51
|
Ma Q, Bian L, Zhao X, Tian X, Yin H, Wang Y, Shi A, Wu J. Novel glucose-responsive nanoparticles based on p-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce blood glucose and ameliorate diabetic nephropathy. Mater Today Bio 2021; 13:100181. [PMID: 34927045 PMCID: PMC8649392 DOI: 10.1016/j.mtbio.2021.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
An insulin delivery system that self-regulates blood sugar levels, mimicking the human pancreas, can improve hyperglycaemia. At present, a glucose-responsive insulin delivery system combining AAPBA with long-acting slow release biomaterials has been developed. However, the safety of sustained-release materials and the challenges of preventing diabetic complications remain. In this study, we developed a novel polymer slow release material using a plant extract—p-hydroxyphenylethyl anisate (HPA). After block copolymerisation with AAPBA, the prepared nanoparticles had good pH sensitivity, glucose sensitivity, insulin loading rate and stability under physiological conditions and had high biocompatibility. The analysis of streptozotocin-induced diabetic nephropathy (DN) mouse model showed that the insulin-loaded injection of nanoparticles stably regulated the blood glucose levels of DN mice within 48 h. Importantly, with the degradation of the slow release material HPA in vivo, the renal function improved, the inflammatory response reduced, and antioxidation levels in DN mice improved. This new type of nanoparticles provides a new idea for hypoglycaemic nano-drug delivery system and may have potential in the prevention and treatment of diabetic complications. We established a new glucose-responsive intelligent system with HPA. p(AAPBA-b-HPA) shows good pH and glucose sensitivity. p(AAPBA-b-HPA) nanoparticles can slowly release HPA and insulin. This system can be used to regulate blood glucose. p(AAPBA-b-HPA) nanoparticles can aid in diabetic nephropathy prevention and treatment.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Ligong Bian
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xuexia Tian
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Hang Yin
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Yutian Wang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
52
|
Nasimi Doost Azgomi R, Karimi A, Tutunchi H, Moini Jazani A. A comprehensive mechanistic and therapeutic insight into the effect of chicory (Cichorium intybus) supplementation in diabetes mellitus: A systematic review of literature. Int J Clin Pract 2021; 75:e14945. [PMID: 34606165 DOI: 10.1111/ijcp.14945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cichorium intybus is a rich source of terpenoids and phenolic compounds, one of the effective methods in managing and reducing the complications of chronic diseases such as diabetes mellitus. The purpose of this systematic review was to evaluate the evidence obtained from animal and human studies on the effects of chicory on metabolic indicators (such as inflammation, oxidative stress, blood sugar and dyslipidaemia) of diabetes mellitus. MATERIALS AND METHODS This systematic search was performed in ProQuest, PubMed, Google Scholar, Scopus, Cochrane Central Register of Controlled Trials, Embase and Science Direct databases and on articles published until August 2021. All of the animal studies and clinical trials included in this systematic review that assessed the effect of chicory on metabolic risk markers in diabetes were published in English language journals. RESULTS Finally, amongst 686 articles, only 23 articles met the needed criteria for further analysis. Out of 23 articles, 3 studies on humans and 20 studies on animals have been carried out. Fifteen of the 19 studies that evaluated the effect of chicory on the glycaemic index showed that Cichorium intybus improved blood glucose index (it had no effect in two human studies and three animal studies). Ten of the 13 studies evaluating the effect of Cichorium intybus on lipid profiles showed that it improved dyslipidaemia. Also, all 12 studies showed that chicory significantly reduces oxidative stress and inflammation. CONCLUSION According to the available evidence, Cichorium intybus might improve the glycaemic status, dyslipidaemia, oxidative stress and inflammation. However, further studies are recommended for a comprehensive conclusion about the exact mechanism of chicory in diabetic patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
53
|
Huang L, Chen J, Quan J, Xiang D. Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 2021; 12:3065-3076. [PMID: 34224305 PMCID: PMC8806498 DOI: 10.1080/21655979.2021.1941699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Rosmarinic acid (RA), a naturally occurring polyphenolic compound, exerts multiple biological properties including anti-cancer. The metalloprotease, a disintegrin and metalloproteinase 17 (ADAM17), can activate ligands of the epidermal growth factor receptor (EGFR) and contribute to tumor progression. We aimed to investigate whether RA could exhibit anti-cancer effects in melanoma cells through down-regulating ADAM17. The human melanoma A375 cells were exposed to RA, then cell viability, migration, invasion, apoptosis, melanin content and the expression of ADAM17/EGFR/AKT/GSK3β were evaluated. The viability of cells exposed to RA in the presence of cisplatin (Cis) was measured by CCK-8. Cells were overexpressed with ADAM17 in the absence or presence of RA and ADAM17 inhibitor (TACE prodomain; TPD) co-treatment, then the above cellular processes were also observed. Results showed that A375 cells treated with RA showed significant lower cell viability, proliferation, migrative and invasive abilities, melanin content and expression of related proteins including MMP2 and MMP9, compared with normal cells. RA enhanced the ratio of TUINEL-positive cells, the expression of pro-apoptotic proteins, but reduced Bcl-2 expression. RA co-treatment increased the inhibitory effect of Cis on cell viability. RA inhibited the expression of ADAM17/EGFR/AKT/GSK3β, which was further suppressed by TPD. Moreover, ADAM17 overexpression blocked all the effects of RA whereas TPD treatment generated an opposite function. In conclusion, RA exerted obvious inhibitory effect on melanoma cell proliferation, migration and invasion, but promotive effect on cells apoptosis. Addition, the showing of this characteristic of RA may rely on inhibiting the expression of ADAM17/EGFR/AKT/GSK3β axis.
Collapse
Affiliation(s)
- Lin Huang
- Department of Dermatology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jiangyan Chen
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jin Quan
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Debing Xiang
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| |
Collapse
|
54
|
Boonma T, Nutho B, Sungthong B, Sripadung P, Rungrotmongkol T, Nunthaboot N. Molecular insights into complex formation between scandenin and various types of β-cyclodextrin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, Abdelfattah MAO, Sobeh M. Syzygium aqueum (Burm.f.) Alston Prevents Streptozotocin-Induced Pancreatic Beta Cells Damage via the TLR-4 Signaling Pathway. Front Pharmacol 2021; 12:769244. [PMID: 34912223 PMCID: PMC8667316 DOI: 10.3389/fphar.2021.769244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Although several treatments are available for the treatment of type 2 diabetes mellitus, adverse effects and cost burden impose the search for safe, efficient, and cost-effective alternative herbal remedies. Syzygium aqueum (Burm.f.) Alston, a natural anti-inflammatory, antioxidant herb, may suppress diabetes-associated inflammation and pancreatic beta-cell death. Here, we tested the ability of the bioactive leaf extract (SA) to prevent streptozotocin (STZ)-induced oxidative stress and inflammation in pancreatic beta cells in rats and the involvement of the TLR-4 signaling pathway. Non-fasted rats pretreated with 100 or 200 mg kg-1 SA 2 days prior to the STZ challenge and for 14 days later had up to 52 and 39% reduction in the glucose levels, respectively, while glibenclamide, the reference standard drug (0.5 mg kg-1), results in 70% reduction. Treatment with SA extract was accompanied by increased insulin secretion, restoration of Langerhans islets morphology, and decreased collagen deposition as demonstrated from ELISA measurement, H and E, and Mallory staining. Both glibenclamide and SA extract significantly decreased levels of TLR-4, MYD88, pro-inflammatory cytokines TNF-α, and TRAF-6 in pancreatic tissue homogenates, which correlated well with minimal pancreatic inflammatory cell infiltration. Pre-treatment with SA or glibenclamide decreased malondialdehyde, a sensitive biomarker of ROS-induced lipid peroxidation, and restored depleted reduced glutathione in the pancreas. Altogether, these data indicate that S. aqueum is effective in improving STZ-induced pancreatic damage, which could be beneficial in treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shimaa Abdelaal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Heba Osama Mohammed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
56
|
Peng ZC, He J, Pan XG, Zhang J, Wang YM, Ye XS, Xia CY, Lian WW, Yan Y, He XL, Zhang WK, Xu JK. Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. Bioorg Chem 2021; 117:105399. [PMID: 34688131 DOI: 10.1016/j.bioorg.2021.105399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Cornusdiridoid A-F (1-6), six unusual cornuside-morroniside secoiridoid dimers, and their possible new biogenetic precursor, 3″,5″-dehydroxycornuside (7), together with four known secoiridoids (8-11), were obtained from the fruits of Cornus officinalis. Their structures were elucidated on the basis of various spectroscopic and chemical methods. A plausible biosynthetic pathway of compounds 1-11 was proposed. The α-glucosidase inhibitory, antioxidant and anti-inflammatory activities of these isolates were evaluated. Some of them emerged out as potent antidiabetic, anti-inflammatory and free radical scavenging agents. Molecular docking was also carried out for antidiabetic target α-glucosidase to investigate the possible binding modes of the most potent α-glucosidase inhibitor, vincosamide (9). These results revealed that the secoiridoids from C. officinalis fruits may be served as new potential antidiabetic agents to prevent and treat type 2 diabetes.
Collapse
Affiliation(s)
- Zhong-Can Peng
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xian-Sheng Ye
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xiao-Li He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
57
|
Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Pourbagher-Shahri AM, Samarghandian S. Promising Protective Effects of Chrysin in Cardiometabolic Diseases. Curr Drug Targets 2021; 23:458-470. [PMID: 34636295 DOI: 10.2174/1389450122666211005113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cardiometabolic diseases (CMD) have a great burden in terms of morbidity and mortality worldwide. The vicious cycle of CMD consists of type II diabetes, hypertension, dyslipidemia, obesity, and atherosclerosis interacting and feedbacking each other. The natural flavonoid chrysin has been displayed to own a broad spectrum of therapeutic impacts for human health. Herein, we did an in-depth investigation of the novel mechanisms of chrysin's cardioprotection against cardiometabolic disorder. Studies have shown that chrysin protects the cardiovascular system by enhancing the intrinsic antioxidative defense system. This antioxidant boost by chrysin protects against several risk factors of cardiometabolic disorders including atherosclerosis, vascular inflammation and dysfunction, platelet aggregation, hypertension, dyslipidemia, cardiotoxicity, myocardial infarction, injury and remodeling, diabetes-induced injuries, and obesity. Chrysin also exhibited anti-inflammatory mechanisms through inhibiting pro-inflammatory pathways including NF-κB, MAPK, and PI3k/Akt. Furthermore, chrysin modulated NO pathway, RAS system, AGE/RAGE pathway, PPARs pathway which contributed to the risk factors of cardiometabolic disorders. Taken together, the mechanisms in which chrysin protects against cardiometabolic disorder are more than merely antioxidation and anti-inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019. United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense. Spain
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
58
|
Mohammad HMF, Abdelghany AA, Al Ageeli E, Kattan SW, Hassan R, Toraih EA, Fawzy MS, Mokhtar N. Long Non-Coding RNAs Gene Variants as Molecular Markers for Diabetic Retinopathy Risk and Response to Anti-VEGF Therapy. Pharmgenomics Pers Med 2021; 14:997-1014. [PMID: 34429633 PMCID: PMC8374537 DOI: 10.2147/pgpm.s322463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play essential roles in molecular diagnosis and therapeutic response in several diseases. PURPOSE For the first time, we aimed to evaluate the association of four lncRNAs TUG1 (rs7284767G/A), MIAT (rs1061540T/C), MALAT1 (rs3200401C/T), and SENCR (rs12420823C/T) variants with susceptibility to diabetic retinopathy (DR), disease severity, and early therapeutic response to intravitreous anti-vascular endothelial growth factor aflibercept therapy. PATIENTS AND METHODS This case-control study enrolled 126 adult patients with type 2 diabetes. TaqMan assays using Real-Time PCR were run for genotyping. Multivariable regression analyses were applied to assess the role of each polymorphism after the adjustment of covariates. RESULTS Carriers of TUG1 A/G and MIAT T/C and C/C genotypes were more likely to develop DR [OR=3.15 (95% CI=1.15-8.64), and OR=4.31 (95% CI=1.78-10.47)], while MALAT1 T/C conferred protection (OR=0.40, 95% CI=0.16-0.99). For TUG1, MALAT1, MIAT, and SENCR genotype combinations, GTCT and GCCC had a higher disease risk (P=0.012). For disease severity, MIAT T/T homozygosity was associated with higher DR grade [33.3% (T/T) vs 10% (C/C) and 4.2% (C/T) carriers, P=0.012]. Otherwise, patients with the SENCR T variant exhibited better pre-treatment best-corrected visual acuity level (p=0.021). Following aflibercept administration, carrying the TUG1 A or MIAT T/C was associated with a poor therapeutic response (OR=5.02, 95% CI=1.60-15.76, and OR=10.23, 95% CI=1.51-69.15, respectively). CONCLUSION The lncRNAs TUG1 (rs7284767G/A) and MIAT (rs1061540T/C) were associated with increased DR susceptibility and poor response to aflibercept treatment, while MALAT1 (rs3200401C/T) conferred protection to DR. These genetic determinants could be useful in DR risk stratification and pharmacogenetics after validation in large-scale studies.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Central Laboratory, Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed A Abdelghany
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Shahad W Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Ranya Hassan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Naglaa Mokhtar
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
59
|
Ergun-Longmire B, Clemente E, Vining-Maravolo P, Roberts C, Buth K, Greydanus DE. Diabetes education in pediatrics: How to survive diabetes. Dis Mon 2021; 67:101153. [PMID: 33541707 DOI: 10.1016/j.disamonth.2021.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most common abnormal carbohydrate metabolism disorder affecting millions of people worldwide. It is characterized by hyperglycemia as a result of ß-cell destruction or dysfunction by both genetic and environmental factors. Over time chronic hyperglycemia leads to microvascular (i.e., retinopathy, nephropathy and neuropathy) and macrovascular (i.e., ischemic heart disease, peripheral vascular disease, and cerebrovascular disease) complications of diabetes. Diabetes complication trials showed the importance of achieving near-normal glycemic control to prevent and/or reduce diabetes-related morbidity and mortality. There is a staggering rate of increased incidence of diabetes in youth, raising concerns for future generations' health, quality of life and its enormous economic burden. Despite advancements in the technology, diabetes management remains cumbersome. Training individuals with diabetes to gain life-long survival skills requires a comprehensive and ongoing diabetes education by a multidisciplinary team. Diabetes education and training start at the time of diagnosis of diabetes and should be continuous throughout the course of disease. The goal is to empower the individuals and families to gain diabetes self-management skills. Diabetes education must be individualized depending on the individual's age, education, family dynamics, and support. In this article, we review the history of diabetes, etiopathogenesis and clinical presentation of both type 1 and type 2 diabetes in children as well as adolescents. We then focus on diabetes management with education methods and materials.
Collapse
Affiliation(s)
- Berrin Ergun-Longmire
- Associate Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| | - Ethel Clemente
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Patricia Vining-Maravolo
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Cheryl Roberts
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Koby Buth
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Donald E Greydanus
- Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI United States
| |
Collapse
|