51
|
Betts Z, Dickson AJ. Ubiquitous Chromatin Opening Elements (UCOEs) effect on transgene position and expression stability in CHO cells following methotrexate (MTX) amplification. Biotechnol J 2016; 11:554-64. [DOI: 10.1002/biot.201500159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/30/2015] [Accepted: 12/02/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Zeynep Betts
- The University of Manchester, Faculty of Life Sciences, Michael Smith Building; Manchester United Kingdom
| | - Alan J. Dickson
- The University of Manchester, Faculty of Life Sciences, Michael Smith Building; Manchester United Kingdom
| |
Collapse
|
52
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
53
|
Jamnikar U, Nikolic P, Belic A, Blas M, Gaser D, Francky A, Laux H, Blejec A, Baebler S, Gruden K. Transcriptome study and identification of potential marker genes related to the stable expression of recombinant proteins in CHO clones. BMC Biotechnol 2015; 15:98. [PMID: 26499110 PMCID: PMC4812793 DOI: 10.1186/s12896-015-0218-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese hamster ovary (CHO) cells have become the host of choice for the production of recombinant proteins, due to their capacity for correct protein folding, assembly, and posttranslational modifications. The most widely used system for recombinant proteins is the gene amplification procedure that uses the CHO-Dhfr expression system. However, CHO cells are known to have a very unstable karyotype. This is due to chromosome rearrangements that can arise from translocations and homologous recombination, especially when cells with the CHO-Dhfr expression system are treated with methotrexate hydrate. The present method used in the industry for testing clones for their long-term stability of recombinant protein production is empirical, and it involves their cultivation over extended periods of time prior to the selection of the most suitable clone for further bioprocess development. The aim of the present study was the identification of marker genes that can predict stable expression of recombinant genes in particular clones early in the development stage. RESULTS The transcriptome profiles of CHO clones with stable and unstable recombinant protein production were investigated over 10-weeks of cultivation, using a DNA microarray. We identified 14 genes that were differentially expressed between the stable and unstable clones already at 2 weeks from the beginning of the cultivation. Their expression was validated by reverse-transcription quantitative real-time PCR (RT-qPCR). Furthermore, the k-nearest neighbour algorithm approach shows that the combination of the gene expression patterns of only five of these 14 genes is sufficient to predict stable recombinant protein production in clones in the early phases of cell-line development. CONCLUSIONS The exact molecular mechanisms that cause unstable recombinant protein production are not fully understood. However, the expression profiles of some genes in clones with stable and unstable recombinant protein production allow prediction of such instability early in the cell-line development stage. We have thus developed a proof-of-concept for a novel approach to eliminate unstable clones in the CHO-Dhfr expression system, which saves time and labour-intensive work in cell-line development.
Collapse
Affiliation(s)
- Uros Jamnikar
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Petra Nikolic
- Jozef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.
| | - Ales Belic
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Marjanca Blas
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Dominik Gaser
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Andrej Francky
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Holger Laux
- Novartis Pharma AG, WKL-681.1.08, 4002, Basel, Switzerland.
| | - Andrej Blejec
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Spela Baebler
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Kristina Gruden
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
54
|
Harreither E, Hackl M, Pichler J, Shridhar S, Auer N, Łabaj PP, Scheideler M, Karbiener M, Grillari J, Kreil DP, Borth N. Microarray profiling of preselected CHO host cell subclones identifies gene expression patterns associated with increased production capacity. Biotechnol J 2015; 10:1625-38. [PMID: 26315449 DOI: 10.1002/biot.201400857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023]
Abstract
Over the last three decades, product yields from CHO cells have increased dramatically, yet specific productivity (qP) remains a limiting factor. In a previous study, using repeated cell-sorting, we have established different host cell subclones that show superior transient qP over their respective parental cell lines (CHO-K1, CHO-S). The transcriptome of the resulting six cell lines in different biological states (untransfected, mock transfected, plasmid transfected) was first explored by hierarchical clustering and indicated that gene activity associated with increased qP did not stem from a certain cellular state but seemed to be inherent for a high qP host line. We then performed a novel gene regression analysis identifying drivers for an increase in qP. Genes significantly implicated were first systematically tested for enrichment of GO terms using a Bayesian approach incorporating the hierarchical structure of the GO term tree. Results indicated that specific cellular components such as nucleus, ER, and Golgi are relevant for cellular productivity. This was complemented by targeted GSA that tested functionally homogeneous, manually curated subsets of KEGG pathways known to be involved in transcription, translation, and protein processing. Significantly implicated pathways included mRNA surveillance, proteasome, protein processing in the ER and SNARE interactions in vesicular transport.
Collapse
Affiliation(s)
- Eva Harreither
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Matthias Hackl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Pichler
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Smriti Shridhar
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paweł P Łabaj
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcel Scheideler
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Michael Karbiener
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David P Kreil
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria. .,ACIB GmbH, Graz, Austria.
| |
Collapse
|
55
|
Kang SY, Kim YG, Lee HW, Lee EG. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr. Appl Microbiol Biotechnol 2015; 99:10117-26. [PMID: 26245680 DOI: 10.1007/s00253-015-6856-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022]
Abstract
Gene amplification using dihydrofolate reductase gene (dhfr) and methotrexate (MTX) is widely used for recombinant protein production in mammalian cells and is typically conducted in DHFR-deficient Chinese hamster ovary (CHO) cell lines. Generation of DHFR-deficient cells can be achieved by an expression vector incorporating short hairpin RNA (shRNA) that targets the 3'-untranslated region (UTR) of endogenous dhfr. Thus, shRNAs were designed to target the 3'-UTR of endogenous dhfr, and shRNA-2 efficiently down-regulated dhfr expression in CHO-K1 cells. A single gene copy of shRNA-2 also decreased the translational level of DHFR by 80% in Flp-In CHO cells. shRNA-2 was then incorporated into a plasmid vector expressing human erythropoietin (EPO) and an exogenous DHFR to develop EPO-producing cells in the Flp-In system. The specific EPO productivity (q EPO) was enhanced by stepwise increments of MTX concentration, and differences in the amplification rate were observed in Flp-In CHO cells that expressed shRNA-2. In addition, the q EPO increased by more than 2.5-fold in the presence of 500 nM MTX. The mRNA expression level and gene copy numbers of dhfr were correlated with increased productivity in the cells, which is influenced by inhibition of endogenous dhfr. This study reveals that an expression vector including shRNA that targets the 3'-UTR of endogenous dhfr can enhance the transgene amplification rate and productivity by generating DHFR-deficient cells. This approach may be applied for amplifying the foreign gene in wild-type cell lines as a versatile single-plasmid vector.
Collapse
Affiliation(s)
- Shin-Young Kang
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea
| | - Yeon-Gu Kim
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 363-883, Republic of Korea
| | - Hong Weon Lee
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 363-883, Republic of Korea
| | - Eun Gyo Lee
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea. .,Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 363-883, Republic of Korea.
| |
Collapse
|
56
|
Qi Y, Xu Y, Pan Y, Li S, Li B, Pan M, Zhang S, Li Y. Overexpression and purification of HSV-2 glycoprotein D in suspension CHO cells with serum-free medium and immunogenicity analysis. Biotechnol Appl Biochem 2015; 63:312-9. [DOI: 10.1002/bab.1386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/12/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Qi
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Yueyue Xu
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
- Department of Biochemistry and Molecular Biology; School of Preclinical Medicine; Nanjing Medical University; Nanjing People's Republic of China
| | - Ying Pan
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Suqin Li
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Bingjun Li
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| | - Mingjie Pan
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
- Department of Biochemistry and Molecular Biology; School of Preclinical Medicine; Nanjing Medical University; Nanjing People's Republic of China
| | - Shumin Zhang
- National Institutes for Food and Drug Control; Beijing People's Republic of China
| | - Yuexi Li
- Huadong Research Institute for Medicine and Biotechniques; Nanjing People's Republic of China
| |
Collapse
|
57
|
Kremkow BG, Baik JY, MacDonald ML, Lee KH. CHOgenome.org 2.0: Genome resources and website updates. Biotechnol J 2015; 10:931-8. [DOI: 10.1002/biot.201400646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/20/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
|
58
|
Tan JG, Lee YY, Wang T, Yap MGS, Tan TW, Ng SK. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Biotechnol J 2015; 10:790-800. [DOI: 10.1002/biot.201400764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/26/2015] [Accepted: 03/03/2015] [Indexed: 02/03/2023]
|
59
|
Toward product attribute control: developments from genome sequencing. Curr Opin Biotechnol 2014; 30:40-4. [DOI: 10.1016/j.copbio.2014.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/16/2023]
|
60
|
Orlova NA, Kovnir SV, Hodak JA, Vorobiev II, Gabibov AG, Skryabin KG. Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells. BMC Biotechnol 2014; 14:56. [PMID: 24929670 PMCID: PMC4067061 DOI: 10.1186/1472-6750-14-56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Establishing highly productive clonal cell lines with constant productivity over 2-3 months of continuous culture remains a tedious task requiring the screening of tens of thousands of clonal colonies. In addition, long-term cultivation of many candidate lines derived in the absence of drug selection pressure is necessary. Expression vectors based on the elongation factor-1 alpha (EEF1A) gene and the dihydrofolate reductase (DHFR) selection marker (with separate promoters) can be used to obtain highly productive populations of stably transfected cells in the selection medium, but they have not been tested for their ability to support target gene amplification under gradually increasing methotrexate pressure. RESULTS We have modified EEF1A-based vectors by linking the DHFR selection marker to the target gene in the bicistronic RNA, shortening the overall plasmid size, and adding an Epstein-Barr virus terminal repeat fragment (EBVTR) element. Presence of the EBVTR element increased the rate of stable transfection by the plasmid by 24 times that of the EBVTR-minus control and improved the rate of methotrexate-driven gene amplification. The mean expression level of the enhanced green fluorescent protein (eGFP) used herein as a model protein, increased up to eight-fold using a single round of amplification in the case of adherent colonies formation and up to 4.5-fold in the case of suspension polyclonal cultures. Several eGFP-expressing cell populations produced using vectors with antibiotic resistance markers instead of the DHFR marker were compared with each other. Stable transfection of Chinese hamster ovary (CHO) DG44 cells by the p1.2-Hygro-eGFP plasmid (containing a hygromycin resistance marker) generated highest eGFP expression levels of up to 8.9% of the total cytoplasmic protein, with less than 5% of the cell population being eGFP-negative. CONCLUSIONS The p1.1 vector was very effective for stable transfection of CHO cells and capable of rapid MTX-driven target gene amplification, while p1.2-Hygro achieved similar eGFP expression levels as p1.1. The set of vectors we have developed should speed-up the process of generating highly productive clonal cell lines while substantially decreasing the associated experimental effort.
Collapse
Affiliation(s)
| | | | | | - Ivan I Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Centre "Bioengineering", Russian Academy of Sciences, 60-letija Oktyabrya 7, Moscow 117312, Russia.
| | | | | |
Collapse
|
61
|
Matrix and backstage: cellular substrates for viral vaccines. Viruses 2014; 6:1672-700. [PMID: 24732259 PMCID: PMC4014716 DOI: 10.3390/v6041672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin.
Collapse
|
62
|
|
63
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
64
|
Edros RZ, McDonnell S, Al-Rubeai M. Using molecular markers to characterize productivity in Chinese hamster ovary cell lines. PLoS One 2013; 8:e75935. [PMID: 24146795 PMCID: PMC3798306 DOI: 10.1371/journal.pone.0075935] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022] Open
Abstract
Selection of high producing cell lines to produce maximum product concentration is a challenging and time consuming task for the biopharmaceutical industry. The identification of early markers to predict high productivity will significantly reduce the time required for new cell line development. This study identifies candidate determinants of high productivity by profiling the molecular and morphological characteristics of a panel of six Chinese Hamster Ovary (CHO) stable cell lines with varying recombinant monoclonal antibody productivity levels ranging between 2 and 50 pg/cell/day. We examined the correlation between molecular parameters and specific productivity (qp) throughout the growth phase of batch cultures. Results were statistically analyzed using Pearson correlation coefficient. Our study revealed that, overall, heavy chain (HC) mRNA had the strongest association with qp followed by light chain (LC) mRNA, HC intracellular polypeptides, and intracellular antibodies. A significant correlation was also obtained between qp and the following molecular markers: growth rate, biomass, endoplasmic reticulum, and LC polypeptides. However, in these cases, the correlation was not observed at all-time points throughout the growth phase. The repeated sampling throughout culture duration had enabled more accurate predictions of productivity in comparison to performing a single-point measurement. Since the correlation varied from day to day during batch cultivation, single-point measurement was of limited use in making a reliable prediction.
Collapse
Affiliation(s)
- Raihana Z. Edros
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Susan McDonnell
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
65
|
|
66
|
Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 2013; 31:759-65. [PMID: 23873082 DOI: 10.1038/nbt.2624] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 06/03/2013] [Indexed: 12/19/2022]
Abstract
Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages. This analysis identified hamster genes missing in different CHO cell lines, and detected >3.7 million single-nucleotide polymorphisms (SNPs), 551,240 indels and 7,063 copy number variations. Many mutations are located in genes with functions relevant to bioprocessing, such as apoptosis. The details of this genetic diversity highlight the value of the hamster genome as the reference upon which CHO cells can be studied and engineered for protein production.
Collapse
|
67
|
Maccani A, Ernst W, Grabherr R. Whole genome sequencing improves estimation of nuclear DNA content of Chinese hamster ovary cells. Cytometry A 2013; 83:893-5. [PMID: 23843198 DOI: 10.1002/cyto.a.22331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Maccani
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | | | | |
Collapse
|
68
|
MAR elements and transposons for improved transgene integration and expression. PLoS One 2013; 8:e62784. [PMID: 23646143 PMCID: PMC3640020 DOI: 10.1371/journal.pone.0062784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/24/2013] [Indexed: 01/01/2023] Open
Abstract
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1–68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1–68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2–4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.
Collapse
|
69
|
Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 2013; 6:579-603. [PMID: 24276168 PMCID: PMC3817724 DOI: 10.3390/ph6050579] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA) annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX) amplification technology or the glutamine synthetase (GS) system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.
Collapse
|
70
|
Lanza AM, Kim DS, Alper HS. Evaluating the influence of selection markers on obtaining selected pools and stable cell lines in human cells. Biotechnol J 2013; 8:811-21. [PMID: 23450727 DOI: 10.1002/biot.201200364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/29/2013] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
Selection markers are common genetic elements used in recombinant cell line development. While several selection systems exist for use in mammalian cell lines, no previous study has comprehensively evaluated their performance in the isolation of recombinant populations and cell lines. Here we examine four antibiotics, hygromycin B, neomycin, puromycin, and Zeocin™, and their corresponding selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell lines, HT1080 and HEK293. We identify Zeocin™ as the best selection agent for cell line development in human cells. In comparison to the other selection systems, Zeocin™ is able to identify populations with higher fluorescence levels, which in turn leads to the isolation of better clonal populations and less false positives. Furthermore, Zeocin™-resistant populations exhibit better transgene stability in the absence of selection pressure compared to other selection agents. All isolated Zeocin™-resistant clones, regardless of cell type, exhibited GFP expression. By comparison, only 79% of hygromycin B-resistant, 47% of neomycin-resistant, and 14% of puromycin-resistant clones expressed GFP. Based on these results, we rank Zeocin™ > hygromycin B ∼ puromycin > neomycin for cell line development in human cells. Furthermore, this study demonstrates that selection marker choice does indeed impact cell line development.
Collapse
Affiliation(s)
- Amanda M Lanza
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
71
|
|
72
|
Du Toit J, van der Westhuizen FH, Pretorius PJ. Investigating the effects of the presence of foreign DNA on DNA methylation and DNA repair events in cultured eukaryotic cells. Gene 2012; 512:117-22. [PMID: 23063738 DOI: 10.1016/j.gene.2012.09.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/17/2012] [Accepted: 09/29/2012] [Indexed: 11/15/2022]
Abstract
Methylation of DNA in eukaryotic cells, global as well as gene-specific, is affected by endogenous and endogenous factors. In this paper, it is reported that deviations in DNA methylation and expression of genes involved in DNA repair and the cell cycle are affected in 143B cultured cells containing an expression vector. Global DNA methylation analysis with cytosine-extension assay revealed a decreased global DNA methylation in the presence of the expression vector. Less promoter-specific methylation, as measured by bisulfite-MS PCR, was observed for MGMT and p16INK4a in vector-containing cells. Comet assay investigations revealed a negative effect on the DNA repair capacity of both BER and NER in Complex III compromised cells. This was reflected in the down-regulation of hOGG1 and ERCC1 expression. The results presented in this paper support the existence of a strong relationship between impaired mitochondrial function and deviations in DNA methylation and extend this relationship to impaired DNA repair.
Collapse
Affiliation(s)
- J Du Toit
- Centre of Human Metabonomics, North-West University, Potchefstroom 2520, South Africa.
| | | | | |
Collapse
|
73
|
Bailey LA, Hatton D, Field R, Dickson AJ. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng 2012; 109:2093-103. [PMID: 22896849 DOI: 10.1002/bit.24485] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chinese hamster ovary (CHO) cell lines are frequently used as hosts for the production of recombinant therapeutics, such as monoclonal antibodies, due to their ability to perform correct post-translational modifications. A potential issue when utilizing CHO cells for therapeutic protein production is the selection of cell lines that do not retain stable protein expression during long-term culture (LTC). Instability of expression impairs process yields, effective usage of time and money, and regulatory approval for the desired therapeutic. In this study, we investigated a model unstable GS-CHO cell line over a continuous period of approximately 100 generations to determine markers of mechanisms that underlie instability. In this cell line, stability of expression was retained for 40-50 generations after which time a 40% loss in antibody production was detected. The instability observed within the cell line was not due to a loss in recombinant gene copy number or decreased expression of mRNA encoding for recombinant antibody H or L chain, but was associated with lower cumulative cell time values and an apparent increased sensitivity to cellular stress (exemplified by increased mRNA expression of the stress-inducible gene GADD153). Changes were also noted in cellular metabolism during LTC (alterations to extracellular alanine accumulation, and enhanced rates of glucose and lactate utilization, during the exponential and decline phase of batch culture, respectively). Our data indicates the breadth of changes that may occur to recombinant CHO cells during LTC ranging from instability of recombinant target production at a post-mRNA level to metabolic events. Definition of the mechanisms, regulatory events, and linkages underpinning cellular phenotype changes require further detailed analysis at a molecular level.
Collapse
Affiliation(s)
- Laura A Bailey
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
74
|
Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC. Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 2012; 110:260-74. [DOI: 10.1002/bit.24621] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/03/2012] [Accepted: 07/20/2012] [Indexed: 12/19/2022]
|
75
|
Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Müller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Pühler A, Clynes M, Borth N. Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics. Biotechnol Bioeng 2012; 109:1386-94. [PMID: 22389098 DOI: 10.1002/bit.24476] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/30/2011] [Accepted: 02/06/2012] [Indexed: 11/08/2022]
Abstract
Recently released sequence information on Chinese hamster ovary (CHO) cells promises to not only facilitate our understanding of these industrially important cell factories through direct analysis of the sequence, but also to enhance existing methodologies and allow new tools to be developed. In this article we demonstrate the utilization of CHO specific sequence information to improve mass spectrometry (MS) based proteomic identification. The use of various CHO specific databases enabled the identification of 282 additional proteins, thus increasing the total number of identified proteins by 40-50%, depending on the sample source and methods used. In addition, a considerable portion of those proteins that were identified previously based on inter-species sequence homology were now identified by a larger number of peptides matched, thus increasing the confidence of identification. The new sequence information offers improved interpretation of proteomic analyses and will, in the years to come, prove vital to unraveling the CHO proteome.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Ahmed I, Kaspar B, Sharma U. Biosimilars: Impact of Biologic Product Life Cycle and European Experience on the Regulatory Trajectory in the United States. Clin Ther 2012; 34:400-19. [DOI: 10.1016/j.clinthera.2011.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
|
77
|
He L, Winterrowd C, Kadura I, Frye C. Transgene copy number distribution profiles in recombinant CHO cell lines revealed by single cell analyses. Biotechnol Bioeng 2012; 109:1713-22. [PMID: 22234778 DOI: 10.1002/bit.24428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/11/2011] [Accepted: 12/19/2011] [Indexed: 01/29/2023]
Abstract
Clonally derived recombinant cell lines are highly desired to achieve consistent production of recombinant biotherapeutics. Despite repeated rounds of cloning by limiting dilution or single cell cloning, the resulting cell lines have often been observed to diverge, becoming a heterogeneous population and losing productivity over long-term sub-culturing. To understand the underlying molecular mechanisms, we developed quantitative polymerase chain reaction (qPCR) assays for the analysis of transgene copy number distribution in single recombinant cells isolated from Chinese hamster ovary (CHO) cell lines. Single cells were obtained by fluorescence activated cell sorting (FACS) technology and lysed directly in 96-well plates. qPCR assays were then applied to analyze the quantity and distribution of transgenes in those single cells. Results revealed multiple types of transgene copy number distribution profiles from those clonally derived CHO cell lines. The cell lines that maintained productivity over time displayed relatively constant and homogeneous transgene copy number distributions; while most of those cell lines exhibiting a loss of productivity over time showed varying degrees of transgene copy number heterogeneity and distribution drift with passaging. Some cell lines showed the existence of a significant portion of cells lacking the transgenes (referred to as negative cells in this study) and the percentage of those negative cells increased with subsequent generations. Criteria based on transgene copy number distribution profiles were developed to assess cell line suitability for clinical applications, which include (i) percentage of negative cells; (ii) standard deviation of qPCR threshold cycle (C(t) ) value, a measure of population heterogeneity; (iii) mean C(t) changes during aging, a measure of population drift. By implementing these criteria, undesirable cell lines were eliminated for further clinical and commercial applications.
Collapse
Affiliation(s)
- Luhong He
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | |
Collapse
|
78
|
Abstract
Producing recombinant mammalian proteins in native or near-native conformation is fundamental to many aspects of biology. Unfortunately, it is also a task whose outcome is extremely unpredictable. A protein that has been shaped over millions of generations of evolution for expression at a level appropriate to a specific cell type or in a particular developmental stage, may be toxic to a new host cell, or become insoluble (among many possible obstacles) when overexpressed in vitro. The object of this volume, "Protein Expression in Mammalian Cells," is to offer guidance for those who wish (or who have been forced by circumstance) to overexpress a mammalian protein in mammalian cells.
Collapse
Affiliation(s)
- James L Hartley
- Protein Expression Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
79
|
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T. Fluorescence in situ hybridization using bacterial artificial chromosome (BAC) clones for the analysis of chromosome rearrangement in Chinese hamster ovary cells. Methods 2011; 56:418-23. [PMID: 22100493 DOI: 10.1016/j.ymeth.2011.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/25/2022] Open
Abstract
Chromosome identification using Chinese hamster ovary (CHO) genomic bacterial artificial chromosome (BAC) clones has the potential to contribute to the analysis and understanding of chromosomal instability of CHO cell lines and to improve our understanding of chromosome organization during the establishment of recombinant CHO cells. Fluorescence in situ hybridization imaging using BAC clones as probes (BAC-FISH) can provide valuable information for the identification of chromosomes. In this study, we identified chromosomes and analyzed the chromosome rearrangement in CHO cells using BAC-FISH methods.
Collapse
Affiliation(s)
- Yihua Cao
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T. Construction of BAC-based physical map and analysis of chromosome rearrangement in chinese hamster ovary cell lines. Biotechnol Bioeng 2011; 109:1357-67. [DOI: 10.1002/bit.24347] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/25/2011] [Accepted: 10/11/2011] [Indexed: 01/09/2023]
|
81
|
|
82
|
Grandjean M, Girod PA, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N. High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 2011; 39:e104. [PMID: 21652640 PMCID: PMC3159483 DOI: 10.1093/nar/gkr436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.
Collapse
Affiliation(s)
- Mélanie Grandjean
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kim M, O'Callaghan PM, Droms KA, James DC. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 2011; 108:2434-46. [PMID: 21538334 DOI: 10.1002/bit.23189] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/01/2011] [Accepted: 04/14/2011] [Indexed: 12/13/2022]
Abstract
One of the most significant problems in industrial bioprocessing of recombinant proteins using engineered mammalian cells is the phenomenon of cell line instability, where a production cell line suffers a loss of specific productivity (qP). This phenomenon occurs with unpredictable kinetics and has been widely observed in Chinese hamster ovary (CHO) cell lines and with all commonly used gene expression systems. The underlying causes (both genetic and physiological) and the precise molecular mechanisms underpinning cell line instability have yet to be fully elucidated, although recombinant gene silencing and loss of recombinant gene copies have been shown to cause qP loss. In this work we have investigated the molecular mechanisms underpinning qP instability over long-term sub-culture in CHO cell lines producing recombinant IgG1 and IgG2 monoclonal antibodies (Mab's). We demonstrate that production instability derives from two primary mechanisms: (i) epigenetic--methylation-induced transcriptional silencing of the CMV promoter driving Mab gene transcription and (ii) genetic--progressive loss of recombinant Mab gene copies in a proliferating CHO cell population. We suggest that qP decline resulting from loss of recombinant genes is a consequence of the inherent genetic instability of recombinant CHO cell lines.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK; telephone: +44-114-222-7505; fax: +44-114-222-7501
| | | | | | | |
Collapse
|
84
|
Hu S, Deng L, Wang H, Zhuang Y, Chu J, Zhang S, Li Z, Guo M. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells. Cytotechnology 2011; 63:247-58. [PMID: 21298341 PMCID: PMC3081043 DOI: 10.1007/s10616-011-9336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/11/2011] [Indexed: 12/23/2022] Open
Abstract
The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.
Collapse
Affiliation(s)
- Suwen Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Huamao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, 200032 Shanghai, People’s Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Zhonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, 200032 Shanghai, People’s Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| |
Collapse
|
85
|
Hammond S, Swanberg JC, Kaplarevic M, Lee KH. Genomic sequencing and analysis of a Chinese hamster ovary cell line using Illumina sequencing technology. BMC Genomics 2011; 12:67. [PMID: 21269493 PMCID: PMC3038171 DOI: 10.1186/1471-2164-12-67] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/26/2011] [Indexed: 11/20/2022] Open
Abstract
Background Chinese hamster ovary (CHO) cells are among the most widely used hosts for therapeutic protein production. Yet few genomic resources are available to aid in engineering high-producing cell lines. Results High-throughput Illumina sequencing was used to generate a 1x genomic coverage of an engineered CHO cell line expressing secreted alkaline phosphatase (SEAP). Reference-guided alignment and assembly produced 3.57 million contigs and CHO-specific sequence information for ~ 18,000 mouse and ~ 19,000 rat orthologous genes. The majority of these genes are involved in metabolic processes, cellular signaling, and transport and represent attractive targets for cell line engineering. Conclusions This demonstrates the applicability of next-generation sequencing technology and comparative genomic analysis in the development of CHO genomic resources.
Collapse
Affiliation(s)
- Stephanie Hammond
- Department of Chemical Engineering, University of Delaware, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
86
|
Abstract
Synthetic quorum-sensing systems in mammalian cells has enabled the implementation of time- and distance-dependent bioprocesses, as well as the design of synthetic ecosystems emulating clinically important host-parasite interactions. In this chapter, we provide a detailed protocol of the design of a mammalian cell-to-cell signaling device and its integration into a mammalian quorum-sensing system for cell density-induced expression product genes. Cell-to-cell signaling is based on a sender cell, metabolically engineered for expression of alcohol dehydrogenase converting ethanol into acetaldehyde, and a receiver cell line for the dose-dependent translation of the acetaldehyde concentration into transgene expression by an acetaldehyde-responsive promoter. This protocol can be adapted easily to various cell types and transgenes for the design of versatile mammalian cell-based quorum-sensing systems.
Collapse
Affiliation(s)
- Wilfried Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | |
Collapse
|
87
|
Combs RG, Yu E, Roe S, Piatchek MB, Jones HL, Mott J, Kennard ML, Goosney DL, Monteith D. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in chinese hamster ovary cells. Biotechnol Prog 2010; 27:201-8. [DOI: 10.1002/btpr.505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/04/2010] [Indexed: 11/09/2022]
|
88
|
Yang Y, Mariati, Chusainow J, Yap MG. DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J Biotechnol 2010; 147:180-5. [DOI: 10.1016/j.jbiotec.2010.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/18/2010] [Accepted: 04/11/2010] [Indexed: 11/16/2022]
|
89
|
Comparison of hybridization methods and real-time PCR: their value in animal cell line characterization. Appl Microbiol Biotechnol 2010; 87:419-25. [DOI: 10.1007/s00253-010-2580-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 12/20/2022]
|
90
|
Lee JS, Park HJ, Kim YH, Lee GM. Protein reference mapping of dihydrofolate reductase-deficient CHO DG44 cell lines using 2-dimensional electrophoresis. Proteomics 2010; 10:2292-302. [DOI: 10.1002/pmic.200900430] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
91
|
Pilbrough W, Munro TP, Gray P. Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 2009; 4:e8432. [PMID: 20037651 PMCID: PMC2793030 DOI: 10.1371/journal.pone.0008432] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
Therapeutic glycoproteins have played a major role in the commercial success of biotechnology in the post-genomic era. But isolating recombinant mammalian cell lines for large-scale production remains costly and time-consuming, due to substantial variation and unpredictable stability of expression amongst transfected cells, requiring extensive clone screening to identify suitable high producers. Streamlining this process is of considerable interest to industry yet the underlying phenomena are still not well understood. Here we examine an antibody-expressing Chinese hamster ovary (CHO) clone at single-cell resolution using flow cytometry and vectors, which couple light and heavy chain transcription to fluorescent markers. Expression variation has traditionally been attributed to genetic heterogeneity arising from random genomic integration of vector DNA. It follows that single cell cloning should yield a homogeneous cell population. We show, in fact, that expression in a clone can be surprisingly heterogeneous (standard deviation 50 to 70% of the mean), approaching the level of variation in mixed transfectant pools, and each antibody chain varies in tandem. Phenotypic variation is fully developed within just 18 days of cloning, yet is not entirely explained by measurement noise, cell size, or the cell cycle. By monitoring the dynamic response of subpopulations and subclones, we show that cells also undergo slow stochastic fluctuations in expression (half-life 2 to 11 generations). Non-genetic diversity may therefore play a greater role in clonal variation than previously thought. This also has unexpected implications for expression stability. Stochastic gene expression noise and selection bias lead to perturbations from steady state at the time of cloning. The resulting transient response as clones reestablish their expression distribution is not ordinarily accounted for but can contribute to declines in median expression over timescales of up to 50 days. Noise minimization may therefore be a novel strategy to reduce apparent expression instability and simplify cell line selection.
Collapse
Affiliation(s)
- Warren Pilbrough
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Trent P. Munro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- ACYTE Biotech Pty Ltd, Brisbane, Queensland, Australia
- * E-mail:
| | - Peter Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- ACYTE Biotech Pty Ltd, Brisbane, Queensland, Australia
| |
Collapse
|
92
|
Omasa T, Cao Y, Park JY, Takagi Y, Kimura S, Yano H, Honda K, Asakawa S, Shimizu N, Ohtake H. Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells. Biotechnol Bioeng 2009; 104:986-94. [DOI: 10.1002/bit.22463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
93
|
Ng SK, Lin W, Sachdeva R, Wang DI, Yap MG. Vector fragmentation: Characterizing vector integrity in transfected clones by Southern blotting. Biotechnol Prog 2009; 26:11-20. [DOI: 10.1002/btpr.281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
94
|
|
95
|
Qiao J, Oumard A, Wegloehner W, Bode J. Novel Tag-and-Exchange (RMCE) Strategies Generate Master Cell Clones with Predictable and Stable Transgene Expression Properties. J Mol Biol 2009; 390:579-94. [DOI: 10.1016/j.jmb.2009.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 01/08/2023]
|
96
|
Jiang Z, Sharfstein ST. Characterization of gene localization and accessibility in DHFR-amplified CHO cells. Biotechnol Prog 2009; 25:296-300. [PMID: 19224609 DOI: 10.1002/btpr.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Efficient transcription is critical for high yields of recombinant proteins by mammalian cells. We previously reported that dihydrofolate reductase (DHFR)-mediated gene amplification can augment transcriptional rates as well as increasing gene copy numbers in Chinese hamster ovary (CHO) cells.1 In an attempt to elucidate the mechanisms involved, we have employed several approaches to identify the epigenetic differences between cell clones with varying transcriptional rates. Transgene placement and accessibility varies between unrelated parental cell clones with differential transcriptional rates. However, we did not observe any apparent epigenetic differences between parental clones and their amplified progeny, indicating undiscovered regulatory mechanisms are responsible for the augmentation of transcriptional rates upon DHFR-mediated amplification.
Collapse
Affiliation(s)
- Zhou Jiang
- Dept. of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
97
|
Engelhardt EM, Houis S, Gries T, Hilborn J, Adam M, Wurm FM. Suspension-adapted Chinese hamster ovary-derived cells expressing green fluorescent protein as a screening tool for biomaterials. Biotechnol Lett 2009; 31:1143-9. [PMID: 19360389 DOI: 10.1007/s10529-009-9997-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 11/28/2022]
Abstract
Synthetic biomaterials play an important role in regenerative medicine. To be effective they must support cell attachment and proliferation in addition to being non-toxic and non-immunogenic. We used a suspension-adapted Chinese hamster ovary-derived cell line expressing green fluorescent protein (GFP) to assess cell attachment and growth on synthetic biomaterials by direct measurement of GFP-specific fluorescence. To simplify operations, all cell cultivation steps were performed in orbitally-shaken, disposable containers. Comparative studies between this GFP assay and previously established cell quantification assays demonstrated that this novel approach is suitable for rapid screening of a large number of samples. Furthermore the utility of our assay system was confirmed by evaluation of cell growth on three polyvinylidene fluoride polymer scaffolds that differed in pore diameter and drawing conditions. The data presented here prove the general utility of GFP-expressing cell lines and orbital shaking technology for the screening of biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- E-M Engelhardt
- Laboratory of Cellular Biotechnology, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1015, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
98
|
Reflections on more than 10 years of TGE approaches. Protein Expr Purif 2009; 64:99-107. [DOI: 10.1016/j.pep.2008.10.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 11/22/2022]
|
99
|
Buchs M, Kim E, Pouliquen Y, Sachs M, Geisse S, Mahnke M, Hunt I. High-throughput insect cell protein expression applications. Methods Mol Biol 2009; 498:199-227. [PMID: 18988028 DOI: 10.1007/978-1-59745-196-3_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is one of the most efficient systems for production of recombinant proteins and consequently its application is wide-spread in industry as well as in academia. Since the early 1970s, when the first stable insect cell lines were established and the infectivity of bacu-lovirus in an in vitro culture system was demonstrated (1, 2), virtually thousands of reports have been published on the successful expression of proteins using this system as well as on method improvement. However, despite its popularity the system is labor intensive and time consuming. Moreover, adaptation of the system to multi-parallel (high-throughput) expression is much more difficult to achieve than with E. coli due to its far more complex nature. However, recent years have seen the development of strategies that have greatly enhanced the stream-lining and speed of baculovirus protein expression for increased throughput via use of automation and miniaturization. This chapter therefore tries to collate these developments in a series of protocols (which are modifications to standard procedure plus several new approaches) that will allow the user to expedite the speed and throughput of baculovirus-mediated protein expression and facilitate true multi-parallel, high-throughput protein expression profiling in insect cells. In addition we also provide a series of optimized protocols for small and large-scale transient insect cell expression that allow for both the rapid analysis of multiple constructs and the concomitant scale-up of those selected for on-going analysis. Since this approach is independent of viral propagation, the timelines for this approach are markedly shorter and offer a significant advantage over standard bacu-lovirus expression approach strategies in the context of HT applications.
Collapse
Affiliation(s)
- Mirjam Buchs
- Biologics Center, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
100
|
Dickson AJ. Importance of Genetic Environment for Recombinant Gene Expression. CELL ENGINEERING 2009. [DOI: 10.1007/978-90-481-2245-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|