51
|
Wang C, Cao J, Duan S, Xu R, Yu H, Huo X, Qian Y. Effect of MicroRNA-126a-3p on Bone Marrow Mesenchymal Stem Cells Repairing Blood-brain Barrier and Nerve Injury after Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:104748. [PMID: 32160957 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/10/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is a disease that threatens human health due to its high morbidity and mortality. On behalf of finding the better methods in the treatment of ICH, researchers pay more attention to a new technology which is finding effective genes to modify stem cells. METHODS In this study, we isolated, cultured and identified bone marrow mesenchymal stem cells (MSCs) in vitro. Further, the MSCs (transfected with lentivirus expressing microRNA-126a-3p (miR-126)) were injected into the type Ⅶ collagenase-induced ICH rats to investigate the recovery effects of blood-brain barrier (BBB) and nerve damage in vivo. RESULTS The MSCs surface marker molecules (CD29: 98.5%; CD90: 96.5%) were highly expressed, and the blood cell surface molecule was negatively expressed (CD45: 2%). Meanwhile, it was verified that miR-126 facilitated the differentiation of MSCs into vascular endothelial cells, owing to the rise of markers (CD31 and VE-cadherin). The modified neurological severity score, modified limb placing test score, brain water content and evans blue content were reduced after transplanted miR-126-modified MSCs. It was found that miR-126 accelerated the differentiation of MSCs into vascular endothelial cells via immunohistochemical staining in vivo. HE staining indicated the area of edema was obviously decreased compared with that in ICH + vector-MSCs group. MiR-126-modified MSCs alleviated the cell apoptosis in brain tissues by TUNEL assay. In addition, the mRNA and protein expression of protease activated receptor-1 and matrix metalloproteinase-9 were diminished, whilst the expression of zonula occludens-1 (ZO-1) and claudin-5 were enhanced in ICH+miR-126-MSCs group. Immunofluorescence assay revealed that miR-126-modified MSCs decreased the disruption of tight junction (ZO-1 and claudin-5). CONCLUSIONS All data illustrate that miR-126-modified MSCs repair BBB and nerve injury after ICH.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | - Jingwei Cao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shurong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Ran Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Hongli Yu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xin Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yuanyuan Qian
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
52
|
Wu TS, Lin YT, Huang YT, Yu FY, Liu BH. Ochratoxin A triggered intracerebral hemorrhage in embryonic zebrafish: Involvement of microRNA-731 and prolactin receptor. CHEMOSPHERE 2020; 242:125143. [PMID: 31675585 DOI: 10.1016/j.chemosphere.2019.125143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin widely found in foodstuffs, reportedly damages multiple brain regions in developing rodents, but the corresponding mechanisms have not been elucidated. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to various concentrations of OTA and the phenomenon associated with intracerebral hemorrhage was observed at 72 hpf. Exposure of embryos to OTA significantly increased their hemorrhagic rate in a dose-dependent manner. Large numbers of extravagated erythrocytes were observed in the midbrain/hindbrain areas of Tg(fli-1a:EGFP; gata1:DsRed) embryos following exposure to OTA. OTA also disrupted the vascular patterning, especially the arch-shaped central arteries (CtAs), in treated embryos. Histological analysis revealed a cavity-like pattern in their hindbrain ventricles, implying the possibility of cerebral edema. OTA-induced intracerebral hemorrhage and CtA vessel defects were partially reversed by the presence of miR-731 antagomir or the overexpression of prolactin receptor a (prlra); prlra is a downstream target of miR-731. These results suggest that exposure to OTA has a negative effect on cerebral vasculature development by interfering with the miR-731/PRLR axis in zebrafish.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
53
|
Xiao ZH, Wang L, Gan P, He J, Yan BC, Ding LD. Dynamic Changes in miR-126 Expression in the Hippocampus and Penumbra Following Experimental Transient Global and Focal Cerebral Ischemia-Reperfusion. Neurochem Res 2020; 45:1107-1119. [PMID: 32067150 DOI: 10.1007/s11064-020-02986-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
miR-126 which is considered one of the most important miRNAs for maintaining vascular integrity, plays an important role in neuroprotection after cerebral ischemia-reperfusion (I-R). Moreover, vascular endothelial growth factor A (VEGFA), sprouty-related EVH1 domain-containing protein 1 (SPRED1), and Raf-1 are also involved in physiological processes of vascular endothelial cells (ECs). This study investigated how miR-126 changes with reperfusion time in different brain tissues after global cerebral ischemia and focal cerebral ischemia and examined the underlying mechanism miR-126 involving VEGFA, SPRED1, and Raf-1 after I-R. The results indicated decreases in the levels of miR-126-3p and miR-126-5p expression in mice and gerbils after I-R, consistent with the results after oxygen and glucose deprivation and reperfusion (OGD/R) in PC12 cells. Glial cells were activated as neuronal damage gradually increased after I-R. Inhibition of miR-126-3p exacerbated the OGD/R-induced cell death and reduced cell viability. After miR-126-3p inhibition, the levels of SPRED1 and VEGFA expression were increased, and p-Raf-1 expression was decreased after OGD/R. Moreover, based on the intervention of miR-126-3p inhibition, we found that the expression of p-Raf-1 was significantly increased after the intervention of siSPRED1, while it was not statistically significant after intervention of siVEGFA. The reduction of miR-126 expression after global and focal cerebral ischemia exacerbated neuronal death, which was closely related to increasing the SPRED1 activation and inhibiting the Raf-1 expression.
Collapse
Affiliation(s)
- Zhang Hong Xiao
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Li Wang
- Department of Neurology, Affiliated Hospital, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ping Gan
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Jing He
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China
| | - Bing Chun Yan
- Department of Neurology, Affiliated Hospital, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Li Dong Ding
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, 225500, People's Republic of China.
| |
Collapse
|
54
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
55
|
Pan J, Qu M, Li Y, Wang L, Zhang L, Wang Y, Tang Y, Tian HL, Zhang Z, Yang GY. MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke 2020; 51:619-627. [PMID: 31822249 DOI: 10.1161/strokeaha.119.027531] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background and Purpose—
Blood-brain barrier (BBB) disruption is a critical pathological feature after stroke. MicroRNA-126 (miR-126) maintains BBB integrity by regulating endothelial cell function during development. However, the role of miR-126-3p and -5p in BBB integrity after stroke is unclear. Here, we investigated whether miR-126-3p and -5p overexpression regulates BBB integrity after cerebral ischemia.
Methods—
A lentivirus carrying genes encoding miR-126-3p or -5p was stereotactically injected into adult male Institute of Cancer Research mouse brains (n=36). Permanent middle cerebral artery occlusion was performed 2 weeks after virus injection. Brain infarct volume, edema volume, and modified neurological severity score were assessed at 1 and 3 days after ischemia. Immunostaining of ZO-1 (zonula occludens-1) and occludin was used to evaluate BBB integrity. IL-1β (interleukin-1β), TNF-α (tumor necrosis factor-α), VCAM-1 (vascular cell adhesion molecule-1), and E-selectin expression levels were determined by real-time polymerase chain reaction and Western blot analysis.
Results—
The expression of miR-126-3p and -5p decreased at 1 and 3 days after ischemia (
P
<0.05). Injection of lentiviral miR-126-3p or -5p reduced brain infarct volume and edema volume (
P
<0.05) and attenuated the decrease in ZO-1/occludin protein levels and IgG leakage at 3 days after stroke (
P
<0.05). Injection of lentiviral miR-126-5p improved behavioral outcomes at 3 days after stroke (
P
<0.05). miR-126-3p and -5p overexpression downregulated the expression of proinflammatory cytokines IL-1β and TNF-α and adhesion molecules VCAM-1 and E-selectin, as well as decreased MPO
+
(myeloperoxidase positive) cell numbers at 3 days after ischemia (
P
<0.05).
Conclusions—
miR-126-3p and -5p overexpression reduced the expression of proinflammatory cytokines and adhesion molecules, and attenuated BBB disruption after ischemic stroke, suggesting that miR-126-3p and -5p are new therapeutic targets in the acute stage of stroke.
Collapse
Affiliation(s)
- Jiaji Pan
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Meijie Qu
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Yongfang Li
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Liping Wang
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Linyuan Zhang
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Yongting Wang
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Yaohui Tang
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (H.-L.T.), Shanghai Jiao Tong University, China
| | - Zhijun Zhang
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| | - Guo-Yuan Yang
- From the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and School of Biomedical Engineering (J.P., M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
- Department of Neurology, Ruijin Hospital, School of Medicine (M.Q., Y.L., L.W., L.Z., Y.W., Y.T., Z.Z., G.-Y.Y.), Shanghai Jiao Tong University, China
| |
Collapse
|
56
|
MicroRNA-29b-3p aggravates 1,2-dichloroethane-induced brain edema by targeting aquaporin 4 in Sprague-Dawley rats and CD-1 mice. Toxicol Lett 2020; 319:160-167. [DOI: 10.1016/j.toxlet.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
|
57
|
Tjakra M, Wang Y, Vania V, Hou Z, Durkan C, Wang N, Wang G. Overview of Crosstalk Between Multiple Factor of Transcytosis in Blood Brain Barrier. Front Neurosci 2020; 13:1436. [PMID: 32038141 PMCID: PMC6990130 DOI: 10.3389/fnins.2019.01436] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Blood brain barrier (BBB) conserves unique regulatory system to maintain barrier tightness while allowing adequate transport between neurovascular units. This mechanism possess a challenge for drug delivery, while abnormality may result in pathogenesis. Communication between vascular and neural system is mediated through paracellular and transcellular (transcytosis) pathway. Transcytosis itself showed dependency with various components, focusing on caveolae-mediated. Among several factors, intense communication between endothelial cells, pericytes, and astrocytes is the key for a normal development. Regulatory signaling pathway such as VEGF, Notch, S1P, PDGFβ, Ang/Tie, and TGF-β showed interaction with the transcytosis steps. Recent discoveries showed exploration of various factors which has been proven to interact with one of the process of transcytosis, either endocytosis, endosomal rearrangement, or exocytosis. As well as providing a hypothetical regulatory pathway between each factors, specifically miRNA, mechanical stress, various cytokines, physicochemical, basement membrane and junctions remodeling, and crosstalk between developmental regulatory pathways. Finally, various hypotheses and probable crosstalk between each factors will be expressed, to point out relevant research application (Drug therapy design and BBB-on-a-chip) and unexplored terrain.
Collapse
Affiliation(s)
- Marco Tjakra
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Vicki Vania
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
58
|
Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, Xu L. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation 2020; 17:28. [PMID: 31959187 PMCID: PMC6970296 DOI: 10.1186/s12974-020-1710-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence has documented that microRNA-7 (miR-7) plays an important role in the pathology of various diseases. However, the potential role of miR-7 in brain tissue inflammation (BTI) remains unclear. METHODS We detected the expression of miR-7 in LPS-induced murine BTI model and observed the possible effects of miR-7 deficiency on the pathology of BTI. To elucidate the mechanism, the target gene of miR-7 was screened out by Gene chip assay and its potential roles in BTI were evaluated by Western blot, immunofluorescence, and RNAi assay, respectively. RESULTS MiR-7 was upregulated in brain tissue in BTI mice and its deficiency could significantly aggravate the pathology of brain tissue. Moreover, RORα, a new target molecule of miR-7, was upregulated in brain tissue from miR-7 deficiency BTI mice. Of note, downregulation of RORα could remarkably exacerbate the pathology of brain tissue and elevate the transduction of NF-κB and ERK1/2 signaling pathways in brain tissue from miR-7 deficiency BTI mice. Furthermore, RORα and miR-7 were dominantly co-expressed in neurons of BTI mice. Finally, RORα synergized with miR-7 to control the inflammatory reaction of neuronal cells in response to LPS stimulation. CONCLUSIONS MiR-7 expression is upregulated in BTI model. Moreover, miR-7 synergizes with its target gene RORα to control the inflammation reaction of neurons, thereby orchestrating the pathology of BTI.
Collapse
Affiliation(s)
- Dongxu Yue
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Huizi Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Medical Physics, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China. .,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
59
|
Bai YY, Niu JZ. miR‑222 regulates brain injury and inflammation following intracerebral hemorrhage by targeting ITGB8. Mol Med Rep 2019; 21:1145-1153. [PMID: 31894320 PMCID: PMC7003054 DOI: 10.3892/mmr.2019.10903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a disease associated with high mortality and morbidity. MicroRNAs (miRNAs) have been reported to be associated with the pathogenesis of numerous cerebrovascular diseases, including ICH. miR-222 has been revealed to play important roles in various physiological and pathological processes in cardiovascular diseases. However, its role in ICH remains largely unknown. The aim of the present study was to evaluate the potential effect of miR-222 on brain injury in ICH. The results revealed that the expression of miR-222 was significantly increased in ICH, and downregulation of miR-222 significantly reduced erythrocyte lysate-induced cell apoptosis by decreasing the levels of cleaved caspase-3, cleaved caspase-9 and Bax and increasing the level of Bcl-2. In addition, downregulation of miR-222 suppressed the inflammatory responses in erythrocyte lysate-induced microglia, and inhibited inflammation, brain water content and improved neurological functions in ICH mice. Mechanistically, integrin subunit β8 (ITGB8) was identified as a direct target of negative regulation by miR-222 in microglia cells, and up-regulation of ITGB8 led to the attenuation of inflammation and apoptosis. Collectively, the present findings indicated that miR-222 was a crucial regulator of inflammation via targeting of ITGB8, and represented a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Yan-Yan Bai
- Department of Neurology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Jun-Zhi Niu
- Department of Information, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
60
|
MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp Neurol 2019; 323:113094. [PMID: 31676317 DOI: 10.1016/j.expneurol.2019.113094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Given the essential role of the blood-brain barrier (BBB) in the central nervous system (CNS), cumulative investigations have been performed to elucidate how modulation of BBB structural and functional integrity affects the pathogenesis of CNS diseases such as stroke, traumatic brain injuries, dementia, and cerebral infection. Recent studies have demonstrated that microRNAs (miRNAs) contribute to the maintenance of the BBB and thereby mediate CNS homeostasis. This review summarizes emerging studies that demonstrate cerebral miRNAs regulate BBB function in CNS disorders, emphasizing the direct role of miRNAs in BBB molecular composition. Evidence presented in this review will encourage a deeper understanding of the mechanisms by which miRNAs regulate BBB function, and facilitate the development of new miRNAs-based therapies in patients with CNS diseases.
Collapse
|
61
|
NDP-MSH binding melanocortin-1 receptor ameliorates neuroinflammation and BBB disruption through CREB/Nr4a1/NF-κB pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2019; 16:192. [PMID: 31660977 PMCID: PMC6816206 DOI: 10.1186/s12974-019-1591-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Background Neuroinflammation and blood-brain barrier (BBB) disruption are two vital mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Recently, melanocortin-1 receptor (Mc1r) activation by Nle4-D-Phe7-α-MSH (NDP-MSH) was shown to play a neuroprotective role in an experimental autoimmune encephalomyelitis (EAE) mouse model. This study aimed to investigate whether NDP-MSH could alleviate neuroinflammation and BBB disruption after experimental ICH, as well as the potential mechanisms of its neuroprotective roles. Methods Two hundred and eighteen male C57BL/6 mice were subjected to autologous blood-injection ICH model. NDP-MSH, an agonist of Mc1r, was administered intraperitoneally injected at 1 h after ICH insult. To further explore the related protective mechanisms, Mc1r small interfering RNA (Mc1r siRNA) and nuclear receptor subfamily 4 group A member 1 (Nr4a1) siRNA were administered via intracerebroventricular (i.c.v) injection before ICH induction. Neurological test, BBB permeability, brain water content, immunofluorescence staining, and Western blot analysis were implemented. Results The Expression of Mc1r was significantly increased after ICH. Mc1r was mainly expressed in microglia, astrocytes, and endothelial cells following ICH. Treatment with NDP-MSH remarkably improved neurological function and reduced BBB disruption, brain water content, and the number of microglia in the peri-hematoma tissue after ICH. Meanwhile, the administration of NDP-MSH significantly reduced the expression of p-NF-κB p65, IL-1β, TNF-α, and MMP-9 and increased the expression of p-CREB, Nr4a1, ZO-1, occludin, and Lama5. Inversely, the knockdown of Mc1r or Nr4a1 abolished the neuroprotective effects of NDP-MSH. Conclusions Taken together, NDP-MSH binding Mc1r attenuated neuroinflammation and BBB disruption and improved neurological deficits, at least in part through CREB/Nr4a1/NF-κB pathway after ICH.
Collapse
|
62
|
Blasiak J, Watala C, Tuuminen R, Kivinen N, Koskela A, Uusitalo-Järvinen H, Tuulonen A, Winiarczyk M, Mackiewicz J, Zmorzyński S, Filip A, Kaarniranta K. Expression of VEGFA-regulating miRNAs and mortality in wet AMD. J Cell Mol Med 2019; 23:8464-8471. [PMID: 31633290 PMCID: PMC6850949 DOI: 10.1111/jcmm.14731] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pigment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular endothelial growth factor A) are the only effective therapy in wet AMD. We investigated the correlation between the expression of 18 miRNAs involved in the regulation of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of anti‐VEGFA treatment was evaluated by counting the number of injections delivered up to 12 years. In addition, we compared the relative numbers of deaths in patient with AMD and control groups. We observed a decreased expression of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotection and protein clearance. No miRNA was significantly correlated with the treatment outcome. Wet AMD patients had greater mortality than controls, and their survival was inversely associated with the number of anti‐VEGFA injections per year. No association was observed between miRNA expression and mortality. Our study emphasizes the need to clarify the role of miRNA regulation in AMD pathogenesis.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland.,Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Niko Kivinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | | | - Anja Tuulonen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Szymon Zmorzyński
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
63
|
Qu X, Wang N, Cheng W, Xue Y, Chen W, Qi M. MicroRNA-146a protects against intracerebral hemorrhage by inhibiting inflammation and oxidative stress. Exp Ther Med 2019; 18:3920-3928. [PMID: 31656540 PMCID: PMC6812313 DOI: 10.3892/etm.2019.8060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the role of microRNA-146a (miR-146a) in intracerebral hemorrhage (ICH), and to further assess its underlying mechanism. An ICH rat model was established in the current study and 1 h following ICH induction, rats were treated with or without an miR-146a mimic. A total of 3 days following ICH induction, rat neurological score, brain water content and neuronal apoptosis were measured via flow cytometry. Levels of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β were detected via ELISA and certain biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase and glutathione peroxidase, were also determined in current study. The expression of genes and proteins were detected in current study via reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. MicroRNA.org software and a dual luciferase reporter assay were used to confirm the association between miR-146a and TRAF6. The results of the current study revealed that miR-146a was significantly downregulated in ICH rats, and its overexpression reduced neurological damage and brain edema, as evidenced by decreased neurological scores and brain water content. Results from further analyses demonstrated that the overexpression of miR-146a inhibited neuronal apoptosis, reduced pro-inflammatory cytokine production and prevented oxidative stress in ICH rats. In addition, it was revealed that the upregulation of miR-146a repressed the TRAF6/NF-κB pathway in the brain tissue of ICH rats. TRAF6 was also determined to be a target of miR-146a. In conclusion, these data indicated that miR-146a protects against ICH by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xin Qu
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Ning Wang
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Weitao Cheng
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yueqiao Xue
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Wenjin Chen
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Meng Qi
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
64
|
Pan L, Liu F, Zhang J, Li J, Jia H, Huang M, Liu X, Chen W, Ding Z, Wang Y, Du B, Wei R, Sun Q, Xing A, Zhang Z. Genome-Wide miRNA Analysis Identifies Potential Biomarkers in Distinguishing Tuberculous and Viral Meningitis. Front Cell Infect Microbiol 2019; 9:323. [PMID: 31572691 PMCID: PMC6749153 DOI: 10.3389/fcimb.2019.00323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most common and severe form of central nervous system tuberculosis. Due to the non-specific clinical presentation and lack of efficient diagnosis methods, it is difficult to discriminate TBM from other frequent types of meningitis, especially viral meningitis (VM). In order to identify the potential biomarkers for discriminating TBM and VM and to reveal the different pathophysiological processes between TBM and VM, a genome-wide miRNA screening of PBMCs from TBM, VM, and healthy controls (HCs) using microarray assay was performed (12 samples). Twenty-eight differentially expressed miRNAs were identified between TBM and VM, and 11 differentially expressed miRNAs were identified between TBM and HCs. The 6 overlapping miRNAs detected in both TBM vs. VM and TBM vs. HCs were verified by qPCR analysis and showed a 100% consistent expression patterns with that in microarray test. Statistically significant differences of 4 miRNAs (miR-126-3p, miR-130a-3p, miR-151a-3p, and miR-199a-5p) were further confirmed in TBM compared with VM and HCs in independent PBMCs sample set (n = 96, P < 0.01). Three of which were also showed significantly different between TBM and VM in CSF samples (n = 70, P < 0.05). The receiver operating characteristic curve (ROC) analysis showed that the area under the ROC curve (AUC) of these 4 miRNAs in PBMCs were more than 0.70 in discriminating TBM from VM. Combination of these 4 miRNAs could achieve better discriminative capacity [AUC = 0.893 (0.788-0.957)], with a sensitivity of 90.6% (75.0-98.0%), and a specificity of 86.7% (69.3-96.2%). Additional validation was performed to evaluate the diagnostic panel in another independent sample set (n = 49), which yielded a sensitivity of 81.8% (9/11), and specificity of 90.0% (9/10) in distinguishing TBM and VM, and a sensitivity of 81.8% (9/11), and a specificity of 84.6% (11/13) in discriminating TBM from other non-TBM patients. This study uncovered the miRNA profiles of TBM and VM patients, which can facilitate better understanding of the pathogenesis involved in these two diseases and identified 4 novel miRNAs in distinguishing TBM and VM.
Collapse
Affiliation(s)
- Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Liu
- Tuberculosis Department, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinli Zhang
- Neurology Department, Chinese People's Liberation Army 263 Hospital, Beijing, China
| | - Jing Li
- Neurology Department, Chinese People's Liberation Army 263 Hospital, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mailing Huang
- Tuberculosis Department, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuehua Liu
- Hyperbaric Oxygen Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weibi Chen
- Neurology Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeyu Ding
- Neurology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Laboratory Medical Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Boping Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rongrong Wei
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
65
|
Fu X, Niu T, Li X. MicroRNA-126-3p Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Disruption by Regulating VCAM-1 Expression. Front Neurosci 2019; 13:866. [PMID: 31474826 PMCID: PMC6707088 DOI: 10.3389/fnins.2019.00866] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/02/2019] [Indexed: 01/17/2023] Open
Abstract
Background miR-126 is closely related to the occurrence of various complications after intracerebral hemorrhage (ICH), but the molecular mechanism is not fully elucidated. This study aimed to explore the mechanism of miR-126-3p in alleviating brain injury after ICH. Methods Serum miR-126-3p levels were compared between patients with IHC and healthy controls. A rat model of ICH was generated by intracerebral injection of Type VII collagenase. The rats were intracerebral injected with miR-126-3p mimics or negative control miRNA. Rat brain microvascular endothelial cells (BMECs) were used as a cell model of blood-brain barrier (BBB), and validated by immunofluorescence staining of Factor VIII. The BBB permeability of BMECs after miR-126-3p antagomir transfection was determined by FITC-dextran 20 through a confluent BMECs layer (measured over 120 min). The binding site of miR-126-3p in the 3'UTR of VCAM-1 was predicated by TargetScan, and verified by dual luciferase reporter assay. The expression levels of miR-126-3p and vascular cell adhesion molecule-1 (VCAM-1) in rat brain tissues and BMECs were measured by real-time PCR or western blotting. Results Serum miR-126-3p level was markedly down-regulated in patients with ICH. The rats with ICH had decreased miR-126-3p levels in serum and hemorrhagic area, while those changes were reversed by the treatment with miR-126-3p mimic. VCAM-1 is a direct target of miR-126-3p, and VCAM-1 expression in hemorrhagic area was down-regulated by the administration of miR-126-3p mimic in rats. Inhibition of miR-126-3p by anti-miR126 treatment in BMECs resulted in barrier leakage. Conclusion miR-126-3p attenuates intracerebral hemorrhage-induced blood-brain barrier disruption, which is associated with down-regulated expression of VCAM-1 in hemorrhagic area.
Collapse
Affiliation(s)
- Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiesheng Niu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
66
|
Changes in morphology and miRNAs expression in small intestines of Shaoxing ducks in response to high temperature. Mol Biol Rep 2019; 46:3843-3856. [PMID: 31049835 DOI: 10.1007/s11033-019-04827-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
During summer days the extreme heat may cause damage to the integrity of animal intestinal barrier. Little information is available concerning morphological changes in the duck intestines in response to high temperature. And the molecular mechanisms underlying the pathogenesis of high temperature-induced intestinal injury remain undefined. MicroRNAs (miRNAs) are known to play key roles in post-transcriptional regulation of gene expression that influences various biological processes. The purpose of this study was to explore the changes in morphology and miRNA expression profiles of the three intestinal segments (duodenum, jejunum and ileum) of ducks in response to high temperature. Sixty female Shaoxing ducks (Anas platyrhynchos), 60 days old, were allocated in two groups, including control ducks kept at 25 °C, and ducks subjected to high ambient temperatures of 30-40 °C for 15 successive days, which mimicked the diurnal temperature variations experienced in hot seasons. Three ducks from each group were executed at the end of feeding experiment, and the samples of three intestinal segments were collected for morphological examination and Illumina deep sequencing analyses. Histopathological examination of the intestinal mucous membrane was performed with HE staining method. The results demonstrated that varying degrees of damage to each intestinal segment were found in heat-treated ducks, and there were more severe injuries in duodenum and jejunum than those in ileum. Illumina high-throughput sequencing and bioinformatic methods were employed in this study to identify the miRNA expression profile of three different intestinal tissues in control and heat-treated ducks. A total of 75,981,636, 88,345,563 and 100,179,422 raw reads were obtained from duodenum, jejunum and ileum, respectively, from which 74,797,633 clean reads in duodenal libraries, 86,406,445 clean reads in jejunal libraries, and 98,518,858 lean reads in ileal libraries were derived after quality control, respectively. And a total of 276 known and 182 novel miRNAs were identified in the three intestinal segments of ducks under control and heat-treated conditions. By comparing the same tissues in different conditions, 16, 18 and 15 miRNAs were found to be significantly differentially expressed between control and heat-treated ducks in duodenum, jejunum and ileum, respectively, of which 1 miRNA was expressed in both the duodenum and jejunum, 2 miRNAs were expressed in both the duodenum and ileum, and 3 miRNAs were found to be expressed in both the jejunum and ileum. In addition, two differentially expressed miRNAs in each comparison were randomly selected and validated by quantitative qRT-PCR. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the differentially expressed miRNAs may be involved in the high temperature-induced intestinal injury in ducks. Our work provides the comprehensive miRNA expression profiles of small intestines in the normal and heat-treated ducks. These findings suggest the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the high temperature-induced changes in the duck small intestine.
Collapse
|
67
|
Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Zingarelli B, Fan H. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:44. [PMID: 30760290 PMCID: PMC6373158 DOI: 10.1186/s13054-019-2339-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background The acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar-capillary barrier resulting in accumulation of proteinaceous edema and increased inflammatory cells in the alveolar space. We previously found that endothelial progenitor cell (EPC) exosomes prevent endothelial dysfunction and lung injury in sepsis in part due to their encapsulation of miRNA-126. However, the effects of EPC exosomes in acute lung injury (ALI) remain unknown. Methods To determine if EPC exosomes would have beneficial effects in ALI, intratracheal administration of lipopolysaccharide (LPS) was used to induce ALI in mice. Lung permeability, inflammation, and the role of miRNA-126 in the alveolar-epithelial barrier function were examined. Results The intratracheal administration of EPC exosomes reduced lung injury following LPS-induced ALI at 24 and 48 h. Compared to placebo, intratracheal administration of EPC exosomes significantly reduced the cell number, protein concentration, and cytokines/chemokines in the bronchoalveolar lavage fluid (BALF), indicating a reduction in permeability and inflammation. Further, EPC exosomes reduced myeloperoxidase (MPO) activity, lung injury score, and pulmonary edema, demonstrating protection against lung injury. Murine fibroblast (NIH3T3) exosomes, which do not contain abundant miRNA-126, did not provide these beneficial effects. In human small airway epithelial cells (SAECs), we found that overexpression of miRNA-126-3p can target phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), while overexpression of miRNA-126-5p inhibits the inflammatory alarmin HMGB1 and permeability factor VEGFα. Interestingly, both miR-126-3p and 5p increase the expression of tight junction proteins suggesting a potential mechanism by which miRNA-126 may mitigate LPS-induced lung injury. Conclusions Our data demonstrated that human EPC exosomes are beneficial in LPS-induced ALI mice, in part through the delivery of miRNA-126 into the injured alveolus. Electronic supplementary material The online version of this article (10.1186/s13054-019-2339-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA.,Department of Biopharmaceutics College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Eugene Chang
- Department of Obstetrics-Gynecology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 41073, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA. .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
68
|
Wen J, He T, Qi F, Chen H. MiR-206-3p alleviates chronic constriction injury-induced neuropathic pain through targeting HDAC4. Exp Anim 2018; 68:213-220. [PMID: 30587671 PMCID: PMC6511522 DOI: 10.1538/expanim.18-0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It was identified that microRNAs were involved in the regulation of chronic neuropathic pain. However, the role of miR-206-3p in neuropathic pain was still unclear. In the current study, the role of miR-206-3p, a type of mature miR-206, in neuropathic pain was investigated. The potential mechanisms were also explored. We found that the expression of miR-206-3p decreased in the dorsal root ganglion (DRG) of chronic constriction sciatic nerve injury (CCI) rats, whereas the While histone deacetylase 4 (HDAC4) level increased. Further exploration showed that administration of a miR-206-3p mimic alleviated neuropathic pain and reduced the level of HDAC4, a predicted target of miR-206-3p. Overexpression of HDAC4 attenuated the effects of miR-206-3p on neuropathic pain. Our data revealed a miR-206-3p-HDAC4 signal that played a potentially important role in CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Tao He
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Fangfang Qi
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, Nanchang 330006, People's Republic of China
| |
Collapse
|
69
|
|
70
|
Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, Scalzo F, He Z. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11. J Biol Chem 2018; 293:20041-20050. [PMID: 30337368 DOI: 10.1074/jbc.ra118.001858] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported that miR-27a-3p is down-regulated in the serum of patients with intracerebral hemorrhage (ICH), but the implication of miR-27a-3p down-regulation in post-ICH complications remains elusive. Here we verified miR-27a-3p levels in the serum of ICH patients by real-time PCR and observed that miR-27a-3p is also significantly reduced in the serum of these patients. We then further investigated the effect of miR-27a-3p on post-ICH complications by intraventricular administration of a miR-27a-3p mimic in rats with collagenase-induced ICH. We found that the hemorrhage markedly reduced miR-27a-3p levels in the hematoma, perihematomal tissue, and serum and that intracerebroventricular administration of the miR-27a-3p mimic alleviated behavioral deficits 24 h after ICH. Moreover, ICH-induced brain edema, vascular leakage, and leukocyte infiltration were also attenuated by this mimic. Of note, miR-27a-3p mimic treatment also inhibited neuronal apoptosis and microglia activation in the perihematomal zone. We further observed that the miR-27a-3p mimic suppressed the up-regulation of aquaporin-11 (AQP11) in the perihematomal area and in rat brain microvascular endothelial cells (BMECs). Moreover, miR-27a-3p down-regulation increased BMEC monolayer permeability and impaired BMEC proliferation and migration. In conclusion, miR-27a-3p down-regulation contributes to brain edema, blood-brain barrier disruption, neuron loss, and neurological deficits following ICH. We conclude that application of exogenous miR-27a-3p may protect against post-ICH complications by targeting AQP11 in the capillary endothelial cells of the brain.
Collapse
Affiliation(s)
- Tianyang Xi
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Feng Jin
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Ying Zhu
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Jialu Wang
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Ling Tang
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Yanzhe Wang
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - David S Liebeskind
- the Department of Neurology, University of California, Los Angeles, California 90095-7334
| | - Fabien Scalzo
- the Department of Neurology, University of California, Los Angeles, California 90095-7334
| | - Zhiyi He
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and.
| |
Collapse
|
71
|
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38:1255-1275. [PMID: 29737222 PMCID: PMC6092767 DOI: 10.1177/0271678x18774666] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | | | - David A Antonetti
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
- Department of Ophthalmology & Visual Science Medical School, University of Michigan Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
72
|
Fu G, Wang H, Cai Y, Zhao H, Fu W. Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats. Drug Des Devel Ther 2018; 12:1609-1619. [PMID: 29928110 PMCID: PMC6003286 DOI: 10.2147/dddt.s164324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functions including anti-inflammatory activity. In this study, we investigated whether TF could inhibit ICH-induced inflammatory response in rats and explored its mechanism. MATERIALS AND METHODS ICH rat models were induced with type VII collagenase and pretreated with TF by gavage in different doses (25 mg/kg-100 mg/kg). Twenty-four hours after ICH attack, we evaluated the rats' behavioral performance, the blood-brain barrier (BBB) integrity, and the formation of cerebral edema. The levels of reactive oxygen species (ROS) and inflammatory cytokines were examined by 2',7'-dichlorofluorescin diacetate and enzyme-linked immunosorbent assay. Nissl staining and transferase dUTP nick end labeling (TUNEL) were aimed to detect the neuron loss and apoptosis, the mechanism of which was explored by Western blot. RESULTS It was found that in the pretreated ICH rats TF significantly alleviated the behavioral defects, protected BBB integrity, and decreased the formation of cerebral edema and the levels of ROS as well as inflammatory cytokines (including interleukin-1 beta [IL-1β], IL-18, tumor nectosis factor-alpha, interferon-γ, transforming growth factor beta, and (C-X-C motif) ligand 1 [CXCL1]). Nissl staining and TUNEL displayed TF could protect against the neuron loss and apoptosis via inhibiting the activation of nuclear transcription factor kappa-β-p65 (NF-κβ-p65), caspase-1, and IL-1β. We also found that phorbol 12-myristate 13-acetate, a nonspecific activator of NF-κβ-p65, weakened the positive effect of TF on ICH-induced neural defects and neuron apoptosis by upregulating NF-κβ-related signaling pathway. CONCLUSION TF could alleviate ICH-induced inflammatory responses and brain injury in rats via inhibiting NF-κβ-related pathway, which may provide a new way for the therapy of ICH.
Collapse
Affiliation(s)
- Guanglei Fu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Hua Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Youli Cai
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hui Zhao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenjun Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
73
|
Progress in brain barriers and brain fluid research in 2017. Fluids Barriers CNS 2018; 15:6. [PMID: 29391031 PMCID: PMC5796342 DOI: 10.1186/s12987-018-0091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
The past year, 2017, has seen many important papers published in the fields covered by Fluids and Barriers of the CNS. This article from the Editors highlights some.
Collapse
|