51
|
Liu L, Ji M, Wang F, Tian Z, Wang T, Wang S, Wang S, Yan Z. Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated- L-homoserine lactones (AHLs) release in the anammox system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135285. [PMID: 31822421 DOI: 10.1016/j.scitotenv.2019.135285] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Fulvic acid (FA) can serve as electron shuttles between bacteria and electron acceptors. It explored the short-term effect of FA dose on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release change in the anaerobic ammonium oxidation (anammox) system. The results demonstrated that the total inorganic nitrogen removal efficiency increased with the FA dosages from 0.5 mM to 1 mM. FA addition improved anammox bacteria activity, together with extracellular polymeric substances production. FA addition from 0.5 mM to 1 mM stimulated AHLs release in both water and biomass phases, which indicated that the quorum sensing could be improved. These findings revealed that the addition of FA could improve quorum sensing and then enhance nitrogen removal performance.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Tianyi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Shuya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Siyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
52
|
Wang CY, Zhou X, Guo D, Zhao JH, Yan L, Feng GZ, Gao Q, Yu H, Zhao LP. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01529-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Purpose
To understand which environmental factors influence the distribution and ecological functions of bacteria in agricultural soil.
Method
A broad range of farmland soils was sampled from 206 locations in Jilin province, China. We used 16S rRNA gene-based Illumina HiSeq sequencing to estimated soil bacterial community structure and functions.
Result
The dominant taxa in terms of abundance were found to be, Actinobacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi, and Proteobacteria. Bacterial communities were dominantly affected by soil pH, whereas soil organic carbon did not have a significant influence on bacterial communities. Soil pH was significantly positively correlated with bacterial operational taxonomic unit abundance and soil bacterial α-diversity (P<0.05) spatially rather than with soil nutrients. Bacterial functions were estimated using FAPROTAX, and the relative abundance of anaerobic and aerobic chemoheterotrophs, and nitrifying bacteria was 27.66%, 26.14%, and 6.87%, respectively, of the total bacterial community. Generally, the results indicate that soil pH is more important than nutrients in shaping bacterial communities in agricultural soils, including their ecological functions and biogeographic distribution.
Collapse
|
53
|
Zhao Y, Jiang B, Tang X, Liu S. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:50-60. [PMID: 31202013 DOI: 10.1016/j.scitotenv.2019.05.491] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Anammox technology is an energy-efficient wastewater treatment process and anammox community structure has gained extensive attention. However, the dynamics of community functional traits are still elusive. Here, we combined the long-term reactor operation and metagenomic, multiple bioinformatic and network analyses to reveal the succession of anammox community and function traits during reactor start-up. We found the cooperation of denitrifiers that affiliated to the phylum Proteobacteria could reduce nitrite to dinitrogen gas. These organisms and genes had higher abundance after the inhibition phase, which could contribute to nitrite consuming and reactor performance recovery. Importantly, the Terrimonas and Anaerolinea organisms had ability of extracellular polymers secretion or aggregate formation. They had the highest abundance at the end of the lag phase, which could benefit for promoting the nitrogen removal rate (NRR). Meanwhile, Terrimonas and Anaerolinea bacteria could cooperate with methanogenic and nitrite-denitrifying methanotrophic organisms based on H2 and CH4, respectively. Since these organisms also had higher abundance after the inhibition phase, their cooperation could prevent anammox bacteria from nitrite inhibiting when the influent nitrite concentration was higher. The analysis of community and function shift is expected to emphasize the importance of functional bacteria in anammox process and provides a potential control strategy for nitrogen-containing wastewater treatment process.
Collapse
Affiliation(s)
- Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Bo Jiang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
54
|
Wei H, Wang X, Hassan M, Huang H, Xie B. Strategy of rapid start-up and the mechanism of de-nitrogen in landfill bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:126-135. [PMID: 30928790 DOI: 10.1016/j.jenvman.2019.03.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Nitrogen removal from landfill leachate via anaerobic ammonium oxidation (Anammox) process has been considered as an innovative and sustainable approach to the traditional nitrification and denitrification process. However, the various technologies for rapid start-up of Anammox are still being explored. In this study, two strategies (inoculating anaerobic sludge and without inoculation) were applied to treat landfill leachate based on biological nitrogen removal processes. The start-up and mechanism of de-nitrogen process in landfill bioreactor was explored using 15N stable isotopic tracing, quantitative polymerase chain reaction (qPCR) and high-throughput sequencing methods. Results showed that inoculating anaerobic sludge was beneficial to enhance the nitrogen removal at the initial stage (from day 10 to day 25), but no significant increase was found during days 25-55 (p > 0.05). 15N stable isotopic tracing demonstrated that the inoculation of sludge accelerated by denitrification other than Anammox. Inoculation of sludge was conducive to increase of ammonia-oxidizing bacteria (AOB)- amoA and niK genes. Thauera was the dominant genus for nitrogen removal due to inoculation of sludge in landfill bioreactor, whereas the abundance of Candidatus Kuenenia did not increase by inoculating the sludge. Moreover, seeding anaerobic sludge could not provide Anammox's ecological niches. The results will provide a scientific basis for the selection of suitable operational condition for the rapid start-up in the landfill bioreactor.
Collapse
Affiliation(s)
- Huawei Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiaoyuan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Muhammad Hassan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Huang Huang
- Shanghai Laogang Wastes Disposal Co., Ltd, 2088 Nanbin Road, Shanghai, 201302, PR China
| | - Bing Xie
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
55
|
Wang T, Wang X, Yuan L, Luo Z, Kwame Indira H. Start-up and operational performance of Anammox process in an anaerobic baffled biofilm reactor (ABBR) at a moderate temperature. BIORESOURCE TECHNOLOGY 2019; 279:1-9. [PMID: 30710814 DOI: 10.1016/j.biortech.2019.01.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/14/2023]
Abstract
A lab-scale anaerobic baffled biofilm reactor (ABBR) was used as a novel reactor to start up Anammox process at a moderate temperature around 20 °C and an innovative filling module was adopted as support material. Quick start-up of Anammox process from the aerobic activated sludge was achieved after 47 days operation. The max nitrogen loading rate and nitrogen removing rate attained 1.00 kg N m-3 d-1 and 0.90 kg N m-3 d-1 after 161 days operation. Scanning electron microscope photographs showed that the structure as well as the states of the micro-aggregates (micro-aggregates sticking on a non-woven fiber, entangling non-woven fibers and enwrapped by non-woven fibers) enhanced biomass retention for Anammox bacteria. Microbial community analysis showed that Anammox bacteria were effectively enriched with Candidatus Brocadia, Candidatus Jettenia and Candidatus Kuenenia being the main Anammox species in the mature biofilms. This contributed to the excellent Anammox operation performance at the moderate temperature.
Collapse
Affiliation(s)
- Tao Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xian Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Luzi Yuan
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zheng Luo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hengue Kwame Indira
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
56
|
Chen R, Yao J, Ailijiang N, Liu R, Fang L, Chen Y. Abundance and diversity of nitrogen-removing microorganisms in the UASB-anammox reactor. PLoS One 2019; 14:e0215615. [PMID: 31009503 PMCID: PMC6476503 DOI: 10.1371/journal.pone.0215615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
Anaerobic ammonium oxidation is considered to be the most economical and low-energy biological nitrogen removal process. So far, anammox bacteria have not yet been purified from cultures. Some nitrogen-removing microorganisms cooperate to perform the anammox process. The objective of this research was to analyze the abundance and diversity of nitrogen-removing microorganisms in an anammox reactor started up with bulking sludge at room temperature. In this study, the ammonia-oxidizing archaea phylum Crenarchaeota was enriched from 9.2 to 53.0%. Nitrosomonas, Nitrosococcus, and Nitrosospira, which are ammonia-oxidizing bacteria, increased from 3.2, 1.7, and 0.1% to 12.8, 20.4, and 3.3%, respectively. Ca. Brocadia, Ca. Kuenenia, and Ca. Scalindua, which are anammox bacteria, were detected in the seeding sludge, accounting for 77.1, 11.5, and 10.6%. After cultivation, the dominant genus changed to Ca. Kuenenia, accounting for 82.0%. Nitrospirae, nitrite oxidation bacteria, decreased from 2.2 to 0.1%, while denitrifying genera decreased from 12.9 to 2.1%. The results of this study contribute to the understanding of nitrogen-removing microorganisms in an anammox reactor, thereby facilitating the improvement of such reactors. However, the physiological and metabolic functions of the ammonia-oxidizing archaea community in the anammox reactor need to be investigated in further studies.
Collapse
Affiliation(s)
- Rui Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Junqin Yao
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
- * E-mail:
| | - Nuerla Ailijiang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Ruisang Liu
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Lei Fang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Yinguang Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
57
|
Miao L, Yang G, Tao T, Peng Y. Recent advances in nitrogen removal from landfill leachate using biological treatments - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:178-185. [PMID: 30682670 DOI: 10.1016/j.jenvman.2019.01.057] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 05/21/2023]
Abstract
Landfill leachate, generated from the wastes in a landfill, is a type of wastewater with high concentrations of ammonia and organics, causing a serious environmental pollution. Because of its complex and changing characteristics, it is difficult to remove nitrogen from landfill leachate economically and effectively. Hence, nitrogen removal is a significant research priority of landfill leachate treatment in recent years. Biological processes are known to be effective in nitrogen removal. In this work, the biological nitrogen removal treatments were divided into the following processes: conventional nitrification-denitrification process, nitritation-denitritation process, endogenous denitritation process, and anaerobic ammonium oxidation (Anammox) process. This manuscript summarized the theories and applications of these approaches in detail, and concluded that appropriate processes should be selected in accordance with different characteristics of landfill leachate, in order to effectively remove nitrogen from all stages of landfill leachate and reduce disposal costs. Finally, perspective on the challenges and opportunities of biological nitrogen removal from landfill leachate was also presented.
Collapse
Affiliation(s)
- Lei Miao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gangqing Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tao Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, PR China.
| |
Collapse
|
58
|
Ma H, Zhang Y, Xue Y, Zhang Y, Li YY. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:568-577. [PMID: 31096386 DOI: 10.1016/j.scitotenv.2018.12.377] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
The characteristic carmine red color due to heme proteins is always observed in enriched anammox biomass. Heme c is a very important co-factor participating the main metabolic reactions with catalytic and electron-transfer potential in the anammox bacteria, and is possible for use as an indicator to evaluate anammox performance. Knowledge of the relationship between the heme c concentration and the anammox reactor performance is, however, very limited available information is constrained at an operation temperature of 35 °C. In this study, we report the heme c concentration change along with nitrogen removal rate (NRR) in three anammox expanded granular sludge bed reactors operated at different temperatures (15, 25, 35 °C). The response of specific anammox activity (SAA) to temperature was revealed for biomass originating from three reactors. The results indicate a strong relationship between heme c concentration and NRR at different culture temperatures. The possibility of evaluating the anammox performance by combining heme c quantification and the temperature is revealed.
Collapse
Affiliation(s)
- Haiyuan Ma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yanlong Zhang
- College of the Environment and Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuanfan Zhang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
59
|
Wang D, Li T, Huang K, He X, Zhang XX. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1355-1363. [PMID: 30577127 DOI: 10.1016/j.scitotenv.2018.11.321] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/21/2023]
Abstract
Simultaneous anammox and denitrification (SAD) is a newly developed wastewater treatment process efficient in nitrogen removal, but its underlying microbiological mechanisms during start-up remains unknown. This study investigated the changing patterns of functional bacteria and genes, as well as their correlation during the start-up (260 d) of the SAD systems in two lab-scale up-flow anaerobic sludge blanket bioreactors separately inoculated with anaerobic granular sludge (R1) and aerobic floccular sludge (R2). Results showed that high total nitrogen removal was achieved in the SAD systems of both R1 (88.25%) and R2 (89.42%). High-throughput sequencing of 16S rRNA gene amplicons revealed that Armatimonadetes phylum had a high abundance (44.34%) in R2, while was not detectable in R1 during the anammox stage. However, the SAD bioreactors retained inherent microbial community and the inoculation with different sludge showed less notable effects on their microbial composition. In the SAD systems, Candidatus Brocadia had high abundance in R1 (2.93%) and R2 (4.64%) and played important role in anammox. Network analysis indicated that Denitratisoma and Dokdonella were positively correlated with nitrite reductase genes nirS and nirK (p < 0.05), while Thermomonas and Pseudomonas showing a positive correlation with nitrate reductase gene narG (p < 0.05) were mainly responsible for the nitrate reduction in the SAD systems. Moreover, the overwhelming dominance of narG v.s. napA revealed the crucial roles of respiratory nitrate reduction in the bioreactors. The results extend our knowledge regarding the microbial ecology of the SAD system, which might be practically helpful for application of the process in wastewater treatment.
Collapse
Affiliation(s)
- Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
60
|
Shi ZJ, Xu LZJ, Wu D, Cheng YF, Zhang FY, Liao SM, Zhang ZZ, He MM, Jin RC. Anammox granule as new inoculum for start-up of anaerobic sulfide oxidation (ASO) process and its reverse start-up. CHEMOSPHERE 2019; 217:279-288. [PMID: 30419382 DOI: 10.1016/j.chemosphere.2018.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/07/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The feasibility of implementing anaerobic ammonium oxidation (anammox) granules to start up high-loading anaerobic sulfide oxidation (ASO) in an upflow anaerobic sludge bed (UASB) reactor was investigated. An innovation method of the reverse start-up of anammox was also validated. Firstly, the reactor was operated to treat sulfide-rich wastewaters into which nitrite was introduced as an electron acceptor. An high-rate performance with sulfide and nitrate removal rates of 105.5 ± 0.11 kg S m-3 d-1 and 28.45 ± 3.40 kg N m-3 d-1, respectively, was accomplished. Sulfurovum were enriched with the increase of the substrate load and then conquered Candidatus Kuenenia to be the predominant bacteria. Excitation-emission matrix (EEM) spectroscopy showed that the intensities of fluorescence decreased and protein-like substrates were the main components associated with the process of start-up. FT-IR analysis found that the main functional groups indicator were O-H groups. Secondly, the reverse start-up of anammox (achieving 90% TN removal) was achieved immediately when the substrate changed. 16S rRNA analysis indicated the successfully enrichment of anammox bacteria (Candidatus Kuenenia). These results suggest that anammox granules can act as inoculum of high-loading ASO process and the reverse start-up provides a new perspective for the fast initiation of anammox process.
Collapse
Affiliation(s)
- Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Dan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fu-Yue Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Si-Mo Liao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Miao-Miao He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
61
|
Ye L, Li D, Zhang J, Zeng H. Fast start-up of anammox process with mixed activated sludge and settling option. ENVIRONMENTAL TECHNOLOGY 2018; 39:3088-3095. [PMID: 28859547 DOI: 10.1080/09593330.2017.1375016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
In this study, successful start-up of the anaerobic ammonium oxidation (anammox) process in a sequencing batch reactor (SBR) was achieved by seeding mixed activated sludge which included aerobic sludge, anaerobic sludge, simultaneous partial nitrification, anammox and denitrification (SNAD) sludge, and anammox sludge with low activity at a 2200:2100:5:2 volume ratio. On day 15, the effective anammox activity was attained in SBR, with the specific total nitrogen removal rate (SRR) of 0.214 gNg-1 VSSd-1. The total nitrogen removal rate (NRR) increased to 230 gNm-3 d-1 by gradually reducing the setting time to 10 min. With the nitrogen loading rate (NLR) up to 506 gNm-3 d-1, the total NRR of the SBR reached 433 gNm-3 d-1 during stationary phase. Candidatus Brocadia was detected as predominant functional microbes in the anammox SBR. The results demonstrated the feasibility of seeding mixed activated sludge to start-up an anammox SBR by settling option.
Collapse
Affiliation(s)
- Lihong Ye
- a Key Laboratory of Water Science and Water Environment Recovery Engineering , Beijing University of Technology , Beijing , People's Republic of China
| | - Dong Li
- a Key Laboratory of Water Science and Water Environment Recovery Engineering , Beijing University of Technology , Beijing , People's Republic of China
| | - Jie Zhang
- a Key Laboratory of Water Science and Water Environment Recovery Engineering , Beijing University of Technology , Beijing , People's Republic of China
- b State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin , People's Republic of China
| | - Huiping Zeng
- a Key Laboratory of Water Science and Water Environment Recovery Engineering , Beijing University of Technology , Beijing , People's Republic of China
| |
Collapse
|
62
|
Li Q, Wang S, Zhang P, Yu J, Qiu C, Zheng J. Influence of temperature on an Anammox sequencing batch reactor (SBR) system under lower nitrogen load. BIORESOURCE TECHNOLOGY 2018; 269:50-56. [PMID: 30149254 DOI: 10.1016/j.biortech.2018.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
The nitrogen removal performance and microbial communities of an Anammox sequencing batch reactor (SBR) was studied under varied temperatures with a lower nitrogen loading rate (NLR) about 0.28 kgN/m3/d. Results showed that the temperature could influence the nitrogen removal performance and the community structure in the Anammox SBR system. Under lower temperatures, both the nitrogen removal efficiencies and Anammox activity were in lower levels. When temperature was raised again, the Anammox activity recovered accordingly. When the temperature dropped from 33 ± 1 °C to15 °C, the dominant Anammox bacteria shifted from Ca. Brocadia to Ca. Kuenenia in the sludge. When the temperature returned over, the abundance of Ca. Brocadia recovered, while the Ca. Kuenenia was still the dominant Anammox bacteria. This indicated that Ca. Kuenenia is more adaptable to low temperature environment than Ca. Brocadia under low NLR with temperature variation.
Collapse
Affiliation(s)
- Quan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Pengda Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianfeng Zheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
63
|
Qian J, Zhang M, Pei X, Zhang Z, Niu J, Liu Y. A novel integrated thiosulfate-driven denitritation (TDD) and anaerobic ammonia oxidation (anammox) process for biological nitrogen removal. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
64
|
Wang Q, Wang Y, Lin J, Tang R, Wang W, Zhan X, Hu ZH. Selection of seeding strategy for fast start-up of Anammox process with low concentration of Anammox sludge inoculum. BIORESOURCE TECHNOLOGY 2018; 268:638-647. [PMID: 30142617 DOI: 10.1016/j.biortech.2018.08.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
The long start-up time and large demand of Anammox seed sludge limit the practical application of Anammox process. In this study, the seeding strategy of fast start-up of Anammox process using 2.0 g VSS L-1 of anaerobic granular sludge (AGS) or activated sludge (AS) with various low concentration of Anammox sludge as inoculum was investigated. In laboratory scale, the start-up (achieving 70% TN removal) was shortened from 21 days to 5 days when Anammox sludge concentration increased from 0.02 g VSS L-1 to 0.2 g VSS L-1 with 2 g VSS L-1 AS as inoculum, and 16S rDNA analysis indicated the enrichment of Anammox bacteria, while the start-up failed with AGS. In pilot scale, the start-up was achieved in 10 days using 0.02 g VSS L-1 of Anammox sludge and 2.0 g VSS L-1 of AS, confirming the fast start-up of Anammox process with low concentration of Anammox sludge.
Collapse
Affiliation(s)
- Qintong Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinbiao Lin
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmin Zhan
- College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
65
|
Zhao Y, Liu S, Jiang B, Feng Y, Zhu T, Tao H, Tang X, Liu S. Genome-Centered Metagenomics Analysis Reveals the Symbiotic Organisms Possessing Ability to Cross-Feed with Anammox Bacteria in Anammox Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11285-11296. [PMID: 30199629 DOI: 10.1021/acs.est.8b02599] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although using anammox communities for efficient wastewater treatment has attracted much attention, the pure anammox bacteria are difficult to obtain, and the potential roles of symbiotic bacteria in anammox performance are still elusive. Here, we combined long-term reactor operation, genome-centered metagenomics, community functional structure, and metabolic pathway reconstruction to reveal multiple potential cross-feedings during anammox reactor start-up according to the 37 recovered metagenome-assembled genomes (MAGs). We found Armatimonadetes and Proteobacteria could contribute the secondary metabolites molybdopterin cofactor and folate for anammox bacteria to benefit their activity and growth. Chloroflexi-affiliated bacteria encoded the function of biosynthesizing exopolysaccharides for anammox consortium aggregation, based on the partial nucleotide sugars produced by anammox bacteria. Chlorobi-affiliated bacteria had the ability to degrade extracellular proteins produced by anammox bacteria to amino acids to affect consortium aggregation. Additionally, the Chloroflexi-affiliated bacteria harbored genes for a nitrite loop and could have a dual role in anammox performance during reactor start-up. Cross-feeding in anammox community adds a different dimension for understanding microbial interactions and emphasizes the importance of symbiotic bacteria in the anammox process for wastewater treatment.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
| | - Shufeng Liu
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
| | - Bo Jiang
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
| | - Ying Feng
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment , Shenzhen Academy of Environmental Sciences , Shenzhen 518001 , China
| | - Huchun Tao
- School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Xi Tang
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
| | - Sitong Liu
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
- School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
66
|
Augusto MR, Camiloti PR, Souza TSOD. Fast start-up of the single-stage nitrogen removal using anammox and partial nitritation (SNAP) from conventional activated sludge in a membrane-aerated biofilm reactor. BIORESOURCE TECHNOLOGY 2018; 266:151-157. [PMID: 29960245 DOI: 10.1016/j.biortech.2018.06.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The single-stage nitrogen removal using anammox and partial nitritation (SNAP) is a promising alternative for low-cost ammonium removal from wastewaters. This study aimed to evaluate the anammox biomass enrichment and SNAP process start-up in a laboratory-scale membrane-aerated biofilm reactor (MABR) at nitrogen loading rates of 50 g N.m-3.d-1 (period 1) and 100 g N.m-3.d-1 (period 2). Anammox activity was observed after 48 days, and the SNAP process was stable after 80 days. In period 1, the average total nitrogen (TN) removal was 78 ± 6%, and the maximum removal was 84%. In period 2, the average TN removal was 61 ± 5%, and the maximum was 69%. Higher dissolved oxygen levels may have caused imbalances in the microbial community in period 2, decreasing the reactor performance. These results demonstrated the potential of the MABR for the fast implementation of the single-stage partial nitritation and anammox processes.
Collapse
Affiliation(s)
- Matheus Ribeiro Augusto
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83 Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil.
| | - Priscila Rosseto Camiloti
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental-Bloco 4-F, Av. João Dagnone, 1100, Santa Angelina, 13.563-120 São Carlos, SP, Brazil
| | - Theo Syrto Octavio de Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83 Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil
| |
Collapse
|
67
|
Xu JJ, Zhu XL, Zhang QQ, Cheng YF, Xu LZJ, Zhu YH, Ji ZQ, Jin RC. Roles of MnO 2 on performance, sludge characteristics and microbial community in anammox system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:848-856. [PMID: 29758913 DOI: 10.1016/j.scitotenv.2018.03.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The long-term impacts of MnO2 on performance, sludge characteristics and microbial community of biogranule-based anaerobic ammonium oxidation (anammox) process were evaluated in an up-flow anaerobic sludge blanket reactor. It was found that the total nitrogen removal efficiency of reactor was fluctuated between 90%-93% at 1-200mgL-1 MnO2. Notably, the specific anammox activity was increased to maximum value of 657.3±10.6mgTNg-1VSSd-1 at 50mgL-1 MnO2 and then slightly decreased, but still higher than that achieved at 0-15mgL-1 MnO2, which had similar variation trends to the content of heme c and extracellular polymeric substances in anammox granules. High throughput sequencing indicated that MnO2 could improve the microbial richness and diversity of anammox granules and Candidatus Kuenenia was always the dominant species, and its abundance continued to increase to 21.3% at the end of operational experiment. Therefore, MnO2 could be applied to enhance the anammox process and the optimal influent MnO2 concentration was lower than 50mgL-1 in view of the reactor performance and cost issues.
Collapse
Affiliation(s)
- Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian-Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ying-Hong Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Quan Ji
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
68
|
Nitrogen removal performance and microbial community structure in the start-up and substrate inhibition stages of an anammox reactor. J Biosci Bioeng 2018. [DOI: 10.1016/j.jbiosc.2018.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
69
|
Tang X, Guo Y, Jiang B, Liu S. Metagenomic approaches to understanding bacterial communication during the anammox reactor start-up. WATER RESEARCH 2018; 136:95-103. [PMID: 29500976 DOI: 10.1016/j.watres.2018.02.054] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/06/2018] [Accepted: 02/20/2018] [Indexed: 05/05/2023]
Abstract
Increasing attention has been paid to the anammox community for its significant function in high-efficiency wastewater treatment. However, bacterial interaction in terms of bacterial communication is still elusive. This study firstly explored the intra- and interspecific communication of bacteria in the anammox community using metagenomic sequence data obtained during bioreactor operation. We verified the existence of multiple bacterial communication gene (BCG) subtypes by alignment with the constructed BCG database containing 11 identified gene subtypes. Bacterial communication was more active at the initial start-up than in the high loading-rate phase, and was correlated with the gradually decreasing bacterial diversity. Hdts, one of the key genes that produced the intraspecific signaling molecule AHL, and RpfF, the key gene that produced the intra- and interspecific signaling molecule DSF, were the primary communication engines in the anammox community because of their high abundance. Anammox bacteria mainly used Hdts genes to communicate with others, while RpfF gene played a core role characterized by their multiple correlations with other BCG subtypes. Interestingly, bacteria with abundant BCGs were more inclined to interact with the bacteria with the same functional traits, indicating the potential communication-related interaction among these bacteria in addition to the frequently reported substrate co-utilization. This highlights the primary importance of AHL and DSF for the anammox community, and thereby hints at a potential strategy for the target regulation of the signals to improve anammox viability and competitive capacity in wastewater treatment.
Collapse
Affiliation(s)
- Xi Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yongzhao Guo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
70
|
He Z, Feng Y, Zhang S, Wang X, Wu S, Pan X. Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: Microbiology and potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:453-464. [PMID: 29195194 DOI: 10.1016/j.scitotenv.2017.11.280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen pollution is a worldwide problem and has been extensively treated by canonical denitrification (CDN) process. However, the CDN process generates several issues such as intensive greenhouse gas (GHG) emissions. In the past years, a novel biological nitrogen removal (BNR) process of oxygenic denitrification (O2DN) has been proposed as a promising alternative to the CDN process. The classic denitrification four steps are simplified to three steps by O2DN bacteria without producing and releasing the intermediate nitrous oxide (N2O), a potent GHG. In this article, we summarized the findings in previous literatures as well as our results, including involved microorganisms and metabolic mechanisms, functional genes and microbial detection, kinetics and influencing factors and their potential applications in wastewater treatment. Based on our knowledge and experience, the benefits and limitations of the current O2DN process were analyzed. Since O2DN is a new field in wastewater treatment, more research and application is required, especially the development of integrated processes and the quantitative assessment of the contribution of O2DN process in natural habitats and engineered systems.
Collapse
Affiliation(s)
- Zhanfei He
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shijie Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiaonan Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shuyun Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
71
|
Wang T, Zhang D, Sun Y, Zhou S, Li L, Shao J. Using low frequency and intensity ultrasound to enhance start-up and operation performance of Anammox process inoculated with the conventional sludge. ULTRASONICS SONOCHEMISTRY 2018; 42:283-292. [PMID: 29429671 DOI: 10.1016/j.ultsonch.2017.11.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 06/08/2023]
Abstract
A lab-scale ultrasound enhancing Anammox reactor (R1) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25 kHz, intensity of 0.2 W cm-2 and exposure time of 3 min) obtained by batch experiments. R1 and the controlled Anammox reactor (R2) without exposure to the ultrasound were operated in parallel. The start-up period of Anammox process (53 days) in R1 was shorter than that (61 days) in R2. The nitrogen loading-enhancing period (day 53-day 135) in R1 was also shorter than that (day 61-day 151) in R2. At the end of the nitrogen loading-enhancing period, NLR (0.76 kg N m-3 d-1) and NRR (0.68 kg N m-3 d-1) of R1 were both higher than NLR (0.66 kg N m-3 d-1) and NRR (0.56 kg N m-3 d-1) of R2. Moreover, The stability of Anammox process in R1 was better than that in R2. The results demonstrated that the periodical irradiation of ultrasound enhanced the start-up and operational performance of Anammox reactor. Microbial community analysis indicated that the ultrasound accelerated the microbial succession from some other bacteria to Anammox bacteria so that shorten the start-up period of Anammox process from the conventional activated sludge. It also indicated that the ultrasound strengthened the competitive advantage of Candidatus Kuenenia stuttgartiensis in Anammox bacteria of the mature sludge so as to enhance the nitrogen removal performance of the Anammox reactor under the operation condition of high nitrogen loading.
Collapse
Affiliation(s)
- Tao Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Diandian Zhang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yating Sun
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Shanshan Zhou
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Lin Li
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jingjing Shao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
72
|
Ge CH, Sun N, Kang Q, Ren LF, Ahmad HA, Ni SQ, Wang Z. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process. BIORESOURCE TECHNOLOGY 2018; 251:13-21. [PMID: 29257992 DOI: 10.1016/j.biortech.2017.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in RC, which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11).
Collapse
Affiliation(s)
- Cheng-Hao Ge
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Na Sun
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, PR China
| | - Hafiz Adeel Ahmad
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China.
| | - Zhibin Wang
- Institute of Marine Science and Technology, Shandong University, PR China
| |
Collapse
|
73
|
Wang X, Gao D. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria. BIORESOURCE TECHNOLOGY 2018; 250:439-448. [PMID: 29195156 DOI: 10.1016/j.biortech.2017.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities.
Collapse
Affiliation(s)
- Xiaolong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
74
|
Wang Y, Bu CN, Kang Q, Ahmad HA, Zhang J, Gao B, Ni SQ. Autoclaved sludge as the ideal seed to culture anammox bacteria: Reactor performance and microbial community diversity. BIORESOURCE TECHNOLOGY 2017; 244:391-399. [PMID: 28783566 DOI: 10.1016/j.biortech.2017.07.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Reducing activity of commensal bacteria in inocula may enhance anammox bacteria proliferation and realization of anammox process. Fast start-up of anammox process in an UASB reactor was successfully achieved by using autoclaved sludge (anaerobic granular sludge pretreated by autoclaving) and 0.3% active anammox sludge as inoculum. Continuous experiments indicated that R2 (autoclaved sludge addition) could shorten the start-up period from 72days to 63days. The first 50days anammox population specific growth rates (μ) of R1 (the control) and R2 were determined to be 0.014d-1 and 0.045d-1 using q-PCR assays. Analysis of coefficient of variations of nitrogen removal performance during days 96-225 indicated that R2 was more stable than R1. The Illumina MiSeq sequencing showed that autoclaving could decrease microbial diversity of sludge and enhance the abundance of anammox bacteria. Furthermore, PICRUSt community functions forecast and c-di-GMP measure illuminated the result of higher stability in R2.
Collapse
Affiliation(s)
- Yu Wang
- Shenzhen Research Institute, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, PR China
| | - Cui-Na Bu
- Shenzhen Research Institute, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, PR China
| | - Hafiz Adeel Ahmad
- Shenzhen Research Institute, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, PR China
| | - Jian Zhang
- Shenzhen Research Institute, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, PR China
| | - Baoyu Gao
- Shenzhen Research Institute, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, PR China.
| |
Collapse
|
75
|
Shi ZJ, Guo Q, Xu YQ, Wu D, Liao SM, Zhang FY, Zhang ZZ, Jin RC. Mass transfer characteristics, rheological behavior and fractal dimension of anammox granules: The roles of upflow velocity and temperature. BIORESOURCE TECHNOLOGY 2017; 244:117-124. [PMID: 28779662 DOI: 10.1016/j.biortech.2017.07.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the mass transfer, rheological behavior and fractal dimension of anaerobic ammonium oxidation (anammox) granules in upflow anaerobic sludge blanket reactors at various temperatures (8.5-34.5°C) and upflow velocities (0.06, 0.18mh-1) were investigated. The results demonstrated that a lower temperature increased the external mass transfer coefficient and apparent viscosity and impaired the performance of anammox granules. The external mass transfer coefficient was decreased, but efficient nitrogen removal of up to 96% was achieved under high upflow velocity, which also decreased the apparent viscosity. Furthermore, a fractal dimension of up to 2.93 achieved at low temperature was higher than the previously reported values for mesophilic anammox granules. A higher upflow velocity was associated with the lower fractal dimension. Because of the disturbance in granule flaking, the effectiveness factor was less suitable than the external mass transfer coefficient for characterization of mass transfer resistance.
Collapse
Affiliation(s)
- Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Qiong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yi-Qun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Dan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Si-Mo Liao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fu-Yue Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
76
|
Wang G, Xu X, Zhou L, Wang C, Yang F. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment. BIORESOURCE TECHNOLOGY 2017; 241:181-189. [PMID: 28558348 DOI: 10.1016/j.biortech.2017.02.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Treatment of sludge digester liquor was successfully accomplished using a pilot-scale partial nitrification-anammox (PN/A) reactor with a nitrogen removal rate (NRR) of 1.23kgN/m3/d. A stable and efficient PN process was attained by controlling the concentration of free ammonia (0.7-8.4mg/L) and free nitrous acid (0.02-1.0mg/L). The application of hydroxylamine played a vital role in the reactivation of anammox bacteria. The bacteria exhibited improved granule properties at a specific input power between 0.065 and 0.097kW/m3, and achieved a specific anammox activity (SAA) of 1.01kgN/kgVSS/d on day 148. From day 0 to 120, the heme c content in the granules increased from 0.42±0.1 to 5.77±1.0µmol/gVSS, with a corresponding increase in NRRs and SAAs. High-throughput sequencing techniques revealed that the dominant anammox bacterial genus was Candidatus Brocadia. These conclusions provide valuable information for the full-scale treatment of sludge digester liquor.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Liang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
77
|
Yangin-Gomec C, Pekyavas G, Sapmaz T, Aydin S, Ince B, Akyol Ç, Ince O. Microbial monitoring of ammonia removal in a UASB reactor treating pre-digested chicken manure with anaerobic granular inoculum. BIORESOURCE TECHNOLOGY 2017; 241:332-339. [PMID: 28577482 DOI: 10.1016/j.biortech.2017.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor.
Collapse
Affiliation(s)
- Cigdem Yangin-Gomec
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey.
| | - Goksen Pekyavas
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey
| | - Tugba Sapmaz
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey
| | - Sevcan Aydin
- BioCore Biotechnology Environmental and Energy Technologies R&D Ltd., Istanbul 34217, Turkey
| | - Bahar Ince
- Boğaziçi University, Institute of Environmental Sciences, Bebek, 34342 Istanbul, Turkey
| | - Çağrı Akyol
- Boğaziçi University, Institute of Environmental Sciences, Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Istanbul Technical University, Department of Environmental Engineering, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
78
|
Qin Y, Han B, Cao Y, Wang T. Impact of substrate concentration on anammox-UBF reactors start-up. BIORESOURCE TECHNOLOGY 2017; 239:422-429. [PMID: 28535492 DOI: 10.1016/j.biortech.2017.04.126] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Two up-flow blanket filter (UBF) reactors were employed to treat synthetic wastewater with different substrate concentrations and nitrogen load rates (NLR) for 178days. During days 0-60, higher influent NLR of R2 (0.21-0.58kg·m3·d) slowed down the formation of anammox sludge compared with the lower NLR of R1 (0.18-0.31kg·m3·d). Difference in sludge color and nitrogen conversion rate indicated greater anammox activity of R2 than R1. During days 61-178, R1 and R2 achieved the maximum nitrogen removal rates (NRR) of 1.213 and 1.684kg/(m3·d) under the NLRs of 1.924 and 2.502kg/(m3·d), respectively. Furthermore, high-throughput sequencing showed that R2 (43.5%) had a higher proportion of anammox bacteria than R1 (37.8%) and less species. These results showed that after going through a higher NLR acclimation process during start-up period, stronger resistant capability against high impact nitrogen load and greater anammox activity were obtained by R2.
Collapse
Affiliation(s)
- Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Bin Han
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tongyu Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
79
|
Wang S, Liu Y, Niu Q, Ji J, Hojo T, Li YY. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules. BIORESOURCE TECHNOLOGY 2017; 236:119-128. [PMID: 28399415 DOI: 10.1016/j.biortech.2017.03.164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The operation performance of a novel micro-granule based syntrophic system of nitritation and anammox was studied by controlling the oxygen concentration and maintaining a constant temperature of 25°C. With the oxygen concentration of around 0.11 (<0.15)mg/L, the single-stage nitritation-anammox system was startup successfully at a nitrogen loading rate (NLR) of 1.5kgN/m3/d. The reactor was successfully operated at volumetric N loadings ranging from 0.5 to 2.5kgN/m3/d with a high nitrogen removal of 82%. The microbial community was composed by ammonia oxidizing bacteria (AOB) and anammox bacteria forming micro-granules with an average diameter of 0.8mm and good settleability. Results from pyrosequencing analysis revealed that Ca. Kuenenia and Nitrosomonas were selected and enriched in the community over the startup period, and these were identified as the dominant anammox bacteria and AOB species, respectively.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin 300384, China
| | - Yuan Liu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
80
|
Chen H, Jin RC. Summary of the preservation techniques and the evolution of the anammox bacteria characteristics during preservation. Appl Microbiol Biotechnol 2017; 101:4349-4362. [DOI: 10.1007/s00253-017-8289-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
|
81
|
Guo J, Wang S, Lian J, Ngo HH, Guo W, Liu Y, Song Y. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria. BIORESOURCE TECHNOLOGY 2016; 220:641-646. [PMID: 27612401 DOI: 10.1016/j.biortech.2016.08.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the rapid start-up of the anaerobic ammonium oxidation (anammox) strategy by inoculating different biomass ratios of denitrifying granular sludge and anammox bacteria. The results demonstrated that two reactors (R1 and R2) were rapidly and successfully started-up on days 25 and 28, respectively, with nitrogen removal rates (NRRs) of 0.70kg/(m(3)·d) and 0.72kg/(m(3)·d) at biomass ratios of 10:1 (R1) and 50:1 (R2). The explanation for rapid start-up was found by examining the effect of five different sludge extracellular polymeric substances (EPS) on the activity of anammox bacteria in the batch experiments. Batch experiments results first demonstrated that the denitrification sludge EPS (DS-EPS) enhanced the anammox bacteria activity the most, and NO2(-)-N, NH4(+)-N removal rates were 1.88- and 1.53-fold higher than the control with optimal DS-EPS volume of 10mL. The rapid start-up strategy makes possible the application of anammox to practical engineering.
Collapse
Affiliation(s)
- Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China; School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China.
| | - Sihui Wang
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yunman Liu
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| |
Collapse
|
82
|
Wang S, Guo J, Lian J, Ngo HH, Guo W, Liu Y, Song Y. Rapid start-up of the anammox process by denitrifying granular sludge and the mechanism of the anammox electron transport chain. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
83
|
Tikilili PV, Chirwa E. Searching for indigenous anaerobic ammonium oxidizing (anammox) bacteria in South African habitats: Pretoria region. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1225515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Phumza Vuyokazi Tikilili
- Water Utilization Division, Department of Chemical Engineering, University of Pretoria , South Campus, Pretoria, South Africa
| | - Evans Chirwa
- Water Utilization Division, Department of Chemical Engineering, University of Pretoria , South Campus, Pretoria, South Africa
| |
Collapse
|
84
|
Leix C, Drewes JE, Koch K. The role of residual quantities of suspended sludge on nitrogen removal efficiency in a deammonifying moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2016; 219:212-218. [PMID: 27494102 DOI: 10.1016/j.biortech.2016.07.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
In a moving bed biofilm reactor (MBBR) system, the vast majority of biomass is immobilized as biofilm besides small amounts of suspension. In this study, the influence of the individual biomass components of a deammonifying MBBR, the biofilm on carriers (BC), residual suspended biomass (SB) with a volatile suspended solids concentration of 0.09±0.03g/L, and its combination (BC+SB) on nitrogen removal efficiency was investigated. While the performance was highest for BC+SB (0.42kgN/(m(3)·d)), it was reduced by a factor of 3.5 for BC solely. SB itself was only capable of nitrite accumulation. This suggests a high abundance of AOBs within suspension besides the coexistence of AOBs and anammox bacteria in the biofilm, which could be supported by results using fluorescence in situ hybridization(FISH). Thus, small amounts of suspended microorganisms can positively influence the deammonification's efficiency. If this fraction is partially washed out, the system recovers nevertheless within hours.
Collapse
Affiliation(s)
- Carmen Leix
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| |
Collapse
|