51
|
Localized expression of antimicrobial proteins mitigates huanglongbing symptoms in Mexican lime. J Biotechnol 2018; 285:74-83. [DOI: 10.1016/j.jbiotec.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/16/2018] [Accepted: 08/24/2018] [Indexed: 11/19/2022]
|
52
|
Liang X, Wang R, Dou W, Zhao L, Zhou L, Zhu J, Wang K, Yan J. Arminin 1a-C, a novel antimicrobial peptide from ancient metazoan Hydra, shows potent antileukemia activity against drug-sensitive and drug-resistant leukemia cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3691-3703. [PMID: 30464401 PMCID: PMC6217004 DOI: 10.2147/dddt.s181188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Due to the emergence of multidrug resistance (MDR), traditional antileukemia drugs no longer meet the treatment needs. Therefore, new antileukemia drugs with different action mechanisms are urgently needed to cope with this situation. Materials and methods Arminin 1a-C is an antimicrobial peptide (AMP) developed from the ancient metazoan marine Hydra. In this study, we first explored its antileukemia activity. Results Our results showed that Arminin 1a-C formed an α-helical structure and efficaciously suppressed the viability of leukemia cell lines whether or not they were multidrug resistant or sensitive, and there were no obvious differences between these cell lines. Arminin 1a-C exhibited distinct selectivity between noncancerous and cancerous cell lines. Arminin 1a-C interfered with K562/adriamycin (ADM) cell (a kind of multidrug-resistant leukemia cell line) proliferation in a very rapid manner and formed pores in its cell membrane, making it difficult to develop resistance against Arminin 1a-C. Conclusion Our data show that Arminin 1a-C possesses great potential as a therapeutic candidate for the treatment of multidrug-resistant leukemia.
Collapse
Affiliation(s)
- Xiaolei Liang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Ruirui Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenshan Dou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Zhao
- The Key Laboratory, The First Hospital of Lanzhou University, Lanzhou, China,
| | - Lanxia Zhou
- The Key Laboratory, The First Hospital of Lanzhou University, Lanzhou, China,
| | - Junfang Zhu
- The Key Laboratory, The First Hospital of Lanzhou University, Lanzhou, China,
| | - Kairong Wang
- School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Jiexi Yan
- The Key Laboratory, The First Hospital of Lanzhou University, Lanzhou, China,
| |
Collapse
|
53
|
Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018; 25:111-117. [DOI: 10.1111/srt.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Herman
- Faculty of Health SciencesWarsaw College of Health and Engineering Warsaw Poland
| | - Andrzej P. Herman
- Department of Genetic EngineeringThe Kielanowski Institute of Animal Physiology and NutritionPolish Academy of Sciences Jabłonna, Warsaw Poland
| |
Collapse
|
54
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
55
|
Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 2018; 105:526-532. [PMID: 29885636 PMCID: PMC7172164 DOI: 10.1016/j.biopha.2018.05.148] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA,Corresponding author.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran,Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23, Uppsala, Sweden,Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH, Stockholm, Sweden
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
56
|
Howell K, de Leeuw E. Cell adhesion properties of human defensins. Biochem Biophys Res Commun 2018; 502:238-242. [PMID: 29800568 DOI: 10.1016/j.bbrc.2018.05.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
Abstract
Effector peptides of innate immunity play an important role in host defense. They act directly by inactivating microbes but also link innate to adaptive immunity. A variety of innate immune functions has been described for these peptides, including chemoattraction and cytokine release. In this study, we describe the effect on cell morphology and cell adhesion of human defensins. We find that Human Defensin 5, the major product of specialized gut epithelial cells, causes changes in cell morphology. HD-5 induces cell adhesion, binds to fibronectin and facilitates binding of T cells to intestinal epithelial cells. These effects were found also for a second prominent defensing, termed Human Neutrophil peptide-1, but not for other human defensins.
Collapse
Affiliation(s)
- Katie Howell
- Integrated Biotherapeutics, Inc., Rockville, MD 20850, USA
| | - Erik de Leeuw
- Institute of Human Virology of the University of Maryland Baltimore School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
57
|
Kim W, Hendricks GL, Tori K, Fuchs BB, Mylonakis E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem 2018; 10:779-794. [PMID: 29569952 PMCID: PMC6077763 DOI: 10.4155/fmc-2017-0199] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Staphylococcus aureus infections are complicated by frequent relapses not only from the development of drug resistance to conventional antibiotics, but also through the formation of persister bacterial cells. Bacterial persisters are in a transient, metabolically inactive state, making conventional antibiotics that target essential cellular growth processes ineffective, resulting in high clinical failure rates of antibiotic chemotherapy. The development of new antibiotics against persistent S. aureus is an urgent issue. Over the last decade, new strategies to identify S. aureus persister-active compounds have been proposed. This review summarizes the proposed targets, antipersister compounds and innovative methods that may augment conventional antibiotics against S. aureus persisters. The reviewed antipersister strategies can be summarized as two broad categories; directly targeting growth-independent targets and potentiating existing, ineffective antibiotics by aiding uptake or accessibility.
Collapse
Affiliation(s)
- Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Gabriel L Hendricks
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Katerina Tori
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Beth B Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
58
|
Grafskaia EN, Polina NF, Babenko VV, Kharlampieva DD, Bobrovsky PA, Manuvera VA, Farafonova TE, Anikanov NA, Lazarev VN. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. J Bioinform Comput Biol 2018; 16:1840006. [PMID: 29361893 DOI: 10.1142/s0219720018400061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As essential conservative component of the innate immune systems of living organisms, antimicrobial peptides (AMPs) could complement pharmaceuticals that increasingly fail to combat various pathogens exhibiting increased resistance to microbial antibiotics. Among the properties of AMPs that suggest their potential as therapeutic agents, diverse peptides in the venoms of various predators demonstrate antimicrobial activity and kill a wide range of microorganisms. To identify potent AMPs, the study reported here involved a transcriptomic profiling of the tentacle secretion of the sea anemone Cnidopus japonicus. An in silico search algorithm designed to discover toxin-like proteins containing AMPs was developed based on the evaluation of the properties and structural peculiarities of amino acid sequences. The algorithm revealed new proteins of the anemone containing antimicrobial candidate sequences, and 10 AMPs verified using high-throughput proteomics were synthesized. The antimicrobial activity of the candidate molecules was experimentally estimated against Gram-positive and -negative bacteria. Ultimately, three peptides exhibited antimicrobial activity against bacterial strains, which suggests that the method can be applied to reveal new AMPs in the venoms of other predators as well.
Collapse
Affiliation(s)
- Ekaterina N Grafskaia
- * Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow 141700, Russia.,† Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| | - Nadezhda F Polina
- † Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| | - Vladislav V Babenko
- † Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| | - Daria D Kharlampieva
- † Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| | - Pavel A Bobrovsky
- † Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| | - Valentin A Manuvera
- * Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow 141700, Russia.,† Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| | - Tatyana E Farafonova
- ‡ Department of Proteomic Research and Mass Spectrometry, Laboratory of Systems Biology, Institute of Biomedical Chemistry of the Russian Academy of Sciences, 10, Pogodinskaya Street, Moscow 119121, Russia
| | - Nikolay A Anikanov
- † Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia.,§ Department of Peptide and Protein Technologies Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic, Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Vassili N Lazarev
- * Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow 141700, Russia.,† Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a, Malaya Pirogovskaya Street, Moscow 119435, Russia
| |
Collapse
|
59
|
Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
60
|
High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers. Mar Drugs 2017; 15:md15110364. [PMID: 29165344 PMCID: PMC5706053 DOI: 10.3390/md15110364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Widespread existence of antimicrobial peptides (AMPs) has been reported in various animals with comprehensive biological activities, which is consistent with the important roles of AMPs as the first line of host defense system. However, no big-data-based analysis on AMPs from any fish species is available. In this study, we identified 507 AMP transcripts on the basis of our previously reported genomes and transcriptomes of two representative amphibious mudskippers, Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM). The former is predominantly aquatic with less time out of water, while the latter is primarily terrestrial with extended periods of time on land. Within these identified AMPs, 449 sequences are novel; 15 were reported in BP previously; 48 are identically overlapped between BP and PM; 94 were validated by mass spectrometry. Moreover, most AMPs presented differential tissue transcription patterns in the two mudskippers. Interestingly, we discovered two AMPs, hemoglobin β1 and amylin, with high inhibitions on Micrococcus luteus. In conclusion, our high-throughput screening strategy based on genomic and transcriptomic data opens an efficient pathway to discover new antimicrobial peptides for ongoing development of marine drugs.
Collapse
|
61
|
Patel S, Rauf A, Khan H. The relevance of folkloric usage of plant galls as medicines: Finding the scientific rationale. Biomed Pharmacother 2017; 97:240-247. [PMID: 29091872 DOI: 10.1016/j.biopha.2017.10.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022] Open
Abstract
Galls, the abnormal growths in plants, induced by virus, bacteria, fungi, nematodes, arthropods, or even other plants, are akin to cancers in fauna. The galls which occur in a myriad of forms are phytochemically-distinct from the normal plant tissues, for these are the sites of tug-of-war, just like the granuloma in animals. To counter the stressors, in the form of the effector proteins of the invaders, the host plants elaborate a large repertoire of metabolites, which they normally will not produce. Perturbation of the jasmonic acid pathway, and the overexpression of auxin, and cytokinin, promote the tissue proliferation and the resultant galls. Though the plant family characteristics and the attackers determine the gall biochemistry, most of the galls are rich in bioactive phytochemicals such as phenolic acids, anthocyanins, purpurogallin, flavonoids, tannins, steroids, triterpenes, alkaloids, lipophilic components (tanshinone) etc. Throughout the long trajectory of evolution, humans have learned to use the galls as therapeutics, much like other plant parts. In diverse cultures, the evidence of folkloric usage of galls abound. Among others, galls from the plant genus like Rhus, Pistacia, Quercus, Terminalia etc. are popular as ethnomedicine. This review mines the literature on galling agents, and the medicinal relevance of galls.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, K.P.K, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|