51
|
Olsson M, Olsson B, Jacobson P, Thelle DS, Björkegren J, Walley A, Froguel P, Carlsson LM, Sjöholm K. Expression of the selenoprotein S (SELS) gene in subcutaneous adipose tissue and SELS genotype are associated with metabolic risk factors. Metabolism 2011; 60:114-20. [PMID: 20619427 PMCID: PMC3004038 DOI: 10.1016/j.metabol.2010.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/30/2022]
Abstract
The selenoprotein S (SELS) is a putative receptor for serum amyloid A, and recent studies have suggested that SELS may be a link between type 2 diabetes mellitus and inflammation. Genetic studies of SELS polymorphisms have revealed associations with circulating levels of inflammatory markers and hard end points of cardiovascular disease. In this study, we analyzed SELS expression in subcutaneous adipose tissue and SELS genotype in relation to metabolic risk factors. DNA microarray expression analysis was used to study the expression of SELS in lean and obese siblings from the Swedish Obese Subjects Sib Pair Study. TaqMan genotyping was used to analyze 3 polymorphisms, previously found to be associated with circulating levels of inflammatory markers, in the INTERGENE case-control study of myocardial infarction and unstable angina pectoris. Possible associations between SELS genotype and/or expression with anthropometry and measures of metabolic status were investigated. Real-time polymerase chain reaction was used to analyze the SELS expression in isolated human adipocytes incubated with insulin. In lean subjects, we found correlations between SELS gene expression in subcutaneous adipose tissue and measures of obesity (waist, P = .045; sagittal diameter, P = .031) and blood pressure (diastolic, P = .016; systolic P = .015); and in obese subjects, we found correlations with measures of obesity (body mass index, P = .03; sagittal diameter, P = .008) and glycemic control (homeostasis model assessment of insulin resistance, P = .011; insulin, P = .009) after adjusting for age and sex. The 5227GG genotype was associated with serum levels of insulin (P = .006) and homeostasis model assessment of insulin resistance (P = .007). The expression of SELS increased after insulin stimulation in isolated human adipocytes (P = .008). In this study, we found an association between both SELS gene expression in adipose tissue and SELS genotype with measures of glycemic control. In vitro studies demonstrated that the SELS gene is regulated by insulin in human subcutaneous adipocytes. This study further supports a role for SELS in the development of metabolic disease, especially in the context of insulin resistance.
Collapse
Affiliation(s)
- Maja Olsson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Bob Olsson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Peter Jacobson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Dag S. Thelle
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Department of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Johan Björkegren
- The Computational Medicine Group, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andrew Walley
- Section of Genomic Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom
| | - Philippe Froguel
- Section of Genomic Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom
- CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France
| | - Lena M.S. Carlsson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Kajsa Sjöholm
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| |
Collapse
|
52
|
Castets P, Bertrand AT, Beuvin M, Ferry A, Le Grand F, Castets M, Chazot G, Rederstorff M, Krol A, Lescure A, Romero NB, Guicheney P, Allamand V. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 2010; 20:694-704. [PMID: 21131290 DOI: 10.1093/hmg/ddq515] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenoprotein N (SelN) deficiency causes a group of inherited neuromuscular disorders termed SEPN1-related myopathies (SEPN1-RM). Although the function of SelN remains unknown, recent data demonstrated that it is dispensable for mouse embryogenesis and suggested its involvement in the regulation of ryanodine receptors and/or cellular redox homeostasis. Here, we investigate the role of SelN in satellite cell (SC) function and muscle regeneration, using the Sepn1(-/-) mouse model. Following cardiotoxin-induced injury, SelN expression was strongly up-regulated in wild-type muscles and, for the first time, we detected its endogenous expression in a subset of mononucleated cells by immunohistochemistry. We show that SelN deficiency results in a reduced basal SC pool in adult skeletal muscles and in an imperfect muscle restoration following a single injury. A dramatic depletion of the SC pool was detected after the first round of degeneration and regeneration that totally prevented subsequent regeneration of Sepn1(-/-) muscles. We demonstrate that SelN deficiency affects SC dynamics on isolated single fibres and increases the proliferation of Sepn1(-/-) muscle precursors in vivo and in vitro. Most importantly, exhaustion of the SC population was specifically identified in muscle biopsies from patients with mutations in the SEPN1 gene. In conclusion, we describe for the first time a major physiological function of SelN in skeletal muscles, as a key regulator of SC function, which likely plays a central role in the pathophysiological mechanism leading to SEPN1-RM.
Collapse
|
53
|
Zhang N, Jing W, Cheng J, Cui W, Mu Y, Li K, Lei X. Molecular characterization and NF-κB-regulated transcription of selenoprotein S from the Bama mini-pig. Mol Biol Rep 2010; 38:4281-6. [DOI: 10.1007/s11033-010-0551-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 11/17/2010] [Indexed: 01/22/2023]
|
54
|
Du S, Zhou J, Jia Y, Huang K. SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis. Arch Biochem Biophys 2010; 502:137-43. [PMID: 20692228 DOI: 10.1016/j.abb.2010.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Selenoprotein K (SelK), an endoplasmic reticulum (ER) resident protein, its biological function has been less-well studied. To investigate the role of SelK in the ER stress response, effects of SelK gene silence and ER stress agents on expression of SelK and cell apoptosis in HepG2 cells were studied. The results showed that SelK was regulated by ER stress agents, Tunicamycin (Tm) and beta-Mercaptoethanol (beta-ME), in HepG2 cells. Moreover, the SelK gene silence by RNA interference could significantly aggravate HepG2 cell death and apoptosis induced by the ER stress agents. These results suggest that SelK is an ER stress-regulated protein and plays an important role in protecting HepG2 cells from ER stress agent-induced apoptosis.
Collapse
Affiliation(s)
- Shaoqing Du
- Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
55
|
Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J 2010; 429:43-51. [PMID: 20370716 DOI: 10.1042/bj20091868] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Selenium modifies inflammatory reactions in rodents and humans. The liver controls metabolism and transport of selenium via hepatically-derived SEPP (selenoprotein P). Intracellular SEPS (selenoprotein S) modifies endoplasmic-reticulum function and immune-cell activity. Polymorphisms in SEPS have been associated with cytokine levels and inflammatory diseases in a subset of clinical studies. In the present study, we hypothesized that sex and selenium represent decisive parameters controlling the immune response and regulation of SEPS expression in vivo. Male and female mice fed a selenium-poor diet were supplemented or not with selenite for 3 days and injected with saline or LPS (lipopolysaccharide) 24 h before analysis. Selenium supplementation mitigated the LPS-induced rise in circulating cytokines in male mice. Serum SepP and selenium concentrations decreased in response to LPS, whereas hepatic SepS was specifically up-regulated despite declining selenium concentrations in the liver. Hepatic SepS induction was mainly controlled by post-transcriptional mechanisms and attributed to hepatocytes by analysing transgenic mice. Notably, selenium supplementation was essential for an optimal SepS induction. We conclude that selenoprotein biosynthesis becomes redirected in hepatocytes during the acute-phase response at the expense of dispensable selenoproteins (e.g. SepP) and in favour of SepS expression, thereby causing declining serum selenium and improving liver function. The selenium status and sex control SepS expression and modify cytokine response patterns in serum, which might explain contradictory results on associations of SEPS genotype and inflammatory diseases in clinical studies.
Collapse
|
56
|
Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 2010; 12:839-49. [PMID: 19747065 PMCID: PMC2864662 DOI: 10.1089/ars.2009.2865] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium is an essential trace element in mammals. The major biological form of this micronutrient is the amino acid selenocysteine, which is present in the active sites of selenoenzymes. Seven of 25 mammalian selenoproteins have been identified as residents of the endoplasmic reticulum, including the 15-kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins K, M, N, S, and T. Most of these proteins are poorly characterized. However, recent studies implicate some of them in quality control of protein folding in the ER, retrotranslocation of misfolded proteins from the ER to the cytosol, metabolism of the thyroid hormone, and regulation of calcium homeostasis. In addition, some of these proteins are involved in regulation of glucose metabolism and inflammation. This review discusses evolution and structure-function relations of the ER-resident selenoproteins and summarizes recent findings on these proteins, which reveal the emerging important role of selenium and selenoproteins in ER function.
Collapse
Affiliation(s)
- Valentina A Shchedrina
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | | | | | | | | |
Collapse
|
57
|
Papp LV, Lu J, Bolderson E, Boucher D, Singh R, Holmgren A, Khanna KK. SECIS-binding protein 2 promotes cell survival by protecting against oxidative stress. Antioxid Redox Signal 2010; 12:797-808. [PMID: 19803747 PMCID: PMC11823725 DOI: 10.1089/ars.2009.2913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/03/2009] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are a primary cause of cellular damage that leads to cell death. In cells, protection from ROS-induced damage and maintenance of the redox balance is mediated to a large extent by selenoproteins, a distinct family of proteins that contain selenium in form of selenocysteine (Sec) within their active site. Incorporation of Sec requires the Sec-insertion sequence element (SECIS) in the 3'-untranslated region of selenoproteins mRNAs and the SECIS-binding protein 2 (SBP2). Previous studies have shown that SBP2 is required for the Sec-incorporation mechanism; however, additional roles of SBP2 in the cell have remained undefined. We herein show that depletion of SBP2 by using antisense oligonucleotides (ASOs) causes oxidative stress and induction of caspase- and cytochrome c-dependent apoptosis. Cells depleted of SBP2 have increased levels of ROS, which lead to cellular stress manifested as 8-oxo-7,8-dihydroguanine (8-oxo-dG) DNA lesions, stress granules, and lipid peroxidation. Small-molecule antioxidants N-acetylcysteine, glutathione, and alpha-tocopherol only marginally reduced ROS and were unable to rescue cells fully from apoptosis, indicating that apoptosis might be directly mediated by selenoproteins. Our results demonstrate that SBP2 is required for protection against ROS-induced cellular damage and cell survival.
Collapse
Affiliation(s)
- Laura V. Papp
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Emma Bolderson
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Didier Boucher
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Ravindra Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kum Kum Khanna
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| |
Collapse
|
58
|
Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 2009; 66:2457-78. [PMID: 19399585 PMCID: PMC2866081 DOI: 10.1007/s00018-009-0032-4] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is a nutritional trace mineral essential for various aspects of human health that exerts its effects mainly through its incorporation into selenoproteins as the amino acid, selenocysteine. Twenty-five selenoprotein genes have been identified in humans and several selenoproteins are broadly classified as antioxidant enzymes. As progress is made on characterizing the individual members of this protein family, however, it is becoming clear that their properties and functions are quite diverse. This review summarizes recent insights into properties of individual selenoproteins such as tissue distribution, subcellular localization, and regulation of expression. Also discussed are potential roles the different selenoproteins play in human health and disease.
Collapse
Affiliation(s)
- M. A. Reeves
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813 USA
| | - P. R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813 USA
| |
Collapse
|
59
|
Abstract
Selenoproteins are proteins containing selenium in the form of the 21st amino acid, selenocysteine. Members of this protein family have many diverse functions, but their synthesis is dependent on a common set of cofactors and on dietary selenium. Although the functions of many selenoproteins are unknown, several disorders involving changes in selenoprotein structure, activity or expression have been reported. Selenium deficiency and mutations or polymorphisms in selenoprotein genes and synthesis cofactors are implicated in a variety of diseases, including muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders and endocrine function. Members of this unusual family of proteins have roles in a variety of cell processes and diseases.
Collapse
|
60
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency. J Biol Chem 2009; 284:16891-16897. [PMID: 19398551 PMCID: PMC2719325 DOI: 10.1074/jbc.m109.006288] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 04/24/2009] [Indexed: 12/28/2022] Open
Abstract
Z alpha(1)-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFkappaB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFkappaB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFkappaB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.
Collapse
Affiliation(s)
- Emer Kelly
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine M Greene
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | - Tomás P Carroll
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Shane J O'Neill
- From the Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
61
|
Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta Gen Subj 2009; 1790:1478-85. [PMID: 19268692 DOI: 10.1016/j.bbagen.2009.02.014] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/27/2009] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species (ROS) are derived from cellular oxygen metabolism and from exogenous sources. An excess of ROS results in oxidative stress and may eventually cause cell death. ROS levels within cells and in extracellular body fluids are controlled by concerted action of enzymatic and non-enzymatic antioxidants. The essential trace element selenium exerts its antioxidant function mainly in the form of selenocysteine residues as an integral constituent of ROS-detoxifying selenoenzymes such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and possibly selenoprotein P (SeP). In particular, the dual role of selenoprotein P as selenium transporter and antioxidant enzyme is highlighted herein. A cytoprotective effect of selenium supplementation has been demonstrated for various cell types including neurons and astrocytes as well as endothelial cells. Maintenance of full GPx and TrxR activity by adequate dietary selenium supply has been proposed to be useful for the prevention of several cardiovascular and neurological disorders. On the other hand, selenium supplementation at supranutritional levels has been utilised for cancer prevention: antioxidant selenoenzymes as well as prooxidant effects of selenocompounds on tumor cells are thought to be involved in the anti-carcinogenic action of selenium.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
62
|
Shibata T, Arisawa T, Tahara T, Ohkubo M, Yoshioka D, Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I. Selenoprotein S (SEPS1) gene -105G>A promoter polymorphism influences the susceptibility to gastric cancer in the Japanese population. BMC Gastroenterol 2009; 9:2. [PMID: 19144102 PMCID: PMC2652493 DOI: 10.1186/1471-230x-9-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammation is a key factor in the process of carcinogenesis from chronic gastritis induced by Helicobacter pylori. Selenoprotein S (SEPS1) is involved in the control of the inflammatory response in the endoplasmic reticulum (ER). Recently the -105G>A polymorphism in the promoter of SEPS1 was shown to increase pro-inflammatory cytokine expression. We examined the association between this polymorphism and the risk of gastric cancer. METHODS We took stomach biopsies during endoscopies of 268 Japanese gastric cancer patients (193 males and 75 females, average age 65.3), and 306 control patients (184 males and 122 females, average age 62.7) and extracted the DNA from the biopsy specimens. All subjects provided written informed consent. For the genotyping of the SEPS1 promoter polymorphism at position -105G>A, PCR-RFLP methods were used and the PCR products were digested with PspGI. Logistic-regression analysis was used to estimate odds ratios (OR) and 95% confidence intervals (CI), adjusting for age, sex, and H. pylori infection status. RESULTS Among cases, the distribution of genotypes was as follows: 88.4% were GG, 11.2% were GA, and 0.4% were AA. Among controls, the distribution was as follows: 92.5% were GG, 7.2% were GA, and 0.3% were AA. Among males, carrying the A allele was associated with an increased odds of gastric cancer, compared with the GG genotype (OR: 2.0, 95% CI 1.0-4.1, p = 0.07). Compared with the GG genotype, carrying the A allele was significantly associated with increased risks of intestinal type gastric cancer (OR: 2.0, 95%CI 1.0-3.9, p < 0.05) as well as of gastric cancer located in the middle third of the stomach (OR: 2.0, 95%CI 1.0-3.9, p < 0.05). CONCLUSION The -105G>A promoter polymorphism of SEPS1 was associated with the intestinal type of gastric cancer. This polymorphism may influence the inflammatory conditions of gastric mucosa. Larger population-based studies are needed for clarifying the relation between inflammatory responses and SEPS1 polymorphism.
Collapse
Affiliation(s)
- Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Tomiyasu Arisawa
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Masaaki Ohkubo
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Daisuke Yoshioka
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Naoko Maruyama
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hiroshi Fujita
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yoshio Kamiya
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Masakatsu Nakamura
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Masami Iwata
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Kazuya Takahama
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Makoto Watanabe
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Ichiro Hirata
- Department of Gastroenterology, Fujita Health University, School of Medicine, Toyoake, Japan
| |
Collapse
|
63
|
Fradejas N, Pastor MD, Mora-Lee S, Tranque P, Calvo S. SEPS1 Gene is Activated during Astrocyte Ischemia and Shows Prominent Antiapoptotic Effects. J Mol Neurosci 2008; 35:259-65. [DOI: 10.1007/s12031-008-9069-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
64
|
Lee TJ, Lee JT, Kim SH, Choi YH, Song KS, Park JW, Kwon TK. Overexpression of Par-4 enhances thapsigargin-induced apoptosis via down-regulation of XIAP and inactivation of Akt in human renal cancer cells. J Cell Biochem 2008; 103:358-68. [PMID: 18041764 DOI: 10.1002/jcb.21642] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The prostate-apoptosis-response-gene-4 (Par-4) protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. We found that overexpressing Par-4 by stable transfection sensitizes Caki cells to induction of apoptosis by TRAIL and drugs that induce endoplasmic reticulum (ER) stress [thapsigargin (TG), tunicamycin (TU) and etoposide]. Ectopic expression of Par-4 is associated with decreased levels of XIAP protein in TG-treated cells, caused in part by XIAP protein instability and caspase activation. Levels of phospho-Akt are decreased in Caki/Par-4 cells to a significantly greater extent than in Caki/Vector cells by treatment with TG, and this is in turn associated with decreased levels of phospho-PDK1, the kinase upstream of Akt. In conclusion, we provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TG and that XIAP protein instability and inactivation of Akt are important in cellular pathways affected by Par-4.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Immunology and Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu 700-712, South Korea
| | | | | | | | | | | | | |
Collapse
|
65
|
Alanne M, Kristiansson K, Auro K, Silander K, Kuulasmaa K, Peltonen L, Salomaa V, Perola M. Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent Finnish cohorts. Hum Genet 2007; 122:355-65. [PMID: 17641917 DOI: 10.1007/s00439-007-0402-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Selenoprotein S (SEPS1) is a novel candidate gene involved in the regulation of inflammatory response and protection from oxidative damage. This study explored the genetic variation in the SEPS1 locus for an association with CVD as well as with quantitative phenotypes related to obesity and inflammation. We used the case-cohort design and time-to-event analysis in two separate prospectively followed population-based cohorts FINRISK 92 and 97 (n = 999 and 1,223 individuals, respectively) to study the associations of five single nucleotide polymorphisms with the risk for coronary heart disease (CHD) and ischemic stroke events. We found a significant association with increased CHD risk in females carrying the minor allele of rs8025174 in the combined analysis of both cohorts [hazard ratio (HR) 2.95 (95% confidence interval: 1.37-6.39)]. Another variant, rs7178239, increased the risk for ischemic stroke significantly in females [HR: 3.35 (1.66-6.76)] and in joint analysis of both sexes and both cohorts [HR: 1.75 (1.17-2.64)]. These results indicate that variation in the SEPS1 locus may have an effect on CVD morbidity, especially in females. This observation should stimulate further investigations of the role of this gene and protein in the pathogenesis of CVD.
Collapse
Affiliation(s)
- Mervi Alanne
- Department of Molecular Medicine, KTL-National Public Health Institute, Biomedicum, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|