51
|
Cruz CD, Del Puerto HL, Rocha ALL, Cavallo IK, Clarizia AD, Petraglia F, Reis FM. Expression of Nodal, Cripto, SMAD3, phosphorylated SMAD3, and SMAD4 in the proliferative endometrium of women with endometriosis. Reprod Sci 2014; 22:527-33. [PMID: 25228630 DOI: 10.1177/1933719114549855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nodal is a growth factor of the transforming growth factor β superfamily that is expressed in high turnover tissues, such as the human endometrium, and in several malignancies. The effects of Nodal are modulated by the coreceptor Cripto and mediated by SMAD proteins. This study evaluated the gene and protein expression of Nodal, Cripto, total and phosphorylated (p) SMAD3, and SMAD4 in the proliferative endometrium of women with and without endometriosis. METHOD Total RNA was isolated and complementary DNA synthesized from eutopic endometrium of women with (n = 15) and without (n = 12) endometriosis, followed by quantitative real-time polymerase chain reaction (PCR) to evaluate the gene expression of Nodal, Cripto, SMAD3, and SMAD4. Western blot was used to evaluate the protein levels of Nodal and Cripto, and immunohistochemistry was performed to localize SMAD3, pSMAD3, and SMAD4. RESULTS Although Nodal expression was unchanged in women with endometriosis, real-time PCR indicated lower gene expression of Cripto (fold change 0.27, P < .05) in the endometriosis group. This difference, however, was not maintained at protein expression level as assessed by Western blot. The immunostaining of total SMAD3 was reduced in the endometriosis group (P < .01), but the localization of pSMAD3 and the nuclear staining of SMAD4 were unchanged. CONCLUSION These findings suggest that the Nodal signaling pathway has subtle changes in the endometrium of women with endometriosis, but this imbalance may not cause functional damage as it seems not to affect the nuclear expression of SMAD4.
Collapse
Affiliation(s)
- Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen L Del Puerto
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Luiza L Rocha
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Inês K Cavallo
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra D Clarizia
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
52
|
Papanayotou C, Benhaddou A, Camus A, Perea-Gomez A, Jouneau A, Mezger V, Langa F, Ott S, Sabéran-Djoneidi D, Collignon J. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol 2014; 12:e1001890. [PMID: 24960041 PMCID: PMC4068991 DOI: 10.1371/journal.pbio.1001890] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
HBE, a newly discovered enhancer element, mediates the influence of pluripotency factors and Activin/Nodal signaling on early Nodal expression in the mouse embryo, and controls the activation of later-acting Nodal enhancers. During early development, modulations in the expression of Nodal, a TGFβ family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence “highly bound element” (HBE). Luciferase-based assays, the analysis of fluorescent HBE reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs) and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new perspectives on how pluripotency factors achieve their function. In the early mouse embryo, Nodal, a member of the TGFbeta superfamily of signalling proteins, promotes the differentiation of extra-embryonic tissues, as well as tissues within the developing embryo itself. Characterising the regulation of Nodal gene expression is essential to understand how Nodal signals in diverse tissue types and at different stages of embryonic development. Four distinct enhancer sequences have been shown to regulate Nodal expression, although none could account for it in the preimplantation epiblast or in embryonic stem cells. We identified a novel enhancer, HBE, responsible for the earliest aspects of Nodal expression. We show that activation of HBE depends on its interaction with a well-known pluripotency factor called Oct4. HBE itself also controls the activation of at least one other Nodal enhancer. Our findings clarify how early Nodal expression is regulated and reveal how pluripotency factors may control the onset of differentiation in embryonic tissues.
Collapse
Affiliation(s)
- Costis Papanayotou
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (JC); (CP)
| | - Ataaillah Benhaddou
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Camus
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Jouneau
- Unité de Biologie du Développement et de la reproduction, UMR INRA-ENVA, INRA, Jouy-en-Josas, France
| | - Valérie Mezger
- Epigenetics and Cell Fate, UMR7216, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Délara Sabéran-Djoneidi
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Epigenetics and Cell Fate, UMR7216, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Collignon
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (JC); (CP)
| |
Collapse
|
53
|
Park KS, Raffeld M, Moon YW, Xi L, Bianco C, Pham T, Lee LC, Mitsudomi T, Yatabe Y, Okamoto I, Subramaniam D, Mok T, Rosell R, Luo J, Salomon DS, Wang Y, Giaccone G. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. J Clin Invest 2014; 124:3003-15. [PMID: 24911146 DOI: 10.1172/jci73048] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/25/2014] [Indexed: 01/02/2023] Open
Abstract
The majority of non-small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protein family member, renders EGFR-TKI-sensitive and EGFR-mutated NSCLC cells resistant to erlotinib in culture and in murine xenograft models. Furthermore, tumors from NSCLC patients with EGFR-activating mutations that were intrinsically resistant to EGFR-TKIs expressed higher levels of CRIPTO1 compared with tumors from patients that were sensitive to EGFR-TKIs. Primary NSCLC cells derived from a patient with EGFR-mutated NSCLC that was intrinsically erlotinib resistant were CRIPTO1 positive, but gained erlotinib sensitivity upon loss of CRIPTO1 expression during culture. CRIPTO1 activated SRC and ZEB1 to promote EMT via microRNA-205 (miR-205) downregulation. While miR-205 depletion induced erlotinib resistance, miR-205 overexpression inhibited CRIPTO1-dependent ZEB1 and SRC activation, restoring erlotinib sensitivity. CRIPTO1-induced erlotinib resistance was directly mediated through SRC but not ZEB1; therefore, cotargeting EGFR and SRC synergistically attenuated growth of erlotinib-resistant, CRIPTO1-positive, EGFR-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome intrinsic EGFR-inhibitor resistance in patients with CRIPTO1-positive, EGFR-mutated NSCLC.
Collapse
|
54
|
Nodal signals via β-arrestins and RalGTPases to regulate trophoblast invasion. Cell Signal 2014; 26:1935-42. [PMID: 24863882 DOI: 10.1016/j.cellsig.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/05/2023]
Abstract
Placentation is critical for establishing a healthy pregnancy. Trophoblasts mediate implantation and placentation and certain subtypes, most notably extravillous cytotrophoblast, are highly invasive. Trophoblast invasion is tightly regulated by microenvironmental cues that dictate placental morphology and depth. In choriocarcinomas, malignant trophoblast cells become hyperinvasive, breaching the myometrium and leading to major complications. Nodal, a member of the TGF-β superfamily, is expressed throughout the endometrium during the peri-implantation period and in invasive trophoblast cells. Nodal promotes the invasion of numerous types of cancer cells. However, Nodal's role in trophoblast and choriocarcinoma cell invasion is unclear. Here we show that Nodal stimulates the invasion of both the non-malignant HTR-8SV/neo trophoblast and JAR choriocarcinoma cells in a dose-dependent manner. We found that endogenous β-arrestins and Ral GTPases, key regulators of the cell cytoskeleton, are constitutively associated with Nodal receptors (ALK4 and ALK7) in trophoblast cells and that RalA is colocalized with ALK4 in endocytic vesicles. Nodal stimulates endogenous β-arrestin2 to associate with phospho-ERK1/2, and knockdown of β-arrestin or Ral proteins impairs Nodal-induced trophoblast and choriocarcinoma cell invasion. These results demonstrate, for the first time, that β-arrestins and RalGTPases are important regulators of Nodal-induced invasion.
Collapse
|
55
|
Chen J, Liu WB, Jia WD, Xu GL, Ma JL, Ren Y, Chen H, Sun SN, Huang M, Li JS. Embryonic morphogen nodal is associated with progression and poor prognosis of hepatocellular carcinoma. PLoS One 2014; 9:e85840. [PMID: 24465741 PMCID: PMC3897529 DOI: 10.1371/journal.pone.0085840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Background Nodal, a TGF-β-related embryonic morphogen, is involved in multiple biologic processes. However, the expression of Nodal in hepatocellular carcinoma (HCC) and its correlation with tumor angiogenesis, epithelial-mesenchymal transition, and prognosis is unclear. Methods We used real-time PCR and Western blotting to investigate Nodal expression in 6 HCC cell lines and 1 normal liver cell line, 16 pairs of tumor and corresponding paracarcinomatous tissues from HCC patients. Immunohistochemistry was performed to examine Nodal expression in HCC and corresponding paracarcinomatous tissues from 96 patients. CD34 and Vimentin were only examined in HCC tissues of patients mentioned above. Nodal gene was silenced by shRNA in MHCC97H and HCCLM3 cell lines, and cell migration and invasion were detected. Statistical analyses were applied to evaluate the prognostic value and associations of Nodal expression with clinical parameters. Results Nodal expression was detected in HCC cell lines with high metastatic potential alone. Nodal expression is up-regulated in HCC tissues compared with paracarcinomatous and normal liver tissues. Nodal protein was expressed in 70 of the 96 (72.9%) HCC tumors, and was associated with vascular invasion (P = 0.000), status of metastasis (P = 0.004), AFP (P = 0.049), ICGR15 (indocyanine green retention rate at 15 min) (P = 0.010) and tumor size (P = 0.000). High Nodal expression was positively correlated with high MVD (microvessal density) (P = 0.006), but not with Vimentin expression (P = 0.053). Significantly fewer migrated and invaded cells were seen in shRNA group compared with blank group and negative control group (P<0.05). High Nodal expression was found to be an independent factor for predicting overall survival of HCC. Conclusions Our study demonstrated that Nodal expression is associated with aggressive characteristics of HCC. Its aberrant expression may be a predictive factor of unfavorable prognosis for HCC after surgery.
Collapse
MESH Headings
- Aged
- Antigens, CD34/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement
- Disease Progression
- Embryo, Mammalian/metabolism
- Female
- Frozen Sections
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Nodal Protein/genetics
- Nodal Protein/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Vimentin/metabolism
Collapse
Affiliation(s)
- Jing Chen
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Wen-Bin Liu
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Wei-Dong Jia
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Ge-Liang Xu
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jin-Liang Ma
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yun Ren
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Hao Chen
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Si-Nan Sun
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jian-Sheng Li
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
- * E-mail:
| |
Collapse
|
56
|
Sun J, Liu SZ, Lin Y, Cao XP, Liu JM. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways. Biochem Biophys Res Commun 2014; 443:1066-72. [DOI: 10.1016/j.bbrc.2013.12.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/29/2022]
|
57
|
Wang XF, Wang HS, Zhang F, Guo Q, Wang H, Wang KF, Zhang G, Bu XZ, Cai SH, Du J. Nodal promotes the generation of M2-like macrophages and downregulates the expression of IL-12. Eur J Immunol 2013; 44:173-83. [DOI: 10.1002/eji.201343535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/06/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Xian-Feng Wang
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Fan Zhang
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Qiang Guo
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Hao Wang
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Ke-Fang Wang
- Department of Obstetrics and Gynecology; Beijing Anzhen Hospital, Capital Medical University; Beijing P.R. China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Xian-zhang Bu
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| | - Shao-Hui Cai
- Department of Pharmacology; School of Pharmaceutical Sciences, Jinan University; Guangzhou P.R. China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy; School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou P.R. China
| |
Collapse
|
58
|
Wang Y, Jiang Y, Tian T, Hori Y, Wada N, Ikeda JI, Morii E. Inhibitory effect of Nodal on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma of uterus. Biochem Biophys Res Commun 2013; 440:731-6. [PMID: 24120944 DOI: 10.1016/j.bbrc.2013.09.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 01/16/2023]
Abstract
Cancers consist of heterogeneous populations. Recently, it has been demonstrated that cells with tumorigenic potential are limited to a small population, called cancer-initiating cells (CICs). Aldehyde dehydrogenase 1 (ALDH1) is one of the markers of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and ALDH1-high population of endometrioid adenocarcinoma cell line was more tumorigenic, resistant to anti-cancer drugs, and invasive than ALDH1-low population. Here, the regulatory signaling for ALDH1 was examined. The inhibition of TGF-β signaling increased ALDH1-high population. Among TGF-β family members, Nodal expression and ALDH1 expression levels were mutually exclusive. Immunohistochemical analysis on clinical samples revealed Nodal-high tumor cells to be ALDH-low and vise versa, suggesting that Nodal may inhibit ALDH1 expression via stimulating TGF-β signaling in uterine endometrioid adenocarcinoma. In fact, the addition of Nodal to endometrioid adenocarcinoma cell line reduced ALDH1-high population. Although ALDH1 mRNA level was not affected, the amount of ALDH1 protein appeared to be reduce by Nodal through ubiquitine-proteasome pathway. The regulation of TGF-β signaling might be a novel therapeutic target of CICs in endometrioid adenocarcinoma.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Osaka University Graduate School of Medicine, Yamada-Oka 2-2, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Embryogenesis, morphogens and cancer stem cells: Putting the puzzle together. Med Hypotheses 2013; 81:643-9. [DOI: 10.1016/j.mehy.2013.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 11/20/2022]
|
60
|
Veltmaat JM, Ramsdell AF, Sterneck E. Positional variations in mammary gland development and cancer. J Mammary Gland Biol Neoplasia 2013; 18:179-88. [PMID: 23666389 PMCID: PMC3691492 DOI: 10.1007/s10911-013-9287-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/26/2013] [Indexed: 12/24/2022] Open
Abstract
Most mammals develop their mammary glands in pairs of which the two counterparts are symmetrically displaced away from the ventral midline. Based on this symmetry and the same functional outcome as a milk-producing organ, the mammary glands are easily presumed to be mere copies of one another. Based on our analysis of published data with inclusion of new results related to mammary development and pathology in mice, we argue that this presumption is incorrect: Between and within pairs, mammary glands differ from one another, and tumor incidence and biology depend on the position along the anterior-posterior and the left-right axis as well. This insight has implications for experimental designs with mouse models and for data extrapolation between mammary glands within and between species. We suggest that improved documentation of location-specific mammary gland features will lead to more insights into the molecular mechanisms of mammary gland development and cancer biology in both mice and humans.
Collapse
Affiliation(s)
- Jacqueline M. Veltmaat
- />Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| | - Ann F. Ramsdell
- />Department of Cell Biology and Anatomy and Program in Women’s and Gender Studies, College of Arts and Sciences, University of South Carolina School of Medicine, Columbia, SC 29208 USA
- />Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB Room 601, Charleston, SC 29425 USA
| | - Esta Sterneck
- />National Cancer Institute, Center for Cancer Research, PO Box B, Frederick, MD 21702-1201 USA
| |
Collapse
|
61
|
Abstract
Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
Collapse
Affiliation(s)
- Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
62
|
ZHANG ZHIWEI, JIANG TAO, LI QUANLIN, WANG JIANBO, YANG DEYONG, LI XIANCHENG, WANG QIFEI, SONG XISHUANG. Nodal activates smad and extracellular signal-regulated kinases 1/2 pathways promoting renal cell carcinoma proliferation. Mol Med Rep 2012; 12:587-94. [DOI: 10.3892/mmr.2015.3343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/07/2015] [Indexed: 11/06/2022] Open
|