Sasase T, Yamada H, Sakoda K, Imagawa N, Abe T, Ito M, Sagawa S, Tanaka M, Matsushita M. Novel protein kinase C-beta isoform selective inhibitor JTT-010 ameliorates both hyper- and hypoalgesia in streptozotocin- induced diabetic rats.
Diabetes Obes Metab 2005;
7:586-94. [PMID:
16050952 DOI:
10.1111/j.1463-1326.2004.00447.x]
[Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM
Activation of protein kinase C (PKC) is thought to play an important role in the pathogenesis of diabetic microvascular complications. PKC-beta is elevated in hyperglycaemic conditions, both in vivo and in vitro. In this study, pharmacological effects of a novel PKC-beta isoform selective inhibitor, JTT-010 ((2R)-3-(2-aminomethyl-2,3-dihydro-1H-3a-azacyclopenta(a)inden-8-yl)-4-phenylaminopyrrole-2,5-dione monomethanesulphonate), on diabetic neuropathy were examined.
METHODS
PKC inhibitory activity of JTT-010 was evaluated with an enzyme assay. For the in vivo study, streptozotocin (STZ)-induced diabetic rats were treated with JTT-010 for 12 weeks and tail/sciatic nerve conduction velocity (NCV) evaluated. Hyper/hypoalgesia was evaluated using tail-flick and formalin tests.
RESULTS
JTT-010 inhibited PKC-betaI and -betaII with IC50 values of 4.0 and 2.3 nm respectively. For other PKC isoforms, IC50 values were 54 nm or greater. In STZ-induced diabetic rats showing a reduction in tail/sciatic nerve conduction velocities, JTT-010 (0.3-3 mg/kg) ameliorated the reduction of these velocities. In a formalin test, STZ-induced diabetic rats had hyperalgesia in the first phase. JTT-010 reduced nociceptive response at doses of 0.1 mg/kg or higher. Furthermore, STZ-induced diabetic rats showed hypoalgesia in the second phase of the formalin test and tail-flick test. JTT-010 also ameliorates these symptoms at doses of 0.1 mg/kg or higher.
CONCLUSIONS
These observations suggest that PKC-beta contributes not only to diabetic hyperalgesia, but also to hypoalgesia and also contributes to defects in NCV. PKC-beta inhibitor, JTT-010, may be beneficial in suppressing the development of diabetic nerve dysfunction, including hyperalgesia and hypoalgesia.
Collapse