51
|
Ma J, Hart GW. O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 2014; 11:8. [PMID: 24593906 PMCID: PMC4015695 DOI: 10.1186/1559-0275-11-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/01/2014] [Indexed: 11/16/2022] Open
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases.
Collapse
Affiliation(s)
| | - Gerald W Hart
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
52
|
Cieniewski-Bernard C, Dupont E, Richard E, Bastide B. Phospho-GlcNAc modulation of slow MLC2 during soleus atrophy through a multienzymatic and sarcomeric complex. Pflugers Arch 2014; 466:2139-51. [DOI: 10.1007/s00424-014-1453-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/12/2023]
|
53
|
Hart GW. Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. Front Endocrinol (Lausanne) 2014; 5:183. [PMID: 25386167 PMCID: PMC4209869 DOI: 10.3389/fendo.2014.00183] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Even though the dynamic modification of polypeptides by the monosaccharide, O-linked N-acetylglucosamine (O-GlcNAcylation) was discovered over 30 years ago, its physiological significance as a major nutrient sensor that regulates myriad cellular processes has only recently been more widely appreciated. O-GlcNAcylation, either on its own or by its interplay with other post-translational modifications, such as phosphorylation, ubiquitination, and others, modulates the activities of signaling proteins, regulates most components of the transcription machinery, affects cell cycle progression and regulates the targeting/turnover or functions of myriad other regulatory proteins, in response to nutrients. Acute increases in O-GlcNAcylation protect cells from stress-induced injury, while chronic deregulation of O-GlcNAc cycling contributes to the etiology of major human diseases of aging, such as diabetes, cancer, and neurodegeneration. Recent advances in tools to study O-GlcNAcylation at the individual site level and specific inhibitors of O-GlcNAc cycling have allowed more rapid progress toward elucidating the specific functions of O-GlcNAcylation in essential cellular processes.
Collapse
Affiliation(s)
- Gerald W. Hart
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- *Correspondence: Gerald W. Hart, Department of Biological Chemistry, School of Medicine, Johns Hopkins University, WBSB515, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA e-mail:
| |
Collapse
|
54
|
Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, Smet-Nocca C, Lippens G, Hilaire G, Gijsen H, Moechars D, Van Leuven F. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS One 2013; 8:e84442. [PMID: 24376810 PMCID: PMC3871570 DOI: 10.1371/journal.pone.0084442] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023] Open
Abstract
The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.
Collapse
Affiliation(s)
- Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Clément Menuet
- MP3-Respiration, UMR CNRS 6231, Faculté Saint-Jérôme, Marseille, France
| | - Clara Theunis
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Justin V. Louis
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Hervé Maurin
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
| | - Caroline Smet-Nocca
- Groupe RMN-Glycobiologie, CNRS, University de Lille, Villeneuve d'Ascq, France
| | - Guy Lippens
- Groupe RMN-Glycobiologie, CNRS, University de Lille, Villeneuve d'Ascq, France
| | - Gerard Hilaire
- MP3-Respiration, UMR CNRS 6231, Faculté Saint-Jérôme, Marseille, France
| | - Harrie Gijsen
- Department Neuroscience, Janssen Research & Development, Beerse, Belgium
| | - Dieder Moechars
- Department Neuroscience, Janssen Research & Development, Beerse, Belgium
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, KULeuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
55
|
Hanover JA, Wang P. O-GlcNAc cycling shows neuroprotective potential in C. elegans models of neurodegenerative disease. WORM 2013; 2:e27043. [PMID: 24744983 DOI: 10.4161/worm.27043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 01/17/2023]
Abstract
C. elegans has proven to be an excellent organism in which to model human neurodegenerative disease.(1) (-) (7) The worm's simple nervous system, lineage, and neural maps, easily scored movement phenotypes, and robust forward and reverse genetics make it optimal for studying age-dependent processes on a reasonable time scale. A popular approach has been the introduction of transgenes expressing GFP-tagged proteotoxic human proteins into neurons leading to visible aggregation or movement phenotypes.(2) (,) (4) (,) (6) (,) (8) (-) (13) In addition, the maintenance of proteostasis networks has been extensively studied using the power of worm genetics.(8) (-) (13) These networks include genes involved in insulin-like signaling, the heat shock response, the response to hypoxia, and mTOR and AMPK pathways linked to aging.(14) Another pathway with suggestive links to neurodegeneration is the O-GlcNAc cycling pathway, a nutrient-dependent post-translational modification known to be altered in brains from patients with Alzheimer disease.(15) (-) (19) In this commentary, we summarize our recent findings showing that viable mutants of O-GlcNAc cycling in C. elegans dramatically alter the neurotoxicity of four distinct C. elegans models of neurodegenerative disease.(7) Mutants in O-GlcNAc cycling alter the toxicity of mutant tau, polyglutamine expansion reporters, and amyloid β-peptide. The findings further suggest that O-GlcNAc cycling acts at many steps in the lifecycle of aggregation-prone targets. The C. elegans system is likely to continue to provide insights into this complex problem. The involvement of O-GlcNAc cycling in the maintenance of proteostasis raises the possibility of targeting the enzymes catalyzing this critical post-translational modification for therapeutic intervention.
Collapse
|
56
|
Goodwin OY, Thomasson MS, Lin AJ, Sweeney MM, Macnaughtan MA. E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins. J Biotechnol 2013; 168:315-23. [PMID: 24140293 DOI: 10.1016/j.jbiotec.2013.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/20/2013] [Accepted: 10/06/2013] [Indexed: 01/17/2023]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) post-translational modification is an important, regulatory modification of cytosolic and nuclear enzymes. To date, no 3-dimensional structures of O-GlcNAc-modified proteins exist due to difficulties in producing sufficient quantities with either in vitro or in vivo techniques. Recombinant co-expression of substrate protein and O-GlcNAc transferase in Escherichia coli was used to produce O-GlcNAc-modified domains of human cAMP responsive element-binding protein (CREB1) and Abelson tyrosine-kinase 2 (ABL2). Recombinant expression in E. coli is an advantageous approach, but only small quantities of insoluble O-GlcNAc-modified protein were produced. Adding β-N-acetylglucosaminidase inhibitor, O-(2-acetamido-2-dexoy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), to the culture media provided the first evidence that an E. coli enzyme cleaves O-GlcNAc from proteins in vivo. With the inhibitor present, the yields of O-GlcNAc-modified protein increased. The E. coli β-N-acetylglucosaminidase was isolated and shown to cleave O-GlcNAc from a synthetic O-GlcNAc-peptide in vitro. The identity of the interfering β-N-acetylglucosaminidase was confirmed by testing a nagZ knockout strain. In E. coli, NagZ natively cleaves the GlcNAc-β1,4-N-acetylmuramic acid linkage to recycle peptidoglycan in the cytoplasm and cleaves the GlcNAc-β-O-linkage of foreign O-GlcNAc-modified proteins in vivo, sabotaging the recombinant co-expression system.
Collapse
Affiliation(s)
- Octavia Y Goodwin
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | | | | | | | | |
Collapse
|
57
|
Johnson B, Opimba M, Bernier J. Implications of the O-GlcNAc modification in the regulation of nuclear apoptosis in T cells. Biochim Biophys Acta Gen Subj 2013; 1840:191-8. [PMID: 24035784 DOI: 10.1016/j.bbagen.2013.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) is a nutrient-/stress-sensitive post-translational modification that affects nucleocytoplasmic proteins. The enzyme O-N-acetylglucosamine transferase (OGT) catalyzes the addition of O-GlcNAc, whereas O-N-acetylglucosaminidase (OGA) removes it. O-GlcNAcylation plays a role in fundamental regulatory mechanisms through the modification of proteins involved in cell division, metabolism, transcription, cell signaling and apoptosis. The effects of O-GlcNAcylation on apoptosis appear to be cell-dependent, as elevated levels played a protective role in primary neonatal rat ventricular myocytes but had a cytotoxic effect in rat pancreatic β-cells. The aim of the current study was to determine the implications of the O-GlcNAc modification on T cell apoptosis. METHODS Human T lymphoblastic HPB-ALL cells were treated with the OGA inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc), or with glucosamine (GlcN), to increase O-GlcNAcylation. Apoptosis was induced in the presence of tributyltin (TBT). DNA fragmentation was observed by cell cycle analysis and corresponded to the sub G0/G1 population. O-GlcNAcylated proteins were detected by immunoblot using a specific antibody (ctd110.6) and were precipitated using succinylated wheat germ agglutinin (sWGA). RESULTS HPB-ALL cells treated with PUGNAc displayed a significant reduction in DNA fragmentation after TBT-induced apoptosis. DFF45, the protein that inhibits the endonuclease DFF40, was identified to be O-GlcNAc modified. O-GlcNAcylated DFF45 appeared to be more resistant to caspase cleavage during apoptosis. Our results suggest that a decrease in the O-GlcNAc modification on DFF45 occurs before its cleavage by caspase. GENERAL SIGNIFICANCE Our results indicate that the O-GlcNAcylation of DFF45 may represent a mechanism to control the accidental activation of DFF.
Collapse
Affiliation(s)
- Bruno Johnson
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC H7V1B7, Canada
| | | | | |
Collapse
|
58
|
Okuda T, Fukui A, Morita N. Altered expression of O-GlcNAc-modified proteins in a mouse model whose glycemic status is controlled by a low carbohydrate ketogenic diet. Glycoconj J 2013; 30:781-9. [DOI: 10.1007/s10719-013-9482-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 01/09/2023]
|
59
|
Abstract
Neurons, perhaps more than any other cell type, depend on mitochondrial trafficking for their survival. Recent studies have elucidated a motor/adaptor complex on the mitochondrial surface that is shared between neurons and other animal cells. In addition to kinesin and dynein, this complex contains the proteins Miro (also called RhoT1/2) and milton (also called TRAK1/2) and is responsible for much, although not necessarily all, mitochondrial movement. Elucidation of the complex has permitted inroads for understanding how this movement is regulated by a variety of intracellular signals, although many mysteries remain. Regulating mitochondrial movement can match energy demand to energy supply throughout the extraordinary architecture of these cells and can control the clearance and replenishing of mitochondria in the periphery. Because the extended axons of neurons contain uniformly polarized microtubules, they have been useful for studying mitochondrial motility in conjunction with biochemical assays in many cell types.
Collapse
Affiliation(s)
- Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
60
|
Gurel Z, Sieg KM, Shallow KD, Sorenson CM, Sheibani N. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy. Mol Vis 2013; 19:1047-59. [PMID: 23734074 PMCID: PMC3668662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/18/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Hyperglycemia activates several metabolic pathways, including the hexosamine biosynthetic pathway. Uridine diphosphate N-acetylglucosamine (GlcNAc) is the product of the hexosamine biosynthetic pathway and the substrate for O-linked GlcNAc (O-GlcNAc) modification. This modification affects a wide range of proteins by altering their activity, cellular localization, and/or protein interactions. However, the role O-GlcNAcylation may play in normal postnatal retinal vascular development and in the ocular complications of diabetes, including diabetic retinopathy, requires further investigation. METHODS The total levels of O-GlcNAc-modified proteins were evaluated by western blot analysis of lysates prepared from retinas obtained at different days during postnatal retinal vascularization and oxygen-induced ischemic retinopathy. Similar experiments were performed with retinal lysate prepared from diabetic Ins2(Akita/+) mice with different durations of diabetes and retinal vascular cells cultured under various glucose conditions. The localization of O-GlcNAc-modified proteins in the retinal vasculature was confirmed by immunofluorescence staining. The impact of altered O-GlcNAcylation on the migration of retinal vascular cells was determined using scratch wound and transwell migration assays. RESULTS We detected an increase in protein O-GlcNAcylation during mouse postnatal retinal vascularization and aging, in part through the regulation of the enzymes that control this modification. The study of the diabetic Ins2(Akita/+) mouse retina showed an increase in the O-GlcNAc modification of retinal proteins. We also observed an increase in retinal O-GlcNAcylated protein levels during the neovascularization phase of oxygen-induced ischemic retinopathy. Our fluorescence microscopy data confirmed that the alterations in retinal O-GlcNAcylation are similarly represented in the retinal vasculature and in retinal pericytes and endothelial cells. Particularly, the migration of retinal pericytes, but not retinal endothelial cells, was attenuated by increased O-GlcNAc modification. CONCLUSIONS The O-GlcNAc modification pattern changes during postnatal retinal vascular development and neovascularization, and its dysregulation under hyperglycemia and/or ischemia may contribute to the pathogenesis of the diabetic retinopathy and retinal neovascularization.
Collapse
Affiliation(s)
- Zafer Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison,WI
| | - Kelsey M. Sieg
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison,WI
| | - Keegan D. Shallow
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison,WI
| | - Christine M. Sorenson
- Department Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison,WI,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison,WI
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison,WI,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison,WI
| |
Collapse
|
61
|
Ruan HB, Han X, Li MD, Singh JP, Qian K, Azarhoush S, Zhao L, Bennett AM, Samuel VT, Wu J, Yates JR, Yang X. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab 2012; 16:226-37. [PMID: 22883232 PMCID: PMC3480732 DOI: 10.1016/j.cmet.2012.07.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/21/2012] [Accepted: 07/11/2012] [Indexed: 01/01/2023]
Abstract
A major cause of hyperglycemia in diabetic patients is inappropriate hepatic gluconeogenesis. PGC-1α is a master regulator of gluconeogenesis, and its activity is controlled by various posttranslational modifications. A small portion of glucose metabolizes through the hexosamine biosynthetic pathway, which leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins. Using a proteomic approach, we identified a broad variety of proteins associated with O-GlcNAc transferase (OGT), among which host cell factor C1 (HCF-1) is highly abundant. HCF-1 recruits OGT to O-GlcNAcylate PGC-1α, and O-GlcNAcylation facilitates the binding of the deubiquitinase BAP1, thus protecting PGC-1α from degradation and promoting gluconeogenesis. Glucose availability modulates gluconeogenesis through the regulation of PGC-1α O-GlcNAcylation and stability by the OGT/HCF-1 complex. Hepatic knockdown of OGT and HCF-1 improves glucose homeostasis in diabetic mice. These findings define the OGT/HCF-1 complex as a glucose sensor and key regulator of gluconeogenesis, shedding light on new strategies for treating diabetes.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Markiv A, Rambaruth NDS, Dwek MV. Beyond the genome and proteome: targeting protein modifications in cancer. Curr Opin Pharmacol 2012; 12:408-13. [PMID: 22560919 DOI: 10.1016/j.coph.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 12/31/2022]
Abstract
Nearly all proteins are modified in post translational events, indeed, understanding the control and function of post translational modifications (PTMs) is arguably the 'next frontier' for cancer cell biologists. The most well understood PTMs include glycosylation, phosphorylation, ubiquitination, methylation and palmitylation. Each of these modifications has been observed to be altered in cancer, affecting key cellular pathways including signal transduction, cell membrane receptor function, and protein-protein interactions. A number of strategies have been proposed that aim to target the modified proteins themselves, the enzymes that construct them, or that boost host-cellular immunity against modified residues aberrantly expressed in cancer.
Collapse
Affiliation(s)
- Anatoliy Markiv
- Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | | |
Collapse
|
63
|
Hanover JA, Krause MW, Love DC. linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 2012; 13:312-21. [DOI: 10.1038/nrm3334] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
64
|
Zhang F, Snead CM, Catravas JD. Hsp90 regulates O-linked β-N-acetylglucosamine transferase: a novel mechanism of modulation of protein O-linked β-N-acetylglucosamine modification in endothelial cells. Am J Physiol Cell Physiol 2012; 302:C1786-96. [PMID: 22496241 DOI: 10.1152/ajpcell.00004.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins is involved in many important cellular processes. Increased O-GlcNAc has been implicated in major diseases, such as diabetes and its complications and cardiovascular and neurodegenerative diseases. Recently, we reported that O-GlcNAc modification occurs in the proteasome and serves to inhibit proteasome function by blocking the ATPase activity in the 19S regulatory cap, explaining, at least in part, the adverse effects of O-GlcNAc modification and suggesting that downregulating O-GlcNAc might be important in the treatment of human diseases. In this study, we report on a novel mechanism to modulate cellular O-GlcNAc modification, namely through heat shock protein 90 (Hsp90) inhibition. We observed that O-linked β-N-acetylglucosamine transferase (OGT) interacts with the tetratricopeptide repeat binding site of Hsp90. Inhibition of Hsp90 by its specific inhibitors, radicicol or 17-N-allylamino-17-demethoxygeldanamycin, destabilized OGT in primary endothelial cell cultures and enhanced its degradation by the proteasome. Furthermore, Hsp90 inhibition downregulated O-GlcNAc protein modifications and attenuated the high glucose-induced increase in O-GlcNAc protein modification, including high glucose-induced increase in endothelial or type 3 isoform of nitric oxide synthase (eNOS) O-GlcNAcylation. These results suggest that Hsp90 is involved in the regulation of OGT and O-GlcNAc modification and that Hsp90 inhibitors might be used to modulate O-GlcNAc modification and reverse its adverse effects in human diseases.
Collapse
Affiliation(s)
- Fengxue Zhang
- Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, 30912-2500, USA.
| | | | | |
Collapse
|
65
|
Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc Natl Acad Sci U S A 2012; 109:4834-9. [PMID: 22411826 DOI: 10.1073/pnas.1114356109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification found on hundreds of nuclear and cytoplasmic proteins in higher eukaryotes. Despite its ubiquity and essentiality in mammals, functional roles for the O-GlcNAc modification remain poorly defined. Here we develop a combined genetic and chemical approach that enables introduction of the diazirine photocrosslinker onto the O-GlcNAc modification in cells. We engineered mammalian cells to produce diazirine-modified O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing these cells with a cell-permeable, diazirine-modified form of GlcNAc-1-phosphate. Irradiation of cells with UV light activated the crosslinker, resulting in formation of covalent bonds between O-GlcNAc-modified proteins and neighboring molecules, which could be identified by mass spectrometry. We used this method to identify interaction partners for the O-GlcNAc-modified FG-repeat nucleoporins. We observed crosslinking between FG-repeat nucleoporins and nuclear transport factors, suggesting that O-GlcNAc residues are intimately associated with essential recognition events in nuclear transport. Further, we propose that the method reported here could find widespread use in investigating the functional consequences of O-GlcNAcylation.
Collapse
|
66
|
Proteomic characterization in the hippocampus of prenatally stressed rats. J Proteomics 2012; 75:1764-70. [DOI: 10.1016/j.jprot.2011.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 12/12/2022]
|
67
|
O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J 2012; 31:1394-404. [PMID: 22307082 PMCID: PMC3321193 DOI: 10.1038/emboj.2012.8] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022] Open
Abstract
The protein kinase TAK1 plays an important role in pro-inflammatory cytokine signalling. Interleukin-1- and osmotic stress-induced O-GlcNAcylation of its regulatory subunit TAB1 is required for full TAK1 activation to induce downstream cytokine production, linking this protein modification to innate immunity signalling. Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as transforming growth factor-β, tumour necrosis factor (TNF), interleukin-1 (IL-1) and wnt family ligands. TAK1 is found in complex with binding partners TAB1–3, phosphorylation and ubiquitination of which has been found to regulate TAK1 activity. In this study, we show that TAB1 is modified with N-acetylglucosamine (O-GlcNAc) on a single site, Ser395. With the help of a novel O-GlcNAc site-specific antibody, we demonstrate that O-GlcNAcylation of TAB1 is induced by IL-1 and osmotic stress, known inducers of the TAK1 signalling cascade. By reintroducing wild-type or an O-GlcNAc-deficient mutant TAB1 (S395A) into Tab1−/− mouse embryonic fibroblasts, we determined that O-GlcNAcylation of TAB1 is required for full TAK1 activation upon stimulation with IL-1/osmotic stress, for downstream activation of nuclear factor κB and finally production of IL-6 and TNFα. This is one of the first examples of a single O-GlcNAc site on a signalling protein modulating a key innate immunity signalling pathway.
Collapse
|
68
|
Magnelli P, Bielik A, Guthrie E. Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. Methods Mol Biol 2012; 801:189-211. [PMID: 21987255 DOI: 10.1007/978-1-61779-352-3_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic deglycosylation followed by SDS-PAGE is a valuable method to detect glycan modifications on protein samples. Specific glycosidases were used to remove sugars from glycoproteins in a controlled fashion leaving the protein core intact; the resulting change in molecular weight could be detected as shifts in gel mobility. Alternatively, glycan-sensitive reagents were used to visualize the intensity of glycoprotein bands before and after enzyme treatment. The ease of use of these techniques, which require only basic laboratory instrumentation and reagents, makes them the methodology of choice for initial glycobiology studies. These protocols are also well suited to screen for optimal expression conditions, since multiple glycoprotein samples can be processed at once.
Collapse
|
69
|
Ohmi K, Zhao HZ, Neufeld EF. Defects in the medial entorhinal cortex and dentate gyrus in the mouse model of Sanfilippo syndrome type B. PLoS One 2011; 6:e27461. [PMID: 22096577 PMCID: PMC3212581 DOI: 10.1371/journal.pone.0027461] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/17/2011] [Indexed: 12/26/2022] Open
Abstract
Sanfilippo syndrome type B (MPS IIIB) is characterized by profound mental retardation in childhood, dementia and death in late adolescence; it is caused by deficiency of α-N-acetylglucosaminidase and resulting lysosomal storage of heparan sulfate. A mouse model, generated by homologous recombination of the Naglu gene, was used to study pathological changes in the brain. We found earlier that neurons in the medial entorhinal cortex (MEC) and the dentate gyrus showed a number of secondary defects, including the presence of hyperphosphorylated tau (Ptau) detected with antibodies raised against Ptau in Alzheimer disease brain. By further use of immunohistochemistry, we now show staining in neurons of the same area for beta amyloid, extending the resemblance to Alzheimer disease. Ptau inclusions in the dentate gyrus of MPS IIIB mice were reduced in number when the mice were administered LiCl, a specific inhibitor of Gsk3β. Additional proteins found elevated in MEC include proteins involved in autophagy and the heparan sulfate proteoglycans, glypicans 1 and 5, the latter closely related to the primary defect. The level of secondary accumulations was associated with elevation of glypican, as seen by comparing brains of mice at different ages or with different mucopolysaccharide storage diseases. The MEC of an MPS IIIA mouse had the same intense immunostaining for glypican 1 and other markers as MPS IIIB, while MEC of MPS I and MPS II mice had weak staining, and MEC of an MPS VI mouse had no staining at all for the same proteins. A considerable amount of glypican was found in MEC of MPS IIIB mice outside of lysosomes. We propose that it is the extralysosomal glypican that would be harmful to neurons, because its heparan sulfate branches could potentiate the formation of Ptau and beta amyloid aggregates, which would be toxic as well as difficult to degrade.
Collapse
Affiliation(s)
- Kazuhiro Ohmi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui-Zhi Zhao
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elizabeth F. Neufeld
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
70
|
Carmona-Mora P, Walz K. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior. Curr Genomics 2011; 11:607-17. [PMID: 21629438 PMCID: PMC3078685 DOI: 10.2174/138920210793360952] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/08/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022] Open
Abstract
Genomic structural changes, such as gene Copy Number Variations (CNVs) are extremely abundant in the human genome. An enormous effort is currently ongoing to recognize and catalogue human CNVs and their associations with abnormal phenotypic outcomes. Recently, several reports related neuropsychiatric diseases (i.e. autism spectrum disorders, schizophrenia, mental retardation, behavioral problems, epilepsy) with specific CNV. Moreover, for some conditions, both the deletion and duplication of the same genomic segment are related to the phenotype. Syndromes associated with CNVs (microdeletion and microduplication) have long been known to display specific neurobehavioral traits. It is important to note that not every gene is susceptible to gene dosage changes and there are only a few dosage sensitive genes. Smith-Magenis (SMS) and Potocki-Lupski (PTLS) syndromes are associated with a reciprocal microdeletion and microduplication within chromosome 17p11.2. in humans. The dosage sensitive gene responsible for most phenotypes in SMS has been identified: the Retinoic Acid Induced 1 (RAI1). Studies on mouse models and humans suggest that RAI1 is likely the dosage sensitive gene responsible for clinical features in PTLS. In addition, the human RAI1 gene has been implicated in several neurobehavioral traits as spinocerebellar ataxia (SCA2), schizophrenia and non syndromic autism. In this review we discuss the evidence of RAI1 as a dosage sensitive gene, its relationship with different neurobehavioral traits, gene structure and mutations, and what is known about its molecular and cellular function, as a first step in the elucidation of the mechanisms that relate dosage sensitive genes with abnormal neurobehavioral outcomes.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
71
|
Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med 2011; 12:61-5. [PMID: 21567137 PMCID: PMC3295997 DOI: 10.1007/s10238-011-0138-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/21/2011] [Indexed: 12/30/2022]
Abstract
O-GlcNAcylation is an abundant, dynamic, and inducible posttranslational modification in which single β-N-acetylglucosamine residues are attached by O-glycosidic linkage to serine or treonine residues. It is suggested that abnormally regulated O-GlcNAcylation may contribute to the pathology of cancer. Cycling of O-GlcNAc residues on intracellular proteins is controlled by two enzymes, O-GlcNAc transferease (OGT), which catalyses the addition of O-GlcNAc residues and nucleocytoplasmic β-N-acetylglucosaminidase (O-GlcNAcase; encoded by MGEA5 gene), an enzyme involved in the removal of O-GlcNAc. In this study, relationship between the mRNA expressions of genes coding O-GlcNAc cycling enzymes in breast ductal carcinomas and clinicopathological parameters were analyzed. The results showed that poorly differentiated tumors (grade II and III) had significantly higher OGT expression than grade I tumors. Contrary, MGEA5 transcript levels were significantly lower in grade II and III in comparison with grade I tumors. The Spearman rank correlation showed the expressions of OGT and MGEA5 in breast cancer was negatively correlated (r = -0.430, P = 0.0002). Lymph node metastasis status was significantly associated with decreased MGEA5 mRNA expression. This result suggests that elevation in O-GlcNAc modification of proteins may be implicated in breast tumor progression and metastasis.
Collapse
|
72
|
Kim EJ. Chemical arsenal for the study of O-GlcNAc. Molecules 2011; 16:1987-2022. [PMID: 21358590 PMCID: PMC6259741 DOI: 10.3390/molecules16031987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/03/2011] [Accepted: 02/15/2011] [Indexed: 12/24/2022] Open
Abstract
The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS) techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA). Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.
Collapse
Affiliation(s)
- Eun J Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongbuk 712-714, Korea.
| |
Collapse
|
73
|
Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q, Yu W. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta Mol Basis Dis 2011; 1812:514-9. [PMID: 21255644 DOI: 10.1016/j.bbadis.2011.01.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 12/19/2022]
Abstract
O-GlcNAc is a monosaccharide attached to serine or threonine hydroxyl moieties on numerous nuclear and cytoplasmic proteins; O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Although recent studies have shown that O-GlcNAcylation plays essential roles in breast cancer progression, it is also necessary to know whether O-GlcNAcylation is involved in other types of human cancer. In this study, O-GlcNAcylation levels and the expressions of OGT and OGA in human lung and colon cancer tissues were examined by immunohistochemistry analysis. We found that O-GlcNAcylation as well as OGT expression was significantly elevated in the cancer tissues compared with that in the corresponding adjacent tissues. Additionally, the roles of O-GlcNAcylation in the malignancy of lung and colon cancer were investigated in vitro. The results showed that O-GlcNAcylation markedly enhanced the anchorage-independent growth of lung and colon cancer cells; O-GlcNAcylation could also enhance lung and colon cancer invasion in a context-dependent manner. All together, this study suggests that O-GlcNAcylation might play important roles in lung and colon cancer formation and progression, and may be a valuable target for diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Wenyi Mi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lima VV, Giachini FR, Hardy DM, Webb RC, Tostes RC. O-GlcNAcylation: a novel pathway contributing to the effects of endothelin in the vasculature. Am J Physiol Regul Integr Comp Physiol 2010; 300:R236-50. [PMID: 21068200 DOI: 10.1152/ajpregu.00230.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) or O-GlcNAcylation on serine and threonine residues of nuclear and cytoplasmic proteins is a posttranslational modification that alters the function of numerous proteins important in vascular function, including kinases, phosphatases, transcription factors, and cytoskeletal proteins. O-GlcNAcylation is an innovative way to think about vascular signaling events both in physiological conditions and in disease states. This posttranslational modification interferes with vascular processes, mainly vascular reactivity, in conditions where endothelin-1 (ET-1) levels are augmented (e.g. salt-sensitive hypertension, ischemia/reperfusion, and stroke). ET-1 plays a crucial role in the vascular function of most organ systems, both in physiological and pathophysiological conditions. Recognition of ET-1 by the ET(A) and ET(B) receptors activates intracellular signaling pathways and cascades that result in rapid and long-term alterations in vascular activity and function. Components of these ET-1-activated signaling pathways (e.g., mitogen-activated protein kinases, protein kinase C, RhoA/Rho kinase) are also targets for O-GlcNAcylation. Recent experimental evidence suggests that ET-1 directly activates O-GlcNAcylation, and this posttranslational modification mediates important vascular effects of the peptide. This review focuses on ET-1-activated signaling pathways that can be modified by O-GlcNAcylation. A brief description of the O-GlcNAcylation biology is presented, and its role on vascular function is addressed. ET-1-induced O-GlcNAcylation and its implications for vascular function are then discussed. Finally, the interplay between O-GlcNAcylation and O-phosphorylation is addressed.
Collapse
Affiliation(s)
- Victor V Lima
- Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
75
|
Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 2010; 40:885-93. [PMID: 20824293 PMCID: PMC3040817 DOI: 10.1007/s00726-010-0719-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/03/2010] [Indexed: 01/03/2023]
Abstract
O-linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAc addition to numerous cellular proteins including transcription and nuclear pore complexes and plays a key role in cellular signaling. One differentially spliced isoform of OGT is normally targeted to mitochondria (mOGT) but is quite cytotoxic when expressed in cells compared with the ncOGT isoform. To understand the basis of this selective cytotoxicity, we constructed a fully functional ecdysone-inducible GFP–OGT. Elevated GFP–OGT expression induced a dramatic increase in intracellular O-GlcNAcylated proteins. Furthermore, enhanced OGT expression efficiently triggered programmed cell death. Apoptosis was dependent upon the unique N-terminus of mOGT, and its catalytic activity. Induction of mOGT expression triggered programmed cell death in every cell type tested including INS-1, an insulin-secreting cell line. These studies suggest that deregulated activity of the mitochondrially targeted mOGT may play a role in triggering the programmed cell death observed with diseases such as diabetes mellitus and neurodegeneration.
Collapse
|
76
|
Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 2010; 21:646-54. [PMID: 20488252 PMCID: PMC2917487 DOI: 10.1016/j.semcdb.2010.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These 'evo-devo' relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the 'vicious cycle' observed in children of mothers with type-2 diabetes and metabolic disease.
Collapse
Affiliation(s)
- Dona C. Love
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health
| | - Michael W. Krause
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health
| |
Collapse
|
77
|
Perez-Cervera Y, Harichaux G, Schmidt J, Debierre-Grockiego F, Dehennaut V, Bieker U, Meurice E, Lefebvre T, Schwarz RT. Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study. Amino Acids 2010; 40:847-56. [PMID: 20661758 DOI: 10.1007/s00726-010-0702-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/13/2010] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii and Plasmodium falciparum are apicomplexan parasites responsible for serious diseases in humans. Many studies have focused on the post-translational modifications (PTMs) found in the two protists including phosphorylation, acetylation or SUMOylation but only a few of these are concerned with the nuclear and cytosolic-specific glycosylation O-GlcNAcylation. O-GlcNAcylation is a highly dynamic PTM-regulated by the ON and OFF enzymes: O-GlcNAc transferase and O-GlcNAcase-that can compete with phosphorylation but its function remains unclear. In this work, we directly prove the O-GlcNAcylation in T. gondii using antibodies specifically directed against the modification and we strongly suggest its occurrence in P. falciparum. We found that the inducible 70 kDa-Heat Shock Protein is O-GlcNAcylated, or associated with an O-GlcNAc-partner, in T. gondii. Using anti-OGT antibodies we were able to detect the expression of the glycosyltransferase in T. gondii cultured both in human foreskin fibroblast and in Vero cells and report its putative sequence. For the first time the presence of O-GlcNAcylation is unequivocally shown in T. gondii and suspected in P. falciparum. Since the O-GlcNAcylation is implicated in many biological fundamental processes this study opens a new research track in the knowledge of apicomplexans' life cycle and pathogenic potential.
Collapse
Affiliation(s)
- Yobana Perez-Cervera
- Unit of Structural and Functional Glycobiology, CNRS-UMR 8576, IFR 147, Université de Lille 1, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Khoushab F, Yamabhai M. Chitin research revisited. Mar Drugs 2010; 8:1988-2012. [PMID: 20714419 PMCID: PMC2920538 DOI: 10.3390/md8071988] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 05/24/2010] [Accepted: 05/08/2010] [Indexed: 12/22/2022] Open
Abstract
Two centuries after the discovery of chitin, it is widely accepted that this biopolymer is an important biomaterial in many aspects. Numerous studies on chitin have focused on its biomedical applications. In this review, various aspects of chitin research including sources, structure, biosynthesis, chitinolytic enzyme, chitin binding protein, genetic engineering approach to produce chitin, chitin and evolution, and a wide range of applications in bio- and nanotechnology will be dealt with.
Collapse
Affiliation(s)
- Feisal Khoushab
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; E-Mail:
| | - Montarop Yamabhai
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand; E-Mail:
| |
Collapse
|
79
|
Ozcan S, Andrali SS, Cantrell JEL. Modulation of transcription factor function by O-GlcNAc modification. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:353-64. [PMID: 20202486 PMCID: PMC2881704 DOI: 10.1016/j.bbagrm.2010.02.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 12/22/2022]
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) modification of nuclear and cytoplasmic proteins is important for many cellular processes, and the number of proteins that contain this modification is steadily increasing. This modification is dynamic and reversible, and in some cases competes for phosphorylation of the same residues. O-GlcNAc modification of proteins is regulated by cell cycle, nutrient metabolism, and other extracellular signals. Compared to protein phosphorylation, which is mediated by a large number of kinases, O-GlcNAc modification is catalyzed only by one enzyme called O-linked N-acetylglucosaminyl transferase or OGT. Removal of O-GlcNAc from proteins is catalyzed by the enzyme beta-N-acetylglucosaminidase (O-GlcNAcase or OGA). Altered O-linked GlcNAc modification levels contribute to the establishment of many diseases, such as cancer, diabetes, cardiovascular disease, and neurodegeneration. Many transcription factors have been shown to be modified by O-linked GlcNAc modification, which can influence their transcriptional activity, DNA binding, localization, stability, and interaction with other co-factors. This review focuses on modulation of transcription factor function by O-linked GlcNAc modification.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|