51
|
Meng Q, Wang S, Niu Q, Yan H, Li Q. The influences of illite/smectite clay on lignocellulose decomposition and maturation process revealed by metagenomics analysis during cattle manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 127:1-9. [PMID: 33910097 DOI: 10.1016/j.wasman.2021.04.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to analyze the effects of illite/smectite clay (I/S) on lignocellulosic degradation and humification process via metagenomics analysis during cattle manure composting. The test group (TG) with 10% I/S and the reference group (RG) were established. The results indicated that the addition of I/S made the degradation rate of cellulose, hemicellulose and lignin in TG (1.56%, 29.01%, 19.95%) was higher than that in RG (1.16%, 17.24%, 13.14%). Compared with RG, the abundance values of AA2, AA10, GH1 and GH10 in TG increased by 15.18%, 29.28%, 31.08%, 21.65%, respectively. Meanwhile, humic substance (HS) content was increased by 3.49% and 7.16% during RG and TG composting. Furthermore, the microbial community in TG changed, in which the relative abundance of Actinobacteria increased and Proteobacteria decreased. Redundancy analysis (RDA) showed that the temperature was positively correlated with the abundance of AA2, AA10, GH1 and GH10, whereas the organic matter content was negatively correlated. Overall, adding I/S to the composting could stimulate microbial activity, promote the degradation of lignocellulose and humification process.
Collapse
Affiliation(s)
- Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
52
|
Wang L, Liu H, Prasher SO, Ou Y, Yan B, Zhong R. Effect of inorganic additives (rock phosphate, PR and boron waste, BW) on the passivation of Cu, Zn during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112101. [PMID: 33609977 DOI: 10.1016/j.jenvman.2021.112101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 05/16/2023]
Abstract
The bioavailability of heavy metals in compost is critical for their agronomic value. The effect of inorganic additives (rock phosphate, PR and boron waste, BW) on Copper (Cu) and Zinc (Zn) bioavailability during co-compost of swine manure and rice straw was assessed using sequential extraction procedure (European Community Bureau of Reference). The result showed that both additives, applied at rates of 2.5%-7.5% (w/w) could promote the change of exchangeable Cu and reducible Cu into oxidizable Cu, thereby reducing their bioavailability factor (BF) by 15.5%-47.2%. While additives provided no significant reduction in BF of Zn, the shift from exchangeable Zn into reducible Zn can still reduce the mobility of Zn. Based on redundancy analysis (RDA), organic matter (OM) and electrical conductivity (EC) were identified as the most important controlling factors for redistribution of Cu and Zn fractions during composting. The inorganic additives strengthened the passivation of Cu and Zn bioavailability by stimulating OM degradation. The 7.5% (w/w) rock phosphate showed best passivating effect on the bioavailability of Cu.
Collapse
Affiliation(s)
- Lixia Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shiv O Prasher
- Bioresource Engineering Department, Macdonald Campus, McGill University, Montreal, H9X 3V9, Canada.
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Rongzhen Zhong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
53
|
Awasthi SK, Duan Y, Liu T, Zhou Y, Qin S, Liu H, Varjani S, Awasthi MK, Zhang Z, Pandey A, Taherzadeh MJ. Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process. JOURNAL OF CLEANER PRODUCTION 2021; 291:125947. [DOI: 10.1016/j.jclepro.2021.125947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
54
|
Awasthi SK, Duan Y, Liu T, Zhang Z, Pandey A, Varjani S, Awasthi MK, Taherzadeh MJ. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting? JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124593. [PMID: 33316669 DOI: 10.1016/j.jhazmat.2020.124593] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1-T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88-14.32%), Actinobacteria (35.20-4.99%), Bacteroidetes (0.05-15.07%) and Proteobacteria (0.01-20.28%) with elevated biochar concentration (0%-10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Frontier Research Lab, Yonsei University, Seoul, South Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar - 382010, Gujarat, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|
55
|
Ren X, Wang Q, Zhang Y, Li R, Pan J, Zhang Z. Enhancing composition and heavy metals combined with humic substances by adding black tourmaline during composting. Microchem J 2020; 159:105356. [DOI: 10.1016/j.microc.2020.105356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
56
|
Qin C, Yuan X, Xiong T, Tan YZ, Wang H. Physicochemical properties, metal availability and bacterial community structure in heavy metal-polluted soil remediated by montmorillonite-based amendments. CHEMOSPHERE 2020; 261:128010. [PMID: 33113657 DOI: 10.1016/j.chemosphere.2020.128010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Clay materials are commonly used in remediation techniques for heavy metal contaminated soil. In this study, a magnesium (Mg(OH)2/MgO)-montmorillonite was proposed to be utilized for heavy metals immobilization in contaminated soil, with the remediation efficiency evaluated through the toxicity characteristic leaching procedure (TCLP) and the community bureau of reference sequential extraction procedure (BCR). The addition of magnesium-montmorillonite resulted in lower TCLP extractability for the heavy metals (Cu, Pb, Zn and Cd) in soil as it promoted their conversion from acid soluble fraction to residual fraction. Meanwhile, MM raised the soil pH and water-soluble organic carbon (WSOC). It was demonstrated that the immobilization of heavy metal in the presence of magnesium-montmorillonite was primarily induced by electrostatic attraction, precipitation and chelation with water-soluble organic carbon. Interestingly, a decreased bacterial community diversity was observed in soil treated by magnesium-montmorillonite (MM). The presence of pure magnesium-montmorillonite promoted the relative abundance of Proteobacteria, Actinobacteria and Firmicutes but reduced that of Bacteroides and Acidobacteria. Our results suggest that integrating the biochar into montmorillonite-based amendments can alleviate the damage to soil microorganisms by weakening the negative correlation between the two factors (content clay and WSOC in soil) and soil bacteria.
Collapse
Affiliation(s)
- Chencheng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ting Xiong
- Institute of Big Data and Internet Innovation, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Yong Zen Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
57
|
Cui H, Ou Y, Wang L, Yan B, Li Y, Ding D. The passivation effect of heavy metals during biochar-amended composting: Emphasize on bacterial communities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:360-368. [PMID: 32927389 DOI: 10.1016/j.wasman.2020.08.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Available information on passivation effect of biochar on heavy metals (HMs) through regulating bacterial communities remains limited. Thus, this study investigated the correlation between bacterial diversity and HM-fractions (Zn, Cu, Cd, Cr and Pb) during composting with different dose of biochar (5% and 10%, dry weight basis), in order to ascertain the passivation effect on HMs under the influence of bacterial community. The addition of 10% biochar showed better passivation effect with reduction in bioavailability factor (BF) of Zn, Cu, Cd and Pb by 4.10%, 44.12%, 18.75% and 30.06%, respectively. In addition, it brought forward the variation in primary bacterial phylum to the thermophilic phase. The results of redundancy analysis (RDA) and structural equation models (SEMs) indicated that C:N ratio was an important factor in controlling the morphological transformation of HM by affecting the bacterial community structure. Our results maybe provide a novel insight into HM-passivation from an interaction mechanism on C:N ratio and bacterial community.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixia Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yingxin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Ding
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
58
|
Chen X, Zhao Y, Zhao X, Wu J, Zhu L, Zhang X, Wei Z, Liu Y, He P. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: Sensitive, resistant and actor. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122858. [PMID: 32473324 DOI: 10.1016/j.jhazmat.2020.122858] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HM) pollution exerts an effect on microbial community composition and structure during composting, the way how microbial community responses to HM pressure is remain poorly understood though. The aim of this study was to explore functional roles of microorganisms based on selective pressures of HM (Cu, Zn and Cd). The results of microbial resistance showed that the toxicity of metals to microorganisms were Cu > Zn > Cd during composting. Cu and Zn were more toxic for microorganisms during composting when compared with Cd. However, microorganisms had a longer lag period to grow under Zn stress through microbial tolerance determination. In addition, the microbial catalase activity generally decreased and protease activity generally increased, thus microorganisms became more adaptable to HM stress during composting. The experimental results confirmed the existence of sensitive, resistant and actor microorganisms during beef cattle and chicken manures composting. Ultimately, the resistant, sensitive and actor microorganisms at genus level were distinguished under HM pressure based on the network analysis and structural equation models, including 85 resistant microorganisms, 5 sensitive microorganisms and 6 actor microorganisms. This would be helpful to understand the microbial succession process under HM stress and identify functional strains of HM remediation.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Liu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
59
|
Li X, Zhao X, Yang J, Li S, Bai S, Zhao X. Recognition of core microbial communities contributing to complex organic components degradation during dry anaerobic digestion of chicken manure. BIORESOURCE TECHNOLOGY 2020; 314:123765. [PMID: 32652447 DOI: 10.1016/j.biortech.2020.123765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Microbial metabolism of complex organic components can drive different microbial communities, which is significant to the process of dry anaerobic digestion (AD). However, possible mechanisms between organic components and the corresponding microbial communities during the process of dry AD is poorly investigated. Results showed that the microbial species affecting the degradation of organic components were 69 nodes (13.3%) in the hydrolysis stage, hemicellulose was mainly degraded by Methanobacterium (2.3%), with a degradation rate of 35.0%. In the acetogenesis stage, the microbial species were 27 nodes (10.3%), hemicellulose was mainly degraded by LK-44f (0.1%) and Treponema (0.3%), with a degradation rate of 52.2%. In the methanogenesis stage, the microbial species were 10 nodes (4.8%), polysaccharide was mainly degraded by Ureibacillus (0.1%), with a degradation rate of 46.9%. The study provides theoretical support for the rapid degradation of complex components by segment-oriented regulation.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiuyun Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sicong Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
60
|
Xi B, Dang Q, Wei Y, Li X, Zheng Y, Zhao X. Biogas slurry as an activator for the remediation of petroleum contaminated soils through composting mediated by humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139117. [PMID: 32402972 DOI: 10.1016/j.scitotenv.2020.139117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution caused by petroleum hydrocarbons is a widespread environmental problem. Composting is one of the cost-effective solutions for petroleum hydrocarbons removal but limited by low efficiency of bioremediation, leading to high phytotoxicity. Given that biogas slurry as nutrients can alter the microbial activity, the aim of this study was to investigate the role of biogas slurry on the remediation of petroleum contaminated soils in composting. Herein, we added biogas slurry into the composting of hydrocarbon contaminated soil to investigate its effect on the biodegradation of petroleum hydrocarbons, humic acid (HA) transformation and the safety of product. The results showed that biogas slurry addition improved the degradation of organic matter and total petroleum hydrocarbons (TPH) (especially C > 16), but also increased 18.0% of germination index and the humification degree of HA. The estrone from biogas slurry was removed during composting and did not affect the phytotoxicity level of compost. Redundancy analysis and structural equation modeling indicated that TPH degradation was significantly related to the humification of HA components and total nitrogen from biogas slurry, which contributed to composting safety. Therefore, biogas slurry could be a possible activator for the remediation of petroleum contaminated soils through composting mediated by HA transformation, which is beneficial to obtain the composts with a lower phytotoxicity and higher maturity for soil application.
Collapse
Affiliation(s)
- Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, China; College of Water Sciences, Beijing Normal University, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, China
| | - Yansi Zheng
- College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, China.
| |
Collapse
|
61
|
Ren X, Wang Q, Zhang Y, Awasthi MK, He Y, Li R, Zhang Z. Improvement of humification and mechanism of nitrogen transformation during pig manure composting with Black Tourmaline. BIORESOURCE TECHNOLOGY 2020; 307:123236. [PMID: 32234593 DOI: 10.1016/j.biortech.2020.123236] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the role of Black Tourmaline (TM) in the humification enhancement and the mechanism of nitrogen transformation during pig manure composting. Results showed that adding TM promoted the maturity and improved the humification degree by 20.13-33.77%. And TM was beneficial for the transformation from NH4+-N to amino organic nitrogen to fix more nitrogen in compost mass. Then NH3 and N2O volatilization were decreased by 22.88-34.76% and 69.79-87.47% by comparison with the control, and the minimum value in nitrogen loss (26.78%) was observed in the 10% TM blended treatment. Furthermore, through RDA analysis, the protease an upmost contributor to nitrogen transformation. Meanwhile, total organic carbon was dominant factor affected enzymatic activities. Therefore, 10% TM was suggested to reduce nitrogen loss and increase humification in this research. Deeply related research in gene and specific addition amounts of TM will be investigated later.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Yue Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, PR China.
| |
Collapse
|
62
|
Lu JH, Chen C, Huang C, Leu SY, Lee DJ. Glucose fermentation with biochar amended consortium: Sequential fermentations. BIORESOURCE TECHNOLOGY 2020; 303:122933. [PMID: 32037192 DOI: 10.1016/j.biortech.2020.122933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study sequential batch fermentation of glucose with a biological consortium amended with nine different biochars or with an activated carbon. The glucose fermentation was enhanced by carbon amendment, with activated carbon being more effective than biochars as cell carriers and electron conductors between functional species. The volatile fatty acid distributions were shifted in the consumption of the produced H2 and CO2. The types of biochars were irrelevant to glucose glycolysis and the subsequent H2 and CO2 consumption reactions. Biofilm growth affects the detailed mechanisms occurred in fermentation broth to the yielded volatile fatty acid distributions.
Collapse
Affiliation(s)
- Jia-Hsun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chihpin Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; College of Engineering, Tunghai University, Taichung 407, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| |
Collapse
|
63
|
Qi H, Zhao Y, Zhao X, Yang T, Dang Q, Wu J, Lv P, Wang H, Wei Z. Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. BIORESOURCE TECHNOLOGY 2020; 299:122596. [PMID: 31869629 DOI: 10.1016/j.biortech.2019.122596] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The study aims to accelerate the formation of humin (HM) with the addition MnO2 to achieve carbon sequestration during different material composting. The results indicated that the addition of MnO2 could improve the concentration of HM by increasing of the content in functional groups during corn straw (CS) and chicken manure (CM) composting. With the addition of MnO2, non-aromatic functional groups were responsible for the increase of the HM concentration in CM, while aromatic functional groups were dominating for CS. Although the formation mechanism of HM varied significantly across different materials, the MnO2 promoted more abundant functional groups to participate the formation of recalcitrant fluorescence components in CS and CM. In addition, the aromatization of HM structure was improved by adding the MnO2. Therefore, the addition of MnO2 not only increase carbon sequestration but also increase the compost product resilience during the decompose of agricultural organic wastes.
Collapse
Affiliation(s)
- Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Pin Lv
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150030, China
| | - Hua Wang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
64
|
Zhu L, Wei Z, Yang T, Zhao X, Dang Q, Chen X, Wu J, Zhao Y. Core microorganisms promote the transformation of DOM fractions with different molecular weights to improve the stability during composting. BIORESOURCE TECHNOLOGY 2020; 299:122575. [PMID: 31864086 DOI: 10.1016/j.biortech.2019.122575] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Transformation of DOM fractions with different molecular weights during composting of chicken manure (CM), garden waste (GW) and municipal solid waste (MSW) was evaluated in this study. The results revealed that DOM concentrations decreased by 49.8%, 53.9% and 86.4% during CM, GW and MSW composting, respectively. Meanwhile, low molecular weight (<650 Da) DOM was visibly transformed into high molecular weight (>10 kDa) DOM for enhancing their stability during composting. Core microorganisms promoting DOM stabilization were identified by network analysis, such as Prosthecobacter, Paenalcaligenes and Solibacillus. In addition, DOM composition was also related to the relative abundance of microbial metabolic function, such as chemoheterotrophy and aerobic chemoheterotrophy. Moreover, temperature, moisture and pH were identified as the key physicochemical factors affecting the DOM stabilization mediated by core microorganisms during composting. These above findings are helpful to regulate the DOM stabilization during composting and improve the quality of final composts.
Collapse
Affiliation(s)
- Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
65
|
Wei Y, Zhang H, Yuan Y, Zhao Y, Li G, Zhang F. Indirect effect of nutrient accumulation intensified toxicity risk of metals in sediments from urban river network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6193-6204. [PMID: 31865586 DOI: 10.1007/s11356-019-07335-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution. Graphical abstract Toxicity rate of metals in sediments from urban river network indirectly intensified by nutrients accumulation.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Ying Yuan
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yingshuang Zhao
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
66
|
Wei Y, Zhao Y, Zhao X, Gao X, Zheng Y, Zuo H, Wei Z. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. BIORESOURCE TECHNOLOGY 2020; 296:122375. [PMID: 31734063 DOI: 10.1016/j.biortech.2019.122375] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
This study aims to assess the roles of different humin and heavy-metal resistant bacterial community from composting on heavy metal removal. The results showed that the concentration of Cu2+, Zn2+, Ni2+, Pb2+, Cr3+ and Cd2+ decreased with adding the compost-derived humin, but the removal rates were relatively low (<30% on average). The heavy metal resistant bacteria from composting have better metal binding capacities than humin, and the combined addition of humin and bacteria could further stimulate the biosorption of heavy metals with 60-80% removal of metals and improve the diversity and biomass of bacterial community. There was obviously increased synergy between the humin from maturity phase and bacteria for metal biosorption ("1 + 1 > 2"). Structural equation modeling showed that microbial biomass and humin humification are the key factors for the biosorption of heavy metals. Combining humin from maturity phase with heavy-metal resistant bacteria was suggested to control heavy metal pollution in composts.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China; School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xintong Gao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yansi Zheng
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huiduan Zuo
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
67
|
Yu H, Zhao Y, Zhang C, Wei D, Wu J, Zhao X, Hao J, Wei Z. Driving effects of minerals on humic acid formation during chicken manure composting: Emphasis on the carrier role of bacterial community. BIORESOURCE TECHNOLOGY 2019; 294:122239. [PMID: 31610491 DOI: 10.1016/j.biortech.2019.122239] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This work was aimed to determine the effects of different minerals on humic acid (HA) formation. Minerals can stimulate the formation of complex compounds, however, whether they can promote the conversion of complex compounds to HA has not been verified. Four treatments were setup from chicken manure mixed with rice hull and then added biochar (BC), montmorillonite (MMT) and biochar combined with montmorillonite (BC-MMT) for composting, while the control check (CK) was composted without minerals. The results showed that HA concentration was increased by 28.09%, 40.79%, 45.39% and 38.96% during CK, BC, BC-MMT and MMT composting. However, the bacterial community was the main reason for affecting HA concentration. Network analysis showed that obligate and facultative core microbes drove HA formation, and these driving effects were affected by minerals. Therefore, the core bacterial community promoted HA formation, which provided an insightful method to improve HA production.
Collapse
Affiliation(s)
- Huimin Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chuang Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingkun Hao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
68
|
Zhu L, Yang H, Zhao Y, Kang K, Liu Y, He P, Wu Z, Wei Z. Biochar combined with montmorillonite amendments increase bioavailable organic nitrogen and reduce nitrogen loss during composting. BIORESOURCE TECHNOLOGY 2019; 294:122224. [PMID: 31610497 DOI: 10.1016/j.biortech.2019.122224] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to compare the effects of biochar, montmorillonite and their mixture on nitrogen availability and nitrogen loss during chicken manure composting. Four lab-scale composting experiments, the control (CK), 5% biochar addition (BC), 5% montmorillonite addition (M) and 2.5% biochar + 2.5% montmorillonite addition (BCM), were established. Results showed that the addition of BC, M and BCM significantly improved the contents of bioavailable organic nitrogen and NH4+-N in composts. In addition, BC and BCM reduced N loss by 19.2% and 12.2%, respectively, in comparison with CK. Significant shift of key bacterial communities associated with N transformation were also found in four treatments. Redundancy analysis and structural equation models indicated different additives changed the correlation among bacterial communities, environmental factors and organic N fractions. Comparison of N availability and N loss indicated that the combination of biochar and montmorillonite are more effective than that of separate application during composting.
Collapse
Affiliation(s)
- Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150030, China
| | - Yan Liu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150030, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150030, China
| | - Zhenting Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|