an interesting candidate for structural investigations. Cprot possesses 8.2% α-helix, 31.1% β-sheet and 23.8% turns. The enzyme was found to be active over a wide pH range and up to 55°C. The protease was also stable in organic solvents up to 50% (v/v) concentration of alcohols and DMSO for >24h and in 2M guanidine hydrochloride for >12h. Cprot was also resistant to trypsin, chymotrypsin, proteinase K and fluorinated alcohols (5-10%). The melting temperatures observed for the native Cprot and for the enzyme treated under various stress conditions correlated well with the corresponding structural and functional transitions obtained. The structural information was supported by the homology model of its closest homologue from C. coronatus; revealing its similarity to PA clan of proteases (Proteases of mixed nucleophile, superfamily A), with His-64, Asp-113 and Ser-208 as putative catalytic triad. Three tryptophan residues in Cprot are surrounded by positively charged residues, as evident from solute quenching studies and homology model.
Collapse
Affiliation(s)
- Ekta Shukla
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sanskruthi B Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sushama M Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India.
| |
Collapse
|
68
|
Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein. Appl Microbiol Biotechnol 2016; 101:1889-1898. [PMID: 27853858 DOI: 10.1007/s00253-016-7973-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Demonstration of reproducibility and consistency of process and product quality is one of the most crucial issues in using transient gene expression (TGE) technology for biopharmaceutical development. In this study, we challenged the production consistency of TGE by expressing nine batches of recombinant IgG antibody in human embryonic kidney 293 cells to evaluate reproducibility including viable cell density, viability, apoptotic status, and antibody yield in cell culture supernatant. Product quality including isoelectric point, binding affinity, secondary structure, and thermal stability was assessed as well. In addition, major glycan forms of antibody from different batches of production were compared to demonstrate glycosylation consistency. Glycan compositions of the antibody harvested at different time periods were also measured to illustrate N-glycan distribution over the culture time. From the results, it has been demonstrated that different TGE batches are reproducible from lot to lot in overall cell growth, product yield, and product qualities including isoelectric point, binding affinity, secondary structure, and thermal stability. Furthermore, major N-glycan compositions are consistent among different TGE batches and conserved during cell culture time.
Collapse
|
69
|
Frauenfeld J, Löving R, Armache JP, Sonnen AFP, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JAG, Garoff H, Löw C, Cheng Y, Nordlund P. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 2016; 13:345-51. [PMID: 26950744 PMCID: PMC4894539 DOI: 10.1038/nmeth.3801] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
A limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies. Here we present a saposin-lipoprotein nanoparticle system, Salipro, which allows for the reconstitution of membrane proteins in a lipid environment that is stabilized by a scaffold of saposin proteins. We demonstrate the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. Our approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and allowed us to stabilize the HIV envelope glycoprotein in a functional state.
Collapse
Affiliation(s)
- Jens Frauenfeld
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robin Löving
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jean-Paul Armache
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Andreas F-P Sonnen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Fatma Guettou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per Moberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lin Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Technology and Health, Royal Institute of Technology, Novum, Huddinge, Sweden
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Technology and Health, Royal Institute of Technology, Novum, Huddinge, Sweden
| | | | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Henrik Garoff
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,EMBL Hamburg, Hamburg, Germany
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, USA
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Abstract
Biocatalysis is a growing area of synthetic and process chemistry with the ability to deliver not only improved processes for the synthesis of existing compounds, but also new routes to new compounds.
Collapse
Affiliation(s)
- R. H. Ringborg
- CAPEC-PROCESS Research Center
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - J. M. Woodley
- CAPEC-PROCESS Research Center
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| |
Collapse
|
71
|
|