51
|
Arai T, Biely P, Uhliariková I, Sato N, Makishima S, Mizuno M, Nozaki K, Kaneko S, Amano Y. Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J Biosci Bioeng 2018; 127:222-230. [PMID: 30143337 DOI: 10.1016/j.jbiosc.2018.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022]
Abstract
Hydrothermal reaction is known to be one of the most efficient procedures to extract hemicelluloses from lignocellulosic biomass. We investigated the molecular structure of xylooligosaccharides released from corn cob in a continuous flow type hydrothermal reactor designed in our group. The fraction precipitable from the extract with four volumes of ethanol was examined by 1H-NMR spectroscopy and MALDI-TOF MS before and after enzymatic treatment with different purified enzymes. The released water-soluble hemicellulose was found to correspond to a mixture of wide degree of polymerization range of acetylarabinoglucuronoxylan fragments (further as corn cob xylan abbreviated CX). Analysis of enzymatic hydrolyzates of CX with an acetylxylan esterase, GH3 β-xylosidase, GH10 and GH11 xylanases revealed that the main chain contains unsubstituted regions mixed with regions of xylopyranosyl residues partially acetylated and occasionally substituted by 4-O-methyl-d-glucuronic acid and arabinofuranose esterified with ferulic or coumaric acid. Single 2- and 3-O-acetylation was accompanied by 2,3-di-O-acetylation and 3-O-acetylation of Xylp residues substituted with MeGlcA. Most of the non-esterified arabinofuranose side residues were lost during the hydrodynamic process. Despite reduced branching, the acetylation and ferulic acid modification of pentose residues contribute to high yields and high solubility of the extracted CX. It is also shown that different enzyme treatments of CX may lead to various types of xylooligosaccharides of different biomedical potential.
Collapse
Affiliation(s)
- Tsutomu Arai
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovak Republic
| | - Iveta Uhliariková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovak Republic
| | - Nobuaki Sato
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; B Food Science Co. Ltd., 24-12 Kitahamamachi, Chita 478-0046, Japan
| | - Satoshi Makishima
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; B Food Science Co. Ltd., 24-12 Kitahamamachi, Chita 478-0046, Japan
| | - Masahiro Mizuno
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kouichi Nozaki
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Satoshi Kaneko
- Department of Subtropical Bioscience and Biotechnology, University of the Ryukyus, Nishiara, Okinawa 903-0213, Japan
| | - Yoshihiko Amano
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
52
|
Reis NS, Brito AR, Pacheco CSV, Costa LCB, Gross E, Santos TP, Costa AR, Silva EGP, Oliveira RA, Aguiar-Oliveira E, Oliveira JR, Franco M. Improvement in menthol extraction of fresh leaves of Mentha arvensis by the application of multi-enzymatic extract of Aspergillus niger. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1494580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nadabe S. Reis
- Department of Exact Sciences and Natural, State University of Southwest Bahia (UESB), Itapetinga, Brazil
| | - Aila R. Brito
- Department of Exact Sciences and Natural, State University of Southwest Bahia (UESB), Itapetinga, Brazil
| | | | - Larissa C. B. Costa
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Eduardo Gross
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Tatielle P. Santos
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Analu R. Costa
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Erik G. P. Silva
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Rosilene A. Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Elizama Aguiar-Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Julieta R. Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| |
Collapse
|
53
|
Lin Y, Jin W, Wang J, Cai Z, Wu S, Zhang G. A novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction. Enzyme Microb Technol 2018; 115:29-36. [DOI: 10.1016/j.enzmictec.2018.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
|
54
|
Dupoiron S, Lameloise ML, Bedu M, Lewandowski R, Fargues C, Allais F, Teixeira AR, Rakotoarivonina H, Rémond C. Recovering ferulic acid from wheat bran enzymatic hydrolysate by a novel and non-thermal process associating weak anion-exchange and electrodialysis. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
55
|
Kim DR, Lim HK, Lee KI, Hwang IT. Identification of a New 1,4-beta-D-xylosidase Pae1263 from the Whole Genome Sequence of Paenibacillus terrae HPL-003. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0246-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Singh N, Puri M, Tuli DK, Gupta RP, Barrow CJ, Mathur AS. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21. Anaerobe 2018; 51:89-98. [PMID: 29729318 DOI: 10.1016/j.anaerobe.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
To overcome the challenges associated with combined bioprocessing of lignocellulosic biomass to biofuel, finding good organisms is essential. An ethanol producing bacteria DBT-IOC-DC21 was isolated from a compost site via preliminary enrichment culture on a pure hemicellulosic substrate and identified as a Clostridium strain by 16S rRNA analysis. This strain presented broad substrate spectrum with ethanol, acetate, lactate, and hydrogen as the primary metabolic end products. The optimum conditions for ethanol production were found to be an initial pH of 7.0, a temperature of 70 °C and an L-G ratio of 0.67. Strain presented preferential hemicellulose fermentation when compared to various substrates and maximum ethanol concentration of 26.61 mM and 43.63 mM was produced from xylan and xylose, respectively. During the fermentation of varying concentration of xylan, a substantial amount of ethanol ranging from 25.27 mM to 67.29 mM was produced. An increased ethanol concentration of 40.22 mM was produced from a mixture of cellulose and xylan, with a significant effect observed on metabolic flux distribution. The optimum conditions were used to produce ethanol from 28 g L-1 rice straw biomass (RSB) (equivalent to 5.7 g L-1 of the xylose equivalents) in which 19.48 mM ethanol production was achieved. Thus, Clostridium strain DBT-IOC-DC21 has the potential to perform direct microbial conversion of untreated RSB to ethanol at a yield comparative to xylan fermentation.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Waurn Ponds, Deakin University, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India.
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Waurn Ponds, Deakin University, Victoria 3217, Australia; Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park 5042, Adelaide, Australia.
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India.
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India.
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Waurn Ponds, Deakin University, Victoria 3217, Australia.
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India.
| |
Collapse
|
57
|
Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, Takenaka S, Chaiyaso T. An integrated process for xylooligosaccharide and bioethanol production from corncob. BIORESOURCE TECHNOLOGY 2018; 256:399-407. [PMID: 29475148 DOI: 10.1016/j.biortech.2018.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
An integrated process for xylooligosaccharides (XOs) and bioethanol production from corncob was investigated. XOs were produced by a consecutive process of KOH treatment and hydrolysis by an in-house thermostable endo-xylanase from Streptomyces thermovulgaris. XO yields of 0.15 g/gKOH-treated corncob (22.13 g/L) and 0.52 g/graw corncob of cellulose-rich corncob (CRC) were obtained. After 96 h of enzymatic hydrolysis, CRC hydrolysate contained 62.16, 51.21, 10.03 and 0.92 g/L of total sugar, glucose, xylose and arabinose, respectively. Bioethanol production by separate hydrolysis and fermentation (SHF) using CRC hydrolysate, and by simultaneous saccharification and fermentation (SSF) using CRC was studied at 40 °C for thermotolerant Candida glabrata. SHF showed an ethanol yield of 0.28 g/gCRC (21.92 g/L) and ethanol productivity of 0.304 g/L/h with 93% theoretical yield. Surprisingly, by SSF, those parameters were 0.27 g/gCRC (31.32 g/L), 0.33 g/L/h and 89%, respectively. This integrated process might be a new cost-effective approach for corncob valorization.
Collapse
Affiliation(s)
- Pinpanit Boonchuay
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Bioprocess Research Cluster (BRC), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Charin Techapun
- Bioprocess Research Cluster (BRC), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Bioprocess Research Cluster (BRC), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phisit Seesuriyachan
- Bioprocess Research Cluster (BRC), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Prasert Hanmoungjai
- Bioprocess Research Cluster (BRC), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Masanori Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 9978555, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 6578501, Japan
| | - Thanongsak Chaiyaso
- Bioprocess Research Cluster (BRC), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
58
|
Terrone CC, Freitas CD, Terrasan CRF, Almeida AFD, Carmona EC. Agroindustrial biomass for xylanase production by Penicillium chrysogenum : Purification, biochemical properties and hydrolysis of hemicelluloses. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
59
|
Husson E, Auxenfans T, Herbaut M, Baralle M, Lambertyn V, Rakotoarivonina H, Rémond C, Sarazin C. Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases. BIORESOURCE TECHNOLOGY 2018; 251:280-287. [PMID: 29288956 DOI: 10.1016/j.biortech.2017.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ± 1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps. In addition a higher tolerance of endo-xylanases from T. xylaniliticus to [C2mim][AcO] until 30% v/v than cellulases from T. reesei was observed. Based on this property, a simultaneous strategy combining [C2mim][OAc]- and endo-xylanases as pretreatment in a one-batch produced xylose with similar yield than those obtained by the sequential strategy.
Collapse
Affiliation(s)
- Eric Husson
- Unité de Génie Enzymatique et Cellulaire, FRE 3580 CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Thomas Auxenfans
- Unité de Génie Enzymatique et Cellulaire, FRE 3580 CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Mickael Herbaut
- Unité de Génie Enzymatique et Cellulaire, FRE 3580 CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Manon Baralle
- UMR FARE 614 Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - Virginie Lambertyn
- Unité de Génie Enzymatique et Cellulaire, FRE 3580 CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Harivoni Rakotoarivonina
- UMR FARE 614 Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - Caroline Rémond
- UMR FARE 614 Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, FRE 3580 CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France.
| |
Collapse
|
60
|
Exploring the aglycone subsite of a GH11 xylanase for the synthesis of xylosides by transglycosylation reactions. J Biotechnol 2018; 272-273:56-63. [PMID: 29501471 DOI: 10.1016/j.jbiotec.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022]
Abstract
Xylanases Tx-xyn10 and Tx-xyn11 were compared for their transxylosylation abilities in the presence of various acceptors. Tx-xyn10 exhibited a broad specificity for various acceptors, whereas xylanase Tx-xyn11 catalysed transxylosylation reactions only in presence of polyphenolic acceptors. A modelling approach was developed to study the molecular bottlenecks into the active site of the enzyme that could be responsible for this restricted specificity. The glycosyl-enzyme intermediate of Tx-xyn11 was modelled, and a rotamer of the Y78 residue was integrated. In silico mutations of some residues from the (+1) and (+2) subsites were tested for the deglycosylation step in the presence of non-polyphenolic acceptors. The results indicated that the mutant W126A was able to use aliphatic alcohols and benzyl alcohol as acceptors for transxylosylation. Experimental validation was tested by mutating the xylanase Tx-xyn11 at position W126 into alanine. The specific activity and catalytic efficiency of the W126A mutant during the hydrolysis of xylans decreased by 2-fold and 4-fold, respectively, compared to wild-type xylanase. Among tested acceptors, transxylosylation catalysed by mutant W126A was improved with benzyl alcohol leading to a 2-fold higher concentration of benzyl xylobioside, as predicted by in silico mutation. This improved transxylosylation in the presence of benzyl alcohol leading to higher synthesis of benzyl xylobioside could likely be explained by lowest steric hindrance in the aglycone subsite of the mutated xylanase. No secondary hydrolysis of benzyl xylobioside occurred for both wild-type and mutant xylanases. Finally, our results demonstrated that the modelling approach was limited and that accounting for protein dynamics can lead to improved models.
Collapse
|
61
|
Birch wood pre-hydrolysis vs pulp post-hydrolysis for the production of xylan-based compounds and cellulose for viscose application. Carbohydr Polym 2018; 190:212-221. [PMID: 29628240 DOI: 10.1016/j.carbpol.2018.02.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Hydrothermal treatments of birch wood and kraft pulp were compared for their ability to extract the xylan and produce viscose-grade pulp. Water post-hydrolysis of kraft pulp produced a high-purity cellulosic pulp with lower viscosity but higher cellulose yield than traditional pre-hydrolysis kraft pulping of wood. Post-hydrolysis of pulp also increased the crystallite dimensions and degree of crystallinity in cellulose, and promoted a higher extent of fibril aggregation. The lower specific surface area in post-hydrolyzed pulps, derived from their larger fibril aggregates, decreased the accessibility of OH groups. However, this lower accessibility did not seem to decrease the pulp reactivity to derivatizing chemicals. In the aqueous side-stream, the xylose yield was similar in both pre- and post-hydrolysates, although conducting post-hydrolysis of pulp in a flow-through system enabled the recovery of high purity and molar mass (∼10 kDa) xylan for high-value applications.
Collapse
|
62
|
Méline T, Muzard M, Deleu M, Rakotoarivonina H, Plantier-Royon R, Rémond C. d-Xylose and l-arabinose laurate esters: Enzymatic synthesis, characterization and physico-chemical properties. Enzyme Microb Technol 2018; 112:14-21. [PMID: 29499775 DOI: 10.1016/j.enzmictec.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/15/2022]
Abstract
Efficient enzymatic synthesis of d-xylose and l-arabinose lauryl mono- and diesters has been achieved by transesterification reactions catalysed by immobilized Candida antarctica lipase B as biocatalyst, in organic medium in the presence of d-xylose or l-arabinose and vinyllaurate at 50 °C. In case of l-arabinose, one monoester and one diester were obtained in a 57% overall yield. A more complex mixture was produced for d-xylose as two monoesters and two diesters were synthesized in a 74.9% global yield. The structures of all these pentose laurate esters was solved. Results demonstrated that the esterification first occurred regioselectively onto the primary hydroxyl groups. Pentose laurate esters exhibited interesting features such as low critical aggregation concentrations values all inferior to 25 μM. Our study demonstrates that the enzymatic production of l-arabinose and d-xylose-based esters represents an interesting approach for the production of green surfactants from lignocellulosic biomass-derived pentoses.
Collapse
Affiliation(s)
- Thomas Méline
- FARE laboratory, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims Cedex, France
| | - Magali Deleu
- Université de Liège, Gembloux Agro-Bio Tech, Laboratoire de Biophysique Moléculaire aux Interfaces, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Harivony Rakotoarivonina
- FARE laboratory, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims Cedex, France
| | - Caroline Rémond
- FARE laboratory, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France.
| |
Collapse
|
63
|
Liu X, Liu T, Zhang Y, Xin F, Mi S, Wen B, Gu T, Shi X, Wang F, Sun L. Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-β-Xylanase from Caldicellulosiruptor owensensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:187-193. [PMID: 29236500 DOI: 10.1021/acs.jafc.7b03607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xylanases (EC 3.2.1.8) are a kind of enzymes degrading xylan to xylooligosaccharides (XOS) and have been widely used in a variety of industrial applications. Among them, xylanases from thermophilic microorganisms have distinct advantages in industries that require high temperature conditions. The CoXynA gene, encoding a glycoside hydrolase (GH) family 10 xylanase, was identified from thermophilic Caldicellulosiruptor owensensis and was overexpressed in Escherichia coli. Recombinant CoXynA showed optimal activity at 90 °C with a half-life of about 1 h at 80 °C and exhibited highest activity at pH 7.0. The activity of CoXynA activity was affected by a variety of cations. CoXynA showed distinct substrate specificities for beechwood xylan and birchwood xylan. The crystal structure of CoXynA was solved and a molecular dynamics simulation of CoXynA was performed. The relatively high thermostability of CoXynA was proposed to be due to the increased overall protein rigidity resulting from the reduced length and fluctuation of Loop 7.
Collapse
Affiliation(s)
- Xin Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Tengfei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100102, P.R. China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Rd, Dalian 116023, P.R. China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Shuofu Mi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, P.R. China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100102, P.R. China
| | - Fengzhong Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| |
Collapse
|
64
|
Furtwengler P, Avérous L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 2018. [DOI: 10.1039/c8py00827b] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review highlights recent advances in the synthesis of renewable polyols, used for making polyurethane foams, from biomass.
Collapse
Affiliation(s)
| | - Luc Avérous
- BioTeam/ICPEES-ECPM
- UMR CNRS 7515
- Université de Strasbourg
- Cedex 2
- France
| |
Collapse
|
65
|
Linares-Pastén JA, Aronsson A, Karlsson EN. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass. Curr Protein Pept Sci 2018; 19:48-67. [PMID: 27670134 PMCID: PMC5738707 DOI: 10.2174/1389203717666160923155209] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 11/24/2022]
Abstract
Xylooligosaccharides (XOS) have gained increased interest as prebiotics during the last years. XOS and arabinoxylooligosaccharides (AXOS) can be produced from major fractions of biomass including agricultural by-products and other low cost raw materials. Endo-xylanases are key enzymes for the production of (A)XOS from xylan. As the xylan structure is broadly diverse due to different substitutions, diverse endo-xylanases have evolved for its degradation. In this review structural and functional aspects are discussed, focusing on the potential applications of endo-xylanases in the production of differently substituted (A)XOS as emerging prebiotics, as well as their implication in the processing of the raw materials. Endo-xylanases are found in at least eight different glycoside hydrolase families (GH), and can either have a retaining or an inverting catalytic mechanism. To date, it is mainly retaining endo-xylanases that are used in applications to produce (A)XOS. Enzymes from these GH-families (mainly GH10 and GH11, and the more recently investigated GH30) are taken as prototypes to discuss substrate preferences and main products obtained. Finally, the need of new and accessory enzymes (new specificities from new families or sources) to increase the yield of different types of (A)XOS is discussed, along with in vitro tests of produced oligosaccharides and production of enzymes in GRAS organisms to facilitate use in functional food manufacturing.
Collapse
Affiliation(s)
| | - Anna Aronsson
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
66
|
Structural Differences between the Lignin-Carbohydrate Complexes (LCCs) from 2- and 24-Month-Old Bamboo (Neosinocalamus affinis). Int J Mol Sci 2017; 19:ijms19010001. [PMID: 29267210 PMCID: PMC5795953 DOI: 10.3390/ijms19010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The lignin-carbohydrate complex (LCC) was isolated from milled wood lignin of 2- and 24-month-old crude bamboo (Neosinocalamus affinis) culms using acetic acid (AcOH) and then characterized. The results have shown that the LCC preparation from 2-month-old bamboo (L2) exhibited a slightly lower molecular weight than the LCC preparation from the 24-month-old bamboo (L24). Further studies using Fourier transform infrared spectroscopy (FT-IR) and heteronuclear single quantum coherence (2D-HSQC) NMR spectra analyses indicate that the LCC preparations included glucuronoarabinoxylan and G-S-H lignin-type with G>S>>H. The content of the S lignin units of LCC in the mature bamboo was always higher than in the young bamboo. Combined with sugar composition analysis, the contents of phenyl glycoside and ether linkages in the L24 preparation were higher than in the L2 preparation; however, there was a reverse relationship of ester LCC bonds in L2 and L24. Lignin–xylan was the main type of LCC linkage in bamboo LCCs. Lignin–lignin linkages in the LCC preparations included β-β, β-5 and β-1 carbon-to-carbon, as well as β-O-4 ether linkages, but β-1 linkages were not present in L2.
Collapse
|
67
|
Gullón B, Eibes G, Dávila I, Vila C, Labidi J, Gullón P. Valorization of Vine Shoots Based on the Autohydrolysis Fractionation Optimized by a Kinetic Approach. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Beatriz Gullón
- Department
of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Eibes
- Department
of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Izaskun Dávila
- BioRP
Group, Department of Chemical and Environmental Engineering, University of Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| | - Carlos Vila
- Department
of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Jalel Labidi
- BioRP
Group, Department of Chemical and Environmental Engineering, University of Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| | - Patricia Gullón
- BioRP
Group, Department of Chemical and Environmental Engineering, University of Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| |
Collapse
|
68
|
Wang W, Andric N, Sarch C, Silva BT, Tenkanen M, Master ER. Constructing arabinofuranosidases for dual arabinoxylan debranching activity. Biotechnol Bioeng 2017; 115:41-49. [PMID: 28868788 DOI: 10.1002/bit.26445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/08/2022]
Abstract
Enzymatic conversion of arabinoxylan requires α-L-arabinofuranosidases able to remove α-L-arabinofuranosyl residues (α-L-Araf) from both mono- and double-substituted D-xylopyranosyl residues (Xylp) in xylan (i.e., AXH-m and AXH-d activity). Herein, SthAbf62A (a family GH62 α-L-arabinofuranosidase with AXH-m activity) and BadAbf43A (a family GH43 α-L-arabinofuranosidase with AXH-d3 activity), were fused to create SthAbf62A_BadAbf43A and BadAbf43A_SthAbf62A. Both fusion enzymes displayed dual AXH-m,d and synergistic activity toward native, highly branched wheat arabinoxylan (WAX). When using a customized arabinoxylan substrate comprising mainly α-(1 → 3)-L-Araf and α-(1 → 2)-L-Araf substituents attached to disubstituted Xylp (d-2,3-WAX), the specific activity of the fusion enzymes was twice that of enzymes added as separate proteins. Moreover, the SthAbf62A_BadAbf43A fusion removed 83% of all α-L-Araf from WAX after a 20 hr treatment. 1 H NMR analyses further revealed differences in SthAbf62A_BadAbf43 rate of removal of specific α-L-Araf substituents from WAX, where 9.4 times higher activity was observed toward d-α-(1 → 3)-L-Araf compared to m-α-(1 → 3)-L-Araf positions.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nikola Andric
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Cody Sarch
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bruno T Silva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
69
|
Gatard S, Plantier-Royon R, Rémond C, Muzard M, Kowandy C, Bouquillon S. Preparation of new β-D-xyloside- and β-D-xylobioside-based ionic liquids through chemical and/or enzymatic reactions. Carbohydr Res 2017; 451:72-80. [PMID: 28968549 DOI: 10.1016/j.carres.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Several tetraalkylphosphonium and tetraalkylammonium salts containing xyloside- and xylobioside-based anionic moieties have been prepared. Two stereoselective routes have been developed: i) a chemical pathway in four steps from D-xylose, and ii) a chemoenzymatic pathway directly from biomass-derived xylans. These salts displayed interesting properties as ionic liquids. Their structures have been correlated to their thermal properties (melting, glass transition and decomposition temperatures).
Collapse
Affiliation(s)
- S Gatard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France.
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - C Rémond
- UMR FARE 614, Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - C Kowandy
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - S Bouquillon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France.
| |
Collapse
|
70
|
Yan R, Vuong TV, Wang W, Master ER. Action of a GH115 α-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4-O-methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan. Enzyme Microb Technol 2017. [PMID: 28648176 DOI: 10.1016/j.enzmictec.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucuronic acid and/or 4-O-methyl-glucuronic acid (GlcA/MeGlcA) are substituents of the main xylans present in hardwoods, conifers, and many cereal grains. α-Glucuronidases from glycoside hydrolase family GH115 can target GlcA/MeGlcA from both internally and terminally substituted regions of xylans. The current study describes the first GH115 α-glucuronidase, AxyAgu115A, from the alkaliphilic organism Amphilbacillus xylanus. AxyAgu115A was active in a wide pH range, and demonstrated better performance in alkaline condition compared to other characterized GH115 α-glucuronidases, which generally show optimal activity in acidic conditions. Specifically, its relative activity between pH 5.0 and pH 8.5 was above 80%, and was 35% of maximum at pH 10.5; although the enzyme lost 30% and 80% relative residual activity after 24-h pre-incubation at pH 9 and pH 10, respectively. AxyAgu115A was also similarly active towards glucuronoxylan as well as comparatively complex xylans such as spruce arabinoglucurunoxylan. Accommodation of complex xylans was supported by docking analyses that predicted accessibility of AxyAgu115A to branched xylo-oligosaccharides. MeGlcA release by AxyAgu115A from each xylan sample was increased by up to 30% by performing the reaction at pH 11.0 rather than pH 4.0, revealing applied benefits of AxyAgu115A for xylan recovery and processing.
Collapse
Affiliation(s)
- Ruoyu Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
| | - Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
| |
Collapse
|
71
|
Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10. J Biosci Bioeng 2017; 123:547-554. [DOI: 10.1016/j.jbiosc.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022]
|
72
|
Qin G, Wen P, Wang Y, Zhang L, Liang H, Qin H, Tang S, Zhao P. Safety assessment of xylan by a 90-day feeding study in rats. Regul Toxicol Pharmacol 2017; 85:1-6. [DOI: 10.1016/j.yrtph.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/19/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
|
73
|
Sorokina KN, Taran OP, Medvedeva TB, Samoylova YV, Piligaev AV, Parmon VN. Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5-HMF and Ethanol. CHEMSUSCHEM 2017; 10:562-574. [PMID: 27995758 DOI: 10.1002/cssc.201601244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Indexed: 06/06/2023]
Abstract
In this study, a combination of catalytic and biotechnological processes was proposed for the first time for application in a cellulose biorefinery for the production of 5-hydroxymethylfurfural (5-HMF) and bioethanol. Hydrolytic dehydration of the mechanically activated microcrystalline cellulose over a carbon-based mesoporous Sibunt-4 catalyst resulted in moderate yields of glucose and 5-HMF (21.1-25.1 and 6.6-9.4 %). 5-HMF was extracted from the resulting mixture with isobutanol and subjected to ethanol fermentation. A number of yeast strains were isolated that also revealed high thermotolerance (up to 50 °C) and resistance to inhibitors found in the hydrolysates. The strains Kluyveromyces marxianus C1 and Ogataea polymorpha CBS4732 were capable of producing ethanol from processed catalytic hydrolysates of cellulose at 42 °C, with yields of 72.0±5.7 and 75.2±4.3 % from the maximum theoretical yield of ethanol, respectively.
Collapse
Affiliation(s)
- Ksenia N Sorokina
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State University (NSU), 630090, Novosibirsk, Pirogova str. 2, Russian Federation
| | - Oxana P Taran
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State Technical University (NSTU), 630037, Novosibirsk, Prosp. Karla Marksa, 20, Russian Federation
| | - Tatiana B Medvedeva
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Yuliya V Samoylova
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Alexandr V Piligaev
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Valentin N Parmon
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State University (NSU), 630090, Novosibirsk, Pirogova str. 2, Russian Federation
| |
Collapse
|
74
|
Sauraj, Kumar SU, Gopinath P, Negi YS. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr Polym 2017; 157:1442-1450. [DOI: 10.1016/j.carbpol.2016.09.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/25/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
75
|
Queirós LCC, Sousa SCL, Duarte AFS, Domingues FC, Ramos AMM. Development of carboxymethyl xylan films with functional properties. Journal of Food Science and Technology 2017; 54:9-17. [PMID: 28242898 DOI: 10.1007/s13197-016-2389-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The aim of this work was focused on the development of carboxymethyl xylan (CMX) formulations with functional properties to produce edible films. Beechwood Xylan was firstly derivatized into carboxymethyl xylan and thereafter was blended with Agar (Ag), Ammonium zirconium carbonate (AZC) and linoleic acid (La) to produce CMX:Ag, CMX:AZC, CMX:Ag:La films. Mechanical, barrier, optical and thermal properties of the produced films and their antimicrobial activity against food pathogenic bacteria were evaluated. The obtained films were transparent and yellowish. Agar and AZC improved the tensile strength at break of the control CMX film from 4.79 to 27.67 and 20.95 MPa respectively, and the CMX:AZC film exhibited the greatest elastic modulus. Barrier properties of the films decreased when any of the components was incorporated into the CMX and all blended films were thermally more stable than control. The CMX:Ag:La film revealed a good antimicrobial activity against B. cereus and S. aureus.
Collapse
Affiliation(s)
- Lúcia C C Queirós
- FibEnTech and Department of Chemistry, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.,CICS-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-556 Covilhã, Portugal
| | - Sónia C L Sousa
- FibEnTech and Department of Chemistry, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Andreia F S Duarte
- CICS-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-556 Covilhã, Portugal
| | - Fernanda C Domingues
- FibEnTech and Department of Chemistry, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.,CICS-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-556 Covilhã, Portugal
| | - Ana M M Ramos
- FibEnTech and Department of Chemistry, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
76
|
Sadaf A, Morya VK, Khare S. Applicability of Sporotrichum thermophile xylanase in the in situ saccharification of wheat straw pre-treated with ionic liquids. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
77
|
García-Huante Y, Cayetano-Cruz M, Santiago-Hernández A, Cano-Ramírez C, Marsch-Moreno R, Campos JE, Aguilar-Osorio G, Benitez-Cardoza CG, Trejo-Estrada S, Hidalgo-Lara ME. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. Extremophiles 2016; 21:175-186. [PMID: 27900528 DOI: 10.1007/s00792-016-0893-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
A hyperthermophilic and thermostable xylanase of 82 kDa (TtXynA) was purified from the culture supernatant of T. terrestris Co3Bag1, grown on carboxymethyl cellulose (CMC), and characterized biochemically. TtXynA showed optimal xylanolytic activity at pH 5.5 and at 85 °C, and retained more than 90% of its activity at a broad pH range (4.5-10). The enzyme is highly thermostable with a half-life of 23.1 days at 65 °C, and active in the presence of several metal ions. Circular dichroism spectra strongly suggest the enzyme gains secondary structures when temperature increases. TtXynA displayed higher substrate affinity and higher catalytic efficiency towards beechwood xylan than towards birchwood xylan, oat-spelt xylan, and CMC. According to its final hydrolysis products, TtXynA displays endo-/exo-activity, yielded xylobiose, an unknown oligosaccharide containing about five residues of xylose and a small amount of xylose on beechwood xylan. Finally, this report represents the description of the first fungal hyperthermophilic xylanase which is produced by T. terrestris Co3Bag1. Since TtXynA displays relevant biochemical properties, it may be a suitable candidate for biotechnological applications carried out at high temperatures, like the enzymatic pretreatment of plant biomass for the production of bioethanol.
Collapse
Affiliation(s)
- Yolanda García-Huante
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Maribel Cayetano-Cruz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Claudia Cano-Ramírez
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Rodolfo Marsch-Moreno
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Jorge E Campos
- Laboratorio de Biología Molecular, UBIPRO, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| | - Guillermo Aguilar-Osorio
- Grupo de Fisiología de Hongos, Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM. Cd. Universitaria, CP 04510, México, Ciudad de México, México
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, ENMH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 La Escalera Ticomán, 07320, México, Ciudad de México, México
| | - Sergio Trejo-Estrada
- Grupo de Microbiología Industrial, Centro de Investigación en Biotecnología Aplicada-IPN, Km 1.5 Carretera Estatal Tecuexcomac-Tepetitla, 90700, Tepetitla, Tlaxcala, México
| | - María Eugenia Hidalgo-Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México.
| |
Collapse
|
78
|
Immobilization and Stabilization of Beta-Xylosidases from Penicillium janczewskii. Appl Biochem Biotechnol 2016; 182:349-366. [DOI: 10.1007/s12010-016-2331-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
|
79
|
Zeng Y, Yarbrough JM, Mittal A, Tucker MP, Vinzant TB, Decker SR, Himmel ME. In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:256. [PMID: 27895710 PMCID: PMC5120481 DOI: 10.1186/s13068-016-0669-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. RESULTS Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have proven to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. CONCLUSION We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. We believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.
Collapse
Affiliation(s)
- Yining Zeng
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - John M. Yarbrough
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Ashutosh Mittal
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Todd B. Vinzant
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Stephen R. Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| |
Collapse
|
80
|
Li T, He J. Simultaneous saccharification and fermentation of hemicellulose to butanol by a non-sporulating Clostridium species. BIORESOURCE TECHNOLOGY 2016; 219:430-438. [PMID: 27513648 DOI: 10.1016/j.biortech.2016.07.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
Production of lignocellulosic butanol has drawn increasing attention. However, currently few microorganisms can produce biofuels, particularly butanol, from lignocellulosic biomass via simultaneous saccharification and fermentation. Here we report discovery of a wild-type, mesophilic Clostridium sp. strain MF28 that ferments xylan to produce butanol (up to 3.2g/L) without the addition of saccharolytic enzymes and without any chemical pretreatments. Application of selective pressure from 2-deoxy-d-glucose facilitated isolation of strain MF28, which exhibits inactivation of genes (gid and ccp genes) responsible for carbon catabolite repression, thus allowing strain MF28 to simultaneously ferment a combination of glucose (30g/L), xylose (15g/L), and arabinose (15g/L) to produce 11.9g/L of butanol. Strain MF28 possesses several unique features: (i) non-sporulating, (ii) no acetone/ethanol, (iii) complete hemicellulose-binding enzymatic domain, and (iv) absence of carbon catabolite repression. These unique characteristics demonstrate the industrial potential of strain MF28 for cost-effective biofuel generation from lignocellulosic biomass.
Collapse
Affiliation(s)
- Tinggang Li
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
81
|
Larsonneur F, Martin FA, Mallet A, Martinez-Gil M, Semetey V, Ghigo JM, Beloin C. Functional analysis of Escherichia coli Yad fimbriae reveals their potential role in environmental persistence. Environ Microbiol 2016; 18:5228-5248. [PMID: 27696649 DOI: 10.1111/1462-2920.13559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initial adhesion of bacterial cells to surfaces or host tissues is a key step in colonisation and biofilm formation processes, and is mediated by cell surface appendages. It was previously demonstrated that Escherichia coli K-12 possesses an arsenal of silenced chaperone-usher fimbriae that were functional when constitutively expressed. Among them, production of prevalent Yad fimbriae induces adhesion to abiotic surfaces. Functional characterisation of Yad fimbriae were undertook, and YadN was identified as the most abundant and potential major pilin, and YadC as the potential tip-protein of Yad fimbriae. It was showed that Yad production participates to binding of E. coli K-12 to human eukaryotic cells (Caco-2) and inhibits macrophage phagocytosis, but also enhances E. coli K-12 binding to xylose, a major component of the plant cell wall, through its tip-lectin YadC. Consistently, it was demonstrated that Yad production provides E. coli with a competitive advantage in colonising corn seed rhizospheres. The latter phenotype is correlated with induction of Yad expression at temperatures below 37°C, and under anaerobic conditions, through a complex regulatory network. Taken together, these results suggest that Yad fimbriae are versatile adhesins that beyond potential capacities to modulate host-pathogen interactions might contribute to E. coli environmental persistence.
Collapse
Affiliation(s)
- Fanny Larsonneur
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France.,Ecole Doctorale Bio Sorbonne Paris Cité (BioSPC), Université Paris Diderot, Cellule Pasteur, rue du Dr. Roux 75724, Paris cedex, France
| | - Fernando A Martin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Adeline Mallet
- Institut Pasteur, Ultrapole, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Vincent Semetey
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, Paris, 75005, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| |
Collapse
|
82
|
Sousa S, Pedrosa J, Ramos A, Ferreira PJ, Gamelas JA. Surface properties of xylan and xylan derivatives measured by inverse gas chromatography. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
84
|
Zhang W, Johnson AM, Barone JR, Renneckar S. Reducing the heterogeneity of xylan through processing. Carbohydr Polym 2016; 150:250-8. [DOI: 10.1016/j.carbpol.2016.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023]
|
85
|
Kallbach M, Horn S, Kuenz A, Prüße U. Screening of novel bacteria for the 2,3-butanediol production. Appl Microbiol Biotechnol 2016; 101:1025-1033. [PMID: 27687995 DOI: 10.1007/s00253-016-7849-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022]
Abstract
Biotechnologically produced 2,3-butanediol (2,3-BDO) is a potential starting material for industrial bulk chemicals such as butadiene or methyl ethyl ketone which are currently produced from fossil feedstocks. So far, the highest 2,3-BDO concentrations have been obtained with risk group 2 microorganisms. In this study, three risk group 1 microorganisms are presented that are so far unknown for an efficient production of 2,3-BDO. The strains Bacillus atrophaeus NRS-213, Bacillus mojavensis B-14698, and Bacillus vallismortis B-14891 were evaluated regarding their ability to produce high 2,3-BDO concentrations with a broad range of different carbon sources. A maximum 2,3-BDO concentration of 60.4 g/L was reached with the strain B. vallismortis B-14891 with an initial glucose concentration of 200 g/L within 55 h in a batch cultivation. Besides glucose, B. vallismortis B-14891 converts 14 different substrates that can be obtained from residual biomass sources to 2,3-BDO. Therefore B. vallismortis B-14891 is a promising candidate for the large-scale production of 2,3-BDO with low-cost substrates.
Collapse
Affiliation(s)
- Malee Kallbach
- Thünen Institute of Agricultural Technology, Bundesallee 50, 38116, Braunschweig, Germany
| | - Sonja Horn
- Thünen Institute of Agricultural Technology, Bundesallee 50, 38116, Braunschweig, Germany
| | - Anja Kuenz
- Thünen Institute of Agricultural Technology, Bundesallee 50, 38116, Braunschweig, Germany.
| | - Ulf Prüße
- Thünen Institute of Agricultural Technology, Bundesallee 50, 38116, Braunschweig, Germany
| |
Collapse
|
86
|
Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv 2016; 34:1260-1274. [PMID: 27620948 DOI: 10.1016/j.biotechadv.2016.09.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
Abstract
Significant progress over the past few years has been achieved in the enzymology of microbial degradation and saccharification of plant xylan, after cellulose being the most abundant natural renewable polysaccharide. Several new types of xylan depolymerizing and debranching enzymes have been described in microorganisms. Despite the increasing variety of known glycoside hydrolases and carbohydrate esterases, some xylan structures still appear quite recalcitrant. This review focuses on the mode of action of different types of depolymerizing endoxylanases and their cooperation with β-xylosidase and accessory enzymes in breakdown of complex highly branched xylan structures. Emphasis is placed on the enzymatic hydrolysis of alkali-extracted deesterified polysaccharide as well as acetylated xylan isolated from plant cell walls under non-alkaline conditions. It is also shown how the combination of selected endoxylanases and debranching enzymes can determine the nature of prebiotic xylooligosaccharides or lead to complete hydrolysis of the polysaccharide. The article also highlights the possibility for discovery of novel xylanolytic enzymes, construction of multifunctional chimeric enzymes and xylanosomes in parallel with increasing knowledge on the fine structure of the polysaccharide.
Collapse
|
87
|
Cui S, Wang T, Hu H, Liu L, Song A, Chen H. Investigating the expression of F10 and G11 xylanases in Aspergillus niger A09 with qPCR. Can J Microbiol 2016; 62:744-52. [DOI: 10.1139/cjm-2015-0394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There exist significant differences between the 2 main types of xylanases, family F10 and G11. A clear understanding of the expression pattern of microbial F10 and G11 under different culture conditions would facilitate better production and industrial application of xylanase. In this study, the fungal xylanase producer Aspergillus niger A09 was systematically investigated in terms of induced expression of xylanase F10 and G11. Results showed that carbon and nitrogen sources could influence xylanase F10 and G11 transcript abundance, with G11 more susceptible to changes in culture media composition. The most favorable carbon and nitrogen sources for high G11 and low F10 production by A. niger A09 were xylan (2%) and (NH4)2C2O4 (0.3%), respectively. Following cultivation at 33 °C for 60 h, the highest xylanase activity (1132 IU per gram of wet mycelia) was observed. On the basis of differential gene expression of F10 and G11, as well as their different properties, we deduced that the F10 protein initially targeted xylan and hydrolyzed it into fragments including xylose, after which xylose acted as the inducer of F10 and G11 gene expression. These speculations also accounted for our failure to identify conditions favoring the high production of F10 but a low production of G11.
Collapse
Affiliation(s)
- Shixiu Cui
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| | - Tianwen Wang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Hong Hu
- Institute of Biology Co., Ltd., Henan Academy of Sciences, Zhengzhou 450008, People’s Republic of China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
| |
Collapse
|
88
|
Xylanase and β-xylosidase from Penicillium janczewskii : Purification, characterization and hydrolysis of substrates. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
89
|
Uechi K, Kamachi S, Akita H, Mine S, Watanabe M. Crystal structure of an acetyl esterase complexed with acetate ion provides insights into the catalytic mechanism. Biochem Biophys Res Commun 2016; 477:383-7. [PMID: 27329813 PMCID: PMC7092896 DOI: 10.1016/j.bbrc.2016.06.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/18/2016] [Indexed: 01/07/2023]
Abstract
We previously reported the crystal structure of an acetyl esterase (TcAE206) belonging to carbohydrate esterase family 3 from Talaromyces cellulolyticus. In this study, we solved the crystal structure of an S10A mutant of TcAE206 complexed with an acetate ion. The acetate ion was stabilized by three hydrogen bonds in the oxyanion hole instead of a water molecule as in the structure of wild-type TcAE206. Furthermore, the catalytic triad residue His182 moved 0.8 Å toward the acetate ion upon substrate entering the active site, suggesting that this movement is necessary for completion of the catalytic reaction.
Collapse
Affiliation(s)
- Keiko Uechi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Saori Kamachi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Shouhei Mine
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan,Corresponding author. Tel.: +81 82 420 8285; fax: +81 82 423 7820.
| |
Collapse
|
90
|
Watanabe M, Fukada H, Ishikawa K. Construction of Thermophilic Xylanase and Its Structural Analysis. Biochemistry 2016; 55:4399-409. [DOI: 10.1021/acs.biochem.6b00414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahiro Watanabe
- Biomass
Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Research
Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Harumi Fukada
- Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kazuhiko Ishikawa
- Biomass
Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
91
|
Stepan AM, Michud A, Hellstén S, Hummel M, Sixta H. IONCELL-P&F: Pulp Fractionation and Fiber Spinning with Ionic Liquids. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Agnes M. Stepan
- Department
of Forest Products
Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Anne Michud
- Department
of Forest Products
Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Sanna Hellstén
- Department
of Forest Products
Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Michael Hummel
- Department
of Forest Products
Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Herbert Sixta
- Department
of Forest Products
Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| |
Collapse
|
92
|
Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
93
|
Dávila I, Gordobil O, Labidi J, Gullón P. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. BIORESOURCE TECHNOLOGY 2016; 211:636-644. [PMID: 27054881 DOI: 10.1016/j.biortech.2016.03.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Vine shoots were subjected to non-isothermal aqueous processing. A range of severities (S0) from 3.20 to 4.65 was assayed and their effects in terms of solubilization, composition, molar mass distribution, structural characterization and thermal stability of the liquors were studied using HPLC, HPSEC, TGA and FTIR. The spent solids were characterized by HPLC and FTIR. When autohydrolysis was carried out at S0=4.01, the substrate solubilization achieved a 38.7% of the raw material and 83.1% of the initial xylan was converted into xylooligosaccharides (XOS). The amount of TOS (total oligosaccharides) in the hydrolysates was 28.4g/L while the other non volatile compounds (ONVC) were 0.08g/g NVC. The spent solid from the treatment at S0=4.01 was composed about 90% of cellulose and lignin. Therefore, it can be concluded that autohydrolysis is a suitable pretreatment of vine shoots such as a first stage of a biomass refinery.
Collapse
Affiliation(s)
- Izaskun Dávila
- Chemical and Environmental Engineering Department, University of Basque Country, 20018 San Sebastián, Spain
| | - Oihana Gordobil
- Chemical and Environmental Engineering Department, University of Basque Country, 20018 San Sebastián, Spain
| | - Jalel Labidi
- Chemical and Environmental Engineering Department, University of Basque Country, 20018 San Sebastián, Spain
| | - Patricia Gullón
- Chemical and Environmental Engineering Department, University of Basque Country, 20018 San Sebastián, Spain.
| |
Collapse
|
94
|
Li F, Wang H, Xin H, Cai J, Fu Q, Jin Y. Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes. Food Chem 2016; 212:155-61. [PMID: 27374519 DOI: 10.1016/j.foodchem.2016.05.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan.
Collapse
Affiliation(s)
- Fangbing Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Huaxia Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianfeng Cai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
95
|
The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules. Appl Microbiol Biotechnol 2016; 100:7577-90. [DOI: 10.1007/s00253-016-7562-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/10/2016] [Accepted: 04/16/2016] [Indexed: 12/27/2022]
|
96
|
Chemin M, Rakotovelo A, Ham-Pichavant F, Chollet G, Da Silva Perez D, Petit-Conil M, Cramail H, Grelier S. Periodate oxidation of 4-O-methylglucuronoxylans: Influence of the reaction conditions. Carbohydr Polym 2016; 142:45-50. [DOI: 10.1016/j.carbpol.2016.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
97
|
Production and Partial Characterization of an Alkaline Xylanase from a Novel Fungus Cladosporium oxysporum. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4575024. [PMID: 27213150 PMCID: PMC4861788 DOI: 10.1155/2016/4575024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
A new fungus Cladosporium oxysporum GQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence. C. oxysporum produced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+ improved C. oxysporum xylanase production. Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+ enhanced the xylanase activity by 2% while Cu2+ had the highest inhibition ratio of 57.9%. Furthermore, C. oxysporum xylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated that Cladosporium oxysporum GQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.
Collapse
|
98
|
Yim SS, Choi JW, Lee SH, Jeong KJ. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass. ACS Synth Biol 2016; 5:334-43. [PMID: 26808593 DOI: 10.1021/acssynbio.5b00228] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hemicellulose, which is the second most abundant polysaccharide in nature after cellulose, has the potential to become a major feedstock for microbial fermentation to produce various biofuels and chemicals. To utilize hemicellulose economically, it is necessary to develop a consolidated bioprocess (CBP), in which all processes from biomass degradation to the production of target products occur in a single bioreactor. Here, we report a modularly engineered Corynebacterium glutamicum strain suitable for CBP using hemicellulosic biomass (xylan) as a feedstock. The hemicellulose-utilizing pathway was divided into three distinct modules, and each module was separately optimized. In the module for xylose utilization, the expression level of the xylose isomerase (xylA) and xylulokinase (xylB) genes was optimized with synthetic promoters of different strengths. Then, the module for xylose transport was engineered with combinatorial sets of synthetic promoters and heterologous transporters to achieve the fastest cell growth rate on xylose (0.372 h(-1)). Next, the module for the enzymatic degradation of xylan to xylose was also engineered with different combinations of promoters and signal peptides to efficiently secrete both endoxylanase and xylosidase into the extracellular medium. Finally, each optimized module was integrated into a single plasmid to construct a highly efficient xylan-utilizing pathway. Subsequently, the direct production of lysine from xylan was successfully demonstrated with the engineered pathway. To the best of our knowledge, this is the first report of the development of a consolidated bioprocessing C. glutamicum strain for hemicellulosic biomass.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Woong Choi
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se Hwa Lee
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
99
|
Salamanca-Cardona L, Scheel RA, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT. Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli. J Biosci Bioeng 2016; 122:406-14. [PMID: 27067372 DOI: 10.1016/j.jbiosc.2016.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Consolidated bioprocessing of lignocellulose is an attractive strategy for the sustainable production of petroleum-based alternatives. One of the underutilized sources of carbon in lignocellulose is the hemicellulosic fraction which largely consists of the polysaccharide xylan. In this study, Escherichia coli JW0885 (pyruvate formate lyase activator protein mutant, pflA(-)) was engineered to express recombinant xylanases and polyhydroxyalkanoate (PHA)-producing enzymes for the biosynthesis of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] from xylan as a consolidated bioprocess. The results show that E. coli JW0885 was capable of producing P(LA-co-3HB) when xylan was the only feedstock and different feeding and growth parameters were examined in order to improve upon initial yields. The highest yields of P(LA-co-3HB) copolymer obtained in this study occurred when xylan was added during mid-exponential growth after cells had been grown at high shaking-speeds (290 rpm). The results showed an inverse relationship between total PHA production and LA-monomer incorporation into the copolymer. Proton nuclear magnetic resonance ((1)H NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) analyses corroborate that the polymers produced maintain physical properties characteristic of LA-incorporating PHB-based copolymers. The present study achieves the first ever engineering of a consolidated bioprocessing bacterial system for the production of a bioplastic from a hemicelluosic feedstock.
Collapse
Affiliation(s)
- Lucia Salamanca-Cardona
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Ryan A Scheel
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Norman Scott Bergey
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Stipanovic
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-28, Kita-ku, Sapporo 060-8638, Japan
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-28, Kita-ku, Sapporo 060-8638, Japan; CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Christopher T Nomura
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China; Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA; Center for Applied Microbiology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| |
Collapse
|
100
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|