51
|
Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J. Alzheimer's Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci 2022; 14:742408. [PMID: 35431894 PMCID: PMC9006951 DOI: 10.3389/fnagi.2022.742408] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aβ) burden, while synergistically acting with Aβ to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important "omics" tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual's metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in "omics"-based biomarkers in AD.
Collapse
Affiliation(s)
- Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Sharma VK, Singh TG, Prabhakar NK, Mannan A. Kynurenine Metabolism and Alzheimer's Disease: The Potential Targets and Approaches. Neurochem Res 2022; 47:1459-1476. [PMID: 35133568 DOI: 10.1007/s11064-022-03546-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
L-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson's disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | | | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
53
|
Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacology 2022; 30:111-136. [PMID: 35031904 DOI: 10.1007/s10787-021-00895-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Flavonoids are an important class of natural polyphenolic compounds reported to exert beneficial effects in cardiovascular and metabolic diseases, cancer, autoimmune and neurological disorders. Flavonoids possess potential antioxidant, anti-inflammatory, antiapoptotic and immuno-modulation properties. Intriguingly, the importance of flavonoids in different neurological disorders is gaining more attention due to the safety, better pharmacokinetic profile and blood-brain barrier penetration, cost-effectiveness and readiness for clinical uses/trials. Many in vitro and in vivo research studies have established the neuroprotective mechanism of flavonoids in the central nervous system (CNS) diseases. The present review summarizes the benefits of various classes of flavonoids (flavones, flavonols, flavanones, anthocyanidins, isoflavones, flavanols), chemical nature, classification, their occurrence and distribution, pharmacokinetics and bioavailability. The manuscript also presents available evidences relating to the role of flavonoids in regulating key signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, mitogen-activated protein kinase (MAPK) pathway, Janus kinase and signal transducer and activator of transcription proteins (JAK/STAT) pathway, Toll-like receptors (TLR) pathway, nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and cAMP response element-binding protein (CREB) pathway involved in neuroinflammation associated with major neurological disorders. Literature search was conducted using electronic databases like Google Scholar, Scopus, PubMed central, Springer search and Web of science. Chemical structures used in the present analysis were drawn using Chemdraw Professional 15.0 software. This collective information provides comprehensive knowledge on disease pathways and therapeutic benefits of flavonoids in neurological disorders, druggability and future scope for research.
Collapse
|
54
|
Saikosaponin-D Mitigates Oxidation in SH-SY5Y Cells Stimulated by Glutamate Through Activation of Nrf2 Pathway: Involvement of PI3K. Neurotox Res 2022; 40:230-240. [PMID: 34994954 DOI: 10.1007/s12640-021-00438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a typical neurodegenerative disease. Well-established studies have shown an elevated level of ROS (reactive oxygen species) that induces oxidative stress in AD. Saikosaponin-D exhibited significant therapeutic effects on neurodegenerative diseases. However, its in-depth molecular mechanisms against neurotoxicity remain not fully uncovered. Herein, the possible protective effects of saikosaponin-D on glutamate-induced neurotoxicity in SH-SY5Y cells and the underlying mechanism were elucidated. Saikosaponin-D pretreatment could ameliorate glutamate-induced cytotoxicity according to MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and depress apoptosis according to Hoechst 33,342 staining and Annexin V-FITC/PI double staining in SH-SY5Y cells. Additionally, saikosaponin-D administration suppressed oxidative stress in response to glutamate indicated by diminished intracellular ROS formation and reduced MDA (malondialdehyde) content in SH-SY5Y cells. These phenomena, appeared to correlate with the recovered cellular antioxidant enzyme activities and inducted HO-1 (heme oxygenase-1) expression accompanying the nuclear translocation of Nrf2 conduct by saikosaponin-D preconditioning which had been altered by glutamate, were correlated with its neuroprotective. Furthermore, addition of LY294002, a selective inhibitor of PI3K (phosphatidylinositol 3 kinase), blocked saikosaponin-D-caused Nrf2 nuclear translocation and reversed the protection of saikosaponin-D against glutamate in SH-SY5Y cells. Moreover, saikosaponin-D exhibited antioxidant potential with high free radical-scavenging activity as confirmed by a DPPH (2,2-diphenyl-1-picrylhydrazyl) and TEAC (Trolox equivalent antioxidant capacity) in a cell-free system in vitro. Taken together, our results indicated that saikosaponin-D enhanced cellular antioxidant capacity through not only intrinsic free radical-scavenging activity but also induction of endogenous antioxidant enzyme activities and HO-1 expression mediated, at least in part, by activating PI3K and subsequently Nrf2 nuclear translocation, thereby protecting the SH-SY5Y cells from glutamate-induced oxidative cytotoxicity. In concert, these data raise the possibility that saikosaponin-D may be an attractive candidate for prevention and treatment of AD and other diseases related to oxidation in the future.
Collapse
|
55
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
56
|
Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021; 15:785057. [PMID: 34955754 PMCID: PMC8693715 DOI: 10.3389/fncel.2021.785057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023] Open
Abstract
Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich’s ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection.
Collapse
Affiliation(s)
- Bianca Seminotti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
57
|
Umuhengerin Neuroprotective Effects in Streptozotocin-Induced Alzheimer's Disease Mouse Model via Targeting Nrf2 and NF-Kβ Signaling Cascades. Antioxidants (Basel) 2021; 10:antiox10122011. [PMID: 34943114 PMCID: PMC8698785 DOI: 10.3390/antiox10122011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and is characterized by advanced cognitive deterioration, deposition of Aβ (amyloid-beta), and the formation of neurofibrillary tangles. Administration of streptozotocin (STZ) via the intracerebroventricular (ICV) route is a reliable model resembling sporadic AD (SAD) associated neuropathological changes. The present study was undertaken to explore the neuroprotective effects of the methoxy flavonoid, umuhengerin, in an STZ-induced SAD mouse model as a potential therapy for AD. Mice were injected once with STZ (3 mg/kg, ICV), followed by daily administration of umuhengerin (orally, 30 mg/kg) or the positive control donepezil (orally, 2.5 mg/kg) for 21 days. The pharmacological activity of umuhengerin was assessed through estimation of oxidative stress and inflammatory markers via mouse ELISA kits, Western blot analysis, and brain histopathological examination. Morris water maze test was also conducted to investigate umuhengerin-induced cognitive enhancement. The results showed that umuhengerin attenuated STZ-produced neuroinflammation and oxidative stress with a notable rise in the expression of Nrf2 (nuclear factor erythroid 2-related factor 2). In contrast, it downregulated Keap-1 (Kelch-like ECH associated protein 1), as well as elevated brain contents of GSH (reduced glutathione) and HO-1 (heme oxygenase-1). STZ-injected animals receiving umuhengerin showed marked downregulation of the nuclear factor kappa beta (NF-Kβp65) and noticeable increment in the expression of its inhibitor kappa beta alpha protein (IKβα), as well as prominent reduction in malondialdehyde (MDA), H2O2 (hydrogen peroxide), and TNF-α (tumor-necrosis factor-alpha) contents. Β-secretase protein expression and acetylcholinesterase (AchE) activity were also diminished upon umuhengerin injection in the STZ group, leading to decreased Aβ formation and cognitive improvement, respectively. In conclusion, umuhengerin neuroprotective effects were comparable to the standard drug donepezil; thus, it could be an alternative approach for AD management.
Collapse
|
58
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
59
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:11971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
60
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
61
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
62
|
Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Abdel-Daim MM. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
Affiliation(s)
| | | | - Deepak Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
63
|
Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 2021; 46:2800-2831. [PMID: 34282491 DOI: 10.1007/s11064-021-03402-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Harmeet Kaur Kang
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
64
|
Mannan A, Singh TG, Singh V, Garg N, Kaur A, Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr Drug Targets 2021; 23:286-310. [PMID: 34238153 DOI: 10.2174/1389450122666210707120256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as potential treatment for neurological diseases.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
65
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
66
|
Li YC, Hao JC, Shang B, Zhao C, Wang LJ, Yang KL, He XZ, Tian QQ, Wang ZL, Jing HL, Li Y, Cao YJ. Neuroprotective effects of aucubin on hydrogen peroxide-induced toxicity in human neuroblastoma SH-SY5Y cells via the Nrf2/HO-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153577. [PMID: 33994055 DOI: 10.1016/j.phymed.2021.153577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND When redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis. PURPOSE The present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro. METHODS SH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry. RESULTS The results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways. CONCLUSION These results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.
Collapse
Affiliation(s)
- Ying Chun Li
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Jin Cheng Hao
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Bo Shang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Cheng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Li Juan Wang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Kai Lin Yang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Xiao Zhou He
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Qian Qian Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Zhao Liang Wang
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China
| | - Hui Ling Jing
- Department of Dermatology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China.
| | - Yan Jun Cao
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, Xi'an, P.R. China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, P.R. China.
| |
Collapse
|
67
|
Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Altyar AE, Abdel-Daim MM. Dysbiosis and Alzheimer's Disease: A Role for Chronic Stress? Biomolecules 2021; 11:678. [PMID: 33946488 PMCID: PMC8147174 DOI: 10.3390/biom11050678] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, neuropsychiatric, pathological condition that deteriorates the worth of geriatric lives. AD is characterized by aggregated senile amyloid plaques, neurofibrillary tangles, neuronal loss, gliosis, oxidative stress, neurotransmitter dysfunction, and bioenergetic deficits. The changes in GIT composition and harmony have been recognized as a decisive and interesting player in neuronal pathologies including AD. Microbiota control and influence the oxidoreductase status, inflammation, immune system, and the endocrine system through which it may have an impact on the cognitive domain. The altered and malfunctioned state of microbiota is associated with minor infections to complicated illnesses that include psychosis and neurodegeneration, and several studies show that microbiota regulates neuronal plasticity and neuronal development. The altered state of microbiota (dysbiosis) may affect behavior, stress response, and cognitive functions. Chronic stress-mediated pathological progression also has a well-defined role that intermingles at various physiological levels and directly impacts the pathological advancement of AD. Chronic stress-modulated alterations affect the well-established pathological markers of AD but also affect the gut-brain axis through the mediation of various downstream signaling mechanisms that modulate the microbial commensals of GIT. The extensive literature reports that chronic stressors affect the composition, metabolic activities, and physiological role of microbiota in various capacities. The present manuscript aims to elucidate mechanistic pathways through which stress induces dysbiosis, which in turn escalates the neuropathological cascade of AD. The stress-dysbiosis axis appears a feasible zone of work in the direction of treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
- Goverment College of Pharmacy, District Shimla, Rohru 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh;
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (A.N.); (M.W.-J.)
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (A.N.); (M.W.-J.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
68
|
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer's model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105:137-147. [PMID: 34062489 DOI: 10.1016/j.neurobiolaging.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the prevailing form of dementia. Protein degradation and antioxidant pathways have a critical role in preventing the accumulation of protein aggregation; thus, failure of proteostasis in neurons along with redox imbalance mark AD. Herein, we exploited an AD Drosophila model expressing human amyloid precursor (hAPP) and beta-secretase 1 (hBACE1) proteins, to better understand the role of proteostatic or antioxidant pathways in AD. Ubiquitous expression of hAPP, hBACE1 in flies caused more severe degenerative phenotypes versus neuronal targeted expression; it also, suppressed proteasome activity, increased oxidative stress and significantly enhanced stress-sensitivity. Overexpression of Prosβ5 proteasomal subunit or Nrf2 transcription factor in AD Drosophila flies partially restored proteasomal activity but did not rescue hAPP, hBACE1 induced neurodegeneration. On the other hand, expression of autophagy-related Atg8a in AD flies decelerated neurodegeneration, increased stress-resistance, and improved flies' health-/lifespan. Overall, our data suggest that the noxious effects of amyloid-beta aggregates can be alleviated by enhanced autophagy, thus dietary or pharmacological interventions that target autophagy should be considered in AD therapeutic approaches.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
69
|
Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy. Mitochondrion 2021; 58:213-226. [PMID: 33775871 DOI: 10.1016/j.mito.2021.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Epileptogenesis is most commonly associated with neurodegeneration and a bioenergetic defect attributing to the fact that mitochondrial dysfunction plays a key precursor for neuronal death. Mitochondria are the essential organelle of neuronal cells necessary for certain neurophysiological processes like neuronal action potential activity and synaptic transmission. The mitochondrial dysfunction disrupts calcium homeostasis leading to inhibitory interneuron dysfunction and increasing the excitatory postsynaptic potential. In epilepsy, the prolonged repetitive neuronal activity increases the excessive demand for energy and acidosis in the brain further increasing the intracellular calcium causing neuronal death. Similarly, the mitochondrial damage also leads to the decline of energy by dysfunction of the electron transport chain and abnormal production of the ROS triggering the apoptotic neuronal death. Thus, the elevated level of cytosolic calcium causes the mitochondria DNA damage coinciding with mtROS and releasing the cytochrome c binding to Apaf protein further initiating the apoptosis resulting in epileptic encephalopathies. The various genetic and mRNA studies of epilepsy have explored the various pathogenic mutations of genes affecting the mitochondria functioning further initiating the neuronal excitotoxicity. Based on the results of previous studies, the recent therapeutic approaches are targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria and hold great promise to attenuate epileptogenesis. Therefore, the current review emphasizes the emerging insights to uncover the relation between mitochondrial dysfunction and ROS generation contributing to mechanisms underlying epileptic seizures.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33101, USA
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
70
|
Fu Y, Jia J. Isoliquiritigenin Confers Neuroprotection and Alleviates Amyloid-β42-Induced Neuroinflammation in Microglia by Regulating the Nrf2/NF-κB Signaling. Front Neurosci 2021; 15:638772. [PMID: 33642990 PMCID: PMC7904903 DOI: 10.3389/fnins.2021.638772] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Neuroinflammation and oxidative stress are two major pathological characteristics of Alzheimer's disease (AD). Amyloid-β oligomers (AβO), a toxic form of Aβ, promote the neuroinflammation and oxidative stress in the development of AD. Isoliquiritigenin (ISL), a natural flavonoid isolated from the root of liquorice, has been shown to exert inhibitory effects on inflammatory response and oxidative stress. Objectives The main purpose of this study is to assess the influence of ISL on inflammatory response and oxidative stress in BV2 cells stimulated with AβO, and to explore the underlying molecular mechanisms. Methods 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H- tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) cytotoxicity assays were used to assess the toxic or protective effects of ISL. The expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assays. Morphological changes in BV2 cells were assessed by immunofluorescence method. Nitric oxide (NO) assay kit was used to determinate the NO production. Western blot, qRT-PCR and immunofluorescence were used to explore the underlying molecular mechanisms. Results ISL treatment reduced the production of inflammatory cytokines and NO, and alleviated the morphological changes in BV2 cells induced by AβO. ISL treatment further protected N2a cells from the toxic medium of AβO-stimulated BV2 cells. ISL activated nuclear factor erythroid-2 related factor 2 (Nrf2) signaling and suppressed nuclear factor-κB (NF-κB) signaling in BV2 cells. Conclusion ISL suppresses AβO-induced inflammation and oxidative stress in BV2 cells via the regulation of Nrf2/NF-κB signaling. Therefore, ISL indirectly protects neurons from the damage of toxic conditioned media.
Collapse
Affiliation(s)
- Yue Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
71
|
Zeng Q, Xiong Q, Zhou M, Tian X, Yue K, Li Y, Shu X, Ru Q. Resveratrol attenuates methamphetamine-induced memory impairment via inhibition of oxidative stress and apoptosis in mice. J Food Biochem 2021; 45:e13622. [PMID: 33502009 DOI: 10.1111/jfbc.13622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Methamphetamine (METH) abuse produces serious neurotoxicity to the central nervous system along with long-term cognitive dysfunction. Resveratrol, a natural polyphenol, has broad application prospects in the treatment of neurodegenerative diseases. Therefore, this study was conducted to investigate whether resveratrol might alleviate METH-induced memory deficits in vivo. We found that multiple exposures to METH significantly impaired cognitive functions and caused long-lasting memory deficits (p < .05). Pretreatment of resveratrol (10 or 100 mg/kg) remarkably attenuated METH-induced memory impairment in mice (p < .05). Bioinformatics analysis results showed that resveratrol might alleviate memory deficits by inhibiting METH-induced oxidative damage and apoptosis. Molecular docking showed that resveratrol had hydrogen bonding interactions with Kelch-like ECH associated protein 1 (Keap1), a repressor protein of the classic antioxidant Keap1-Nrf2 pathway. Further results validated oxidative stress parameters, apoptosis, and expression of Keap1 were significantly increased, while the translocation and activation of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus and expression of its downstream proteins were greatly decreased in the hippocampus after METH exposure (p < .05). These changes caused by METH could be prevented by resveratrol (p < .05). Therefore, these findings suggested that the prevention of resveratrol on memory dysfunction induced by METH was possibly related to the activation of the Keap1-Nrf2 pathway and reduction of apoptosis. Supplementation of resveratrol could be a potential treatment for preventing the neurotoxicity of METH in the future. PRACTICAL APPLICATIONS: As one of the worst commonly abused psychostimulants, methamphetamine (METH) addiction produces serious complications including cognitive impairment and memory deficits. Resveratrol is a natural polyphenol that has important nutritional supplements and protective effects in the treatment of many neurodegenerative diseases. In this study, the results of bioinformatics prediction and experimental validation showed that resveratrol might effectively prevent memory impairment via the interaction with Keap1, activation of the Keap1-Nrf2 pathway, and inhibition of DNA damage and apoptotic responses post METH exposure. Therefore, these findings provide new ideas and insights into the application of resveratrol in the treatment of nervous system damage caused by METH.
Collapse
Affiliation(s)
- Qing Zeng
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yi Li
- Wuhan Mental Health Center, Wuhan, China
| | - Xiji Shu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
72
|
Wang H, Jiang Z, Pang Z, Zhou T, Gu Y. Acacetin Alleviates Inflammation and Matrix Degradation in Nucleus Pulposus Cells and Ameliorates Intervertebral Disc Degeneration in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4801-4813. [PMID: 33204066 PMCID: PMC7667005 DOI: 10.2147/dddt.s274812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Purpose Intervertebral disc degeneration (IDD) is one of the most prevalent musculoskeletal disorders. The nucleus pulposus is the major component of the intervertebral disc, and nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the intervertebral disc. Reactive oxygen species (ROS) generation, inflammation and extracellular matrix degradation in NPCs contribute to the degeneration of intervertebral discs. Acacetin is a drug that exerts antioxidant and anti-inflammatory effects on many types of cells. However, whether acacetin can relieve the degeneration of NPCs remains unknown. Methods NPCs were extracted from rat intervertebral discs. The NPCs were treated with tert-butyl peroxide (TBHP) to simulate a high-ROS environment, and acacetin was subsequently added. The contents of ROS, inflammatory mediators (COX-2, iNOS) and extracellular matrix components (aggrecan, collagen II, MMP13, MMP9, MMP3) were measured. Components of related signaling pathways (Nrf2, MAPK) were also evaluated. To determine the effect of acacetin in vivo, we simulated disc degeneration via needle puncture. Acacetin was then applied intraperitoneally, and the degenerative status was evaluated using MRI and histopathological analysis. Results In vitro, acacetin alleviated TBHP-induced ROS generation and upregulated the expression of antioxidant proteins, including HO-1, NQO1, and SOD. In addition, acacetin relieved the TBHP-induced generation of inflammatory mediators (COX-2, iNOS) and degradation of the extracellular matrix (aggrecan, collagen II, MMP13, MMP9, and MMP3). Acacetin exerted its effect by activating the Nrf2 pathway and inhibiting p38, JNK and ERK1/2 phosphorylation. In vivo, acacetin ameliorated puncture-induced disc degeneration in a rat tail model, which was evaluated using MRI and histopathological analysis. Conclusion Acacetin alleviated IDD in vitro and in vivo and may have the potential to be developed as an effective treatment for IDD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, People's Republic of China
| | - Zengxin Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, People's Republic of China
| | - Zhiying Pang
- Department of Orthopaedic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, People's Republic of China
| | - Tianyao Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, People's Republic of China
| | - Yutong Gu
- Department of Orthopaedic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, People's Republic of China.,Department of Orthopaedic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|