51
|
Nakajima KI, Niisato N, Marunaka Y. Quercetin stimulates NGF-induced neurite outgrowth in PC12 cells via activation of Na(+)/K(+)/2Cl(-) cotransporter. Cell Physiol Biochem 2011; 28:147-56. [PMID: 21865857 DOI: 10.1159/000331723] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
We have recently reported that Na(+)/K(+)/2Cl(-) cotransporter isoform 1 (NKCC1) plays an essential role in nerve growth factor (NGF)-induced neurite outgrowth in PC12D cells. On the other hand, it has been reported that dietary flavonoids, such as quercetin, apigenin, and luteolin, stimulate various ion transporters. In the present report, we investigated the effect of quercetin, a flavonoid, on NGF-induced neurite outgrowth in PC12 cells (the parental strain of PC12D cells). Quercetin stimulated the NGF-induced neurite outgrowth in a dose-dependent manner. Knockdown of NKCC1 by RNAi methods abolished the stimulatory effect of flavonoid. Quercetin stimulated NKCC1 activity (measured as bumetanide-sensitive (86)Rb influx) without any increase in the expression level of NKCC1 protein. The stimulatory effect of quercetin on neurite outgrowth was dependent upon extracellular Cl(-). These observations indicate that quercetin stimulates the NGF-induced neurite outgrowth via an increase in Cl(-) incorporation into the intracellular space by activating NKCC1 in PC12 cell.
Collapse
Affiliation(s)
- Ken-ichi Nakajima
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
52
|
Shiozaki A, Otsuji E, Marunaka Y. Intracellular chloride regulates the G 1/S cell cycle progression in gastric cancer cells. World J Gastrointest Oncol 2011; 3:119-22. [PMID: 22007274 PMCID: PMC3192220 DOI: 10.4251/wjgo.v3.i8.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that ion channels/transporters play important roles in fundamental cellular functions. Several reports indicating the important roles of Cl- channels/transporters on cell proliferation suggest that the intracellular chloride concentration ([Cl-]i) regulated by them would be one of critical messengers. We investigated whether the [Cl-]i controls cell proliferation and cell cycle progression in human gastric cancer cells. Our studies indicated that furosemide, a blocker of Na+/K+/2Cl- cotransporter (NKCC), diminished cell growth by delaying the G1-S phase progression in gastric cancer cells with high expression and activity of NKCC. Furthermore, we found that the culture in the low Cl- medium (replacement of Cl- by NO3-) decreased the [Cl-]i and inhibited cell growth of gastric cancer cells and that this inhibition of cell growth was due to cell cycle arrest at the G0/G1 phase caused by diminution of CDK2 and phosphorylated Rb. The culture of cells in the low Cl- medium significantly increased expressions of p21 mRNA and protein. In addition, the low Cl- medium induced phosphorylation of mitogen activated protein kinases (MAPKs). Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl- medium and rescued gastric cancer cells from the low Cl--induced G1 cell cycle arrest. These findings revealed that the [Cl-]i affects the cell proliferation via activation of MAPKs through upregulation of p21 in gastric cancer cells. Our results suggest that the [Cl-]i regulates important cellular functions in gastric cancer cells, leading to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Atsushi Shiozaki, Eigo Otsuji, Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
53
|
Xu B, Mao J, Wang L, Zhu L, Li H, Wang W, Jin X, Zhu J, Chen L. ClC-3 chloride channels are essential for cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:370-80. [PMID: 20539936 DOI: 10.1093/abbs/gmq031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ClC-3, a gene encoding a candidate protein for volume-activated chloride (C(-)) channels, may be involved in tumor development. Herein we report a study using an antisense "knock-down" strategy to investigate the mechanism by which ClC-3 affects cell proliferation in nasopharyngeal carcinoma CNE-2Z cells. With immunoblots and MTT assays we demonstrated that the expression of ClC-3 was cell cycle dependent and in a similar concentration-dependent manner, an antisense oligonucleotide specific for ClC-3 inhibited ClC-3 protein expression and cell proliferation. The expression level of ClC-3 correlated with cell proliferation. Moreover, in the cells exposed to a ClC-3 antisense oligonucleotide, the cloning efficiency was inhibited, and cells were arrested in the S phase. The ClC-3 antisense oligonucleotide inhibited the volume-activated C(-) current (I(Cl,vol)) and the regulatory volume decrease (RVD) in a concentration-dependent manner. Additionally, the I(Cl,vol) or RVD was positively correlated with cell proliferation in the treated cells. In conclusion, ClC-3 is involved in cell proliferation and cell cycle progression through a mechanism involving modulation of I(Cl,vol) and RVD. CIC-3 may represent a therapeutic target in human cancer.
Collapse
Affiliation(s)
- Bin Xu
- Guangdong Pharmaceutical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Johnstone SR, Best AK, Wright CS, Isakson BE, Errington RJ, Martin PE. Enhanced connexin 43 expression delays intra-mitotic duration and cell cycle traverse independently of gap junction channel function. J Cell Biochem 2010; 110:772-82. [PMID: 20512937 PMCID: PMC3030924 DOI: 10.1002/jcb.22590] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connexins (Cxs) and gap junction (GJ)-mediated communication have been linked with the regulation of cell cycle traverse. However, it is not clear whether Cx expression or GJ channel function are the key mediators in this process or at what stage this regulation may occur. We therefore tested the hypothesis that enhanced Cx expression could alter the rate of cell cycle traverse independently of GJ channel function. Sodium butyrate (NaBu) or anti-arrhythmic peptide (AAP10) were used to enhance Cx expression in HeLa cells stably expressing Cx43 (HeLa-43) and primary cultures of human fibroblasts (HFF) that predominantly express Cx43. To reduce GJ-mediated communication, 18-alpha-glycyrrhetinic acid (GA) was used. In HeLa-43 and HFF cells, NaBu and AAP10 enhanced Cx43 expression and increased channel function, while GA reduced GJ-mediated communication but did not significantly alter Cx43 expression levels. Timelapse microscopy and flow cytometry of HeLa-WT (wild-type, Cx deficient) and HeLa-43 cells dissected cell cycle traverse and enabled measurements of intra-mitotic time and determined levels of G1 arrest. Enhanced Cx43 expression increased mitotic durations corresponding with a G1 delay in cell cycle, which was linked to an increase in expression of the cell cycle inhibitor p21(waf1/cip1) in both HeLa-43 and HFF cells. Reductions in Cx43 channel function did not abrogate these responses, indicating that GJ channel function was not a critical factor in reducing cell proliferation in either cell type. We conclude that enhanced Cx43 expression and not GJ-mediated communication, is involved in regulating cell cycle traverse.
Collapse
Affiliation(s)
- Scott R. Johnstone
- Glasgow Caledonian University, Department of Biological and Biomedical Sciences, 70 Cowcaddens Rd, Glasgow, Scotland, G4 0BA, UK
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, PO Box 801394 Charlottesville VA 29908 USA
- School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, UK
| | - Angela K. Best
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, PO Box 801394 Charlottesville VA 29908 USA
| | - Catherine S. Wright
- Glasgow Caledonian University, Department of Biological and Biomedical Sciences, 70 Cowcaddens Rd, Glasgow, Scotland, G4 0BA, UK
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, PO Box 801394 Charlottesville VA 29908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine
| | | | - Patricia E. Martin
- Glasgow Caledonian University, Department of Biological and Biomedical Sciences, 70 Cowcaddens Rd, Glasgow, Scotland, G4 0BA, UK
| |
Collapse
|
55
|
Ohsawa R, Miyazaki H, Niisato N, Shiozaki A, Iwasaki Y, Otsuji E, Marunaka Y. Intracellular chloride regulates cell proliferation through the activation of stress-activated protein kinases in MKN28 human gastric cancer cells. J Cell Physiol 2010; 223:764-770. [PMID: 20205250 DOI: 10.1002/jcp.22088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, we reported that reduction of intracellular Cl(-) concentration ([Cl(-)](i)) inhibited proliferation of MKN28 gastric cancer cells by diminishing the transition rate from G(1) to S cell-cycle phase through upregulation of p21, cyclin-dependent kinase inhibitor, in a p53-independent manner. However, it is still unknown how intracellular Cl(-) regulates p21 expression level. In this study, we demonstrate that mitogen-activated protein kinases (MAPKs) are involved in the p21 upregulation and cell-cycle arrest induced by reduction of [Cl(-)](i). Culture of MKN28 cells in a low Cl(-) medium significantly induced phosphorylation (activation) of MAPKs (ERK, p38, and JNK) and G(1)/S cell-cycle arrest. To clarify the involvement of MAPKs in p21 upregulation and cell growth inhibition in the low Cl(-) medium, we studied effects of specific MAPKs inhibitors on p21 upregulation and G(1)/S cell-cycle arrest in MKN28 cells. Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl(-) medium and rescued MKN28 cells from the low Cl(-)-induced G(1) cell-cycle arrest, whereas treatment with an ERK inhibitor had no significant effect on p21 expression or the growth of MKN28 cells in the low Cl(-) medium. These results strongly suggest that the intracellular Cl(-) affects the cell proliferation via activation of p38 and/or JNK cascades through upregulation of the cyclin-dependent kinase inhibitor (p21) in a p53-independent manner in MKN28 cells.
Collapse
Affiliation(s)
- Rumi Ohsawa
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Duran C, Thompson CH, Xiao Q, Hartzell HC. Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 2010; 72:95-121. [PMID: 19827947 DOI: 10.1146/annurev-physiol-021909-135811] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until recently, anion (Cl(-)) channels have received considerably less attention than cation channels. One reason for this may be that many Cl(-) channels perform functions that might be considered cell-biological, like fluid secretion and cell volume regulation, whereas cation channels have historically been associated with cellular excitability, which typically happens more rapidly. In this review, we discuss the recent explosion of interest in Cl(-) channels, with special emphasis on new and often surprising developments over the past five years. This is exemplified by the findings that more than half of the ClC family members are antiporters, and not channels, as was previously thought, and that bestrophins, previously prime candidates for Ca(2+)-activated Cl(-) channels, have been supplanted by the newly discovered anoctamins and now hold a tenuous position in the Cl(-) channel world.
Collapse
Affiliation(s)
- Charity Duran
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
57
|
Bregestovski P, Waseem T, Mukhtarov M. Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity. Front Mol Neurosci 2009; 2:15. [PMID: 20057911 PMCID: PMC2802328 DOI: 10.3389/neuro.02.015.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/28/2009] [Indexed: 12/31/2022] Open
Abstract
This review briefly discusses the main approaches for monitoring chloride (Cl−), the most abundant physiological anion. Noninvasive monitoring of intracellular Cl− ([Cl−]i) is a challenging task owing to two main difficulties: (i) the low transmembrane ratio for Cl−, approximately 10:1; and (ii) the small driving force for Cl−, as the Cl− reversal potential (ECl) is usually close to the resting potential of the cells. Thus, for reliable monitoring of intracellular Cl−, one has to use highly sensitive probes. From several methods for intracellular Cl− analysis, genetically encoded chloride indicators represent the most promising tools. Recent achievements in the development of genetically encoded chloride probes are based on the fact that yellow fluorescent protein (YFP) exhibits Cl−-sensitivity. YFP-based probes have been successfully used for quantitative analysis of Cl− transport in different cells and for high-throughput screening of modulators of Cl−-selective channels. Development of a ratiometric genetically encoded probe, Clomeleon, has provided a tool for noninvasive estimation of intracellular Cl− concentrations. While the sensitivity of this protein to Cl− is low (EC50 about 160 mM), it has been successfully used for monitoring intracellular Cl− in different cell types. Recently a CFP–YFP-based probe with a relatively high sensitivity to Cl− (EC50 about 30 mM) has been developed. This construct, termed Cl-Sensor, allows ratiometric monitoring using the fluorescence excitation ratio. Of particular interest are genetically encoded probes for monitoring of ion channel distribution and activity. A new molecular probe has been constructed by introducing into the cytoplasmic domain of the Cl−-selective glycine receptor (GlyR) channel the CFP–YFP-based Cl-Sensor. This construct, termed BioSensor-GlyR, has been successfully expressed in cell lines. The new genetically encoded chloride probes offer means of screening pharmacological agents, analysis of Cl− homeostasis and functions of Cl−-selective channels under different physiological and pathological conditions.
Collapse
|
58
|
Yamada T, Niisato N, Marunaka Y. Effects of extracellular chloride ion on epithelial sodium channel (ENaC) in arginine vasotocin (AVT)-stimulated renal epithelial cells. ACTA ACUST UNITED AC 2009; 30:193-8. [PMID: 19574722 DOI: 10.2220/biomedres.30.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The epithelial Na(+) channel (ENaC) contributes to control of blood pressure by reabsorbing Na(+) in the cortical collecting duct of the kidney. The luminal Cl(-) concentration in the duct varies under physiological conditions. As the body Na(+) content is lower, the luminal Cl(-) concentration in the duct becomes lower. Thus, we hypothesized that the extracellular Cl(-) elevates ENaC activity in AVT-stimulated renal epithelial A6 cells (a model cell line of the cortical collecting duct) leading to recovery from a low body Na(+) content. To clarify this point, we studied effects of extracellular Cl(-) concentration on ENaC activity using cell-attached patch clamp technique. We found that ENaC had a single-channel conductance of 4.6 +/- 0.1 pS (mean +/- SE) and channel activity (open probability, Po) of 0.30 +/- 0.02 at a pipette potential of 60 mV. Lowering pipette Cl(-) concentration diminished Po to 0.23 +/- 0.02 associated with a significant decrease in open time from 0.78 +/- 0.03 to 0.61 +/- 0.02 s with no significant change in closed time, and shifted the current-voltage relationship leftward. These results suggest that the extracellular Cl(-) regulates the ENaC-mediated Na(+) reabsorption by affecting ENaC properties in AVT-stimulated renal epithelial cells.
Collapse
Affiliation(s)
- Toshiki Yamada
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
59
|
Maki M, Miyazaki H, Niisato N, Morihara T, Marunaka Y, Kubo T. Blockers of K+/Cl- transporter/channels diminish proliferation of osteoblastic cells. Biomed Res 2009; 30:137-40. [DOI: 10.2220/biomedres.30.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|