51
|
Petroff JT, Isor A, Chintala SM, Albert CJ, Franke JD, Weinstein D, Omlid SM, Arnatt CK, Ford DA, McCulla RD. In vitro oxidations of low-density lipoprotein and RAW 264.7 cells with lipophilic O( 3P)-precursors. RSC Adv 2020; 10:26553-26565. [PMID: 35519784 PMCID: PMC9055398 DOI: 10.1039/d0ra01517b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022] Open
Abstract
A beneficial property of photogenerated reactive oxygen species (ROS) is the capability of oxidant generation within a specific location or organelle inside a cell. Dibenzothiophene S-oxide (DBTO), which is known to undergo a photodeoxygenation reaction to generate ground state atomic oxygen [O(3P)] upon irradiation, was functionalized to afford localization within the plasma membrane of cells. The photochemistry, as it relates to oxidant generation, was studied and demonstrated that the functionalized DBTO derivatives generated O(3P). Irradiation of these lipophilic O(3P)-precursors in the presence of LDL and within RAW 264.7 cells afforded several oxidized lipid products (oxLP) in the form of aldehydes. The generation of a 2-hexadecenal (2-HDEA) was markedly increased in irradiations where O(3P) was putatively produced. The substantial generation of 2-HDEA is not known to accompany the production of other ROS. These cellular irradiation experiments demonstrate the potential of inducing oxidation with O(3P) in cells.
Collapse
Affiliation(s)
- John T Petroff
- Department of Chemistry, Saint Louis University St. Louis MO USA
| | - Ankita Isor
- Department of Chemistry, Saint Louis University St. Louis MO USA
| | | | - Carolyn J Albert
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine St. Louis MO USA
| | - Jacob D Franke
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine St. Louis MO USA
| | - David Weinstein
- Department of Chemistry, Saint Louis University St. Louis MO USA
| | - Sara M Omlid
- Department of Chemistry, Saint Louis University St. Louis MO USA
| | | | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine St. Louis MO USA
| | - Ryan D McCulla
- Department of Chemistry, Saint Louis University St. Louis MO USA
| |
Collapse
|
52
|
Riau AK, Liu YC, Yam GH, Mehta JS. Stromal keratophakia: Corneal inlay implantation. Prog Retin Eye Res 2020; 75:100780. [DOI: 10.1016/j.preteyeres.2019.100780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022]
|
53
|
Methylisothiazolinone induces apoptotic cell death via matrix metalloproteinase activation in human bronchial epithelial cells. Toxicol In Vitro 2020; 62:104661. [DOI: 10.1016/j.tiv.2019.104661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022]
|
54
|
Park CG, Kim JJ, Kim HK. Lipase-mediated synthesis of ricinoleic acid vanillyl ester and evaluation of antioxidant and antibacterial activity. Enzyme Microb Technol 2019; 133:109454. [PMID: 31874691 DOI: 10.1016/j.enzmictec.2019.109454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022]
Abstract
Castor oil extracted from castor bean has antibacterial property, and has been used in various folk remedies. The major structural component of castor oil, ricinoleic acid, has actual antibacterial activity. Some phenolic compounds derived from plants have antioxidant property. Among them, vanillyl alcohol from vanilla bean has strong antioxidant activity. As vanillyl alcohol has low solubility in hydrophobic solvents and castor oil has low solubility in hydrophilic solvents, there is practical difficulty in using them. We performed lipase-mediated transesterification using vanillyl alcohol and castor oil, and synthesized ricinoleic acid vanillyl ester (RAVE). 2,2-Diphenyl-1-picrylhydrazyl assay and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) assay revealed that RAVE had a strong antioxidant activity in various organic solvents. RAVE also had antibacterial activity against some food spoilage bacteria. It showed more powerful antibacterial activity for gram positive bacteria than for gram negative bacteria. The critical micelle concentration of RAVE was measured at 7.36 μM and it partitioned exclusively into emulsion phase in water-emulsion system. Zeta potential measurement, membrane release test, and fluorescent microscopy showed that RAVE inserted itself into the bacterial cell membrane, destroyed membrane permeability, and induced cell death. As such, RAVE is a novel multi-functional compound with antioxidant and antibacterial activity, so it can be used as a functional material in the food and cosmetic industries.
Collapse
Affiliation(s)
- Chae Gyeong Park
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
| | - Jin Ju Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea.
| |
Collapse
|
55
|
Wolfe AJ, Parella KJ, Movileanu L. High-Throughput Screening of Protein-Detergent Complexes Using Fluorescence Polarization Spectroscopy. ACTA ACUST UNITED AC 2019; 97:e96. [PMID: 31517448 DOI: 10.1002/cpps.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides detailed protocols for a high-throughput fluorescence polarization (FP) spectroscopy approach to disentangle the interactions of membrane proteins with solubilizing detergents. Existing techniques for examining the membrane protein-detergent complex (PDC) interactions are low throughput and require high amounts of proteins. Here, we describe a 96-well analytical approach, which facilitates a scalable analysis of the PDC interactions at low-nanomolar concentrations of membrane proteins in native solutions. At detergent concentrations much greater than the equilibrium dissociation constant of the PDC, Kd , the FP anisotropy reaches a saturated value, so it is independent of the detergent concentration. On the contrary, at detergent concentrations comparable with or lower than the Kd , the FP anisotropy readout undergoes a time-dependent decrease, exhibiting a sensitive and specific detergent-dissociation signature. Our approach can also be used for determining the kinetic rate constants of association and dissociation. With further development, these protocols might be used in various arenas of membrane protein research that pertain to extraction, solubilization, and stabilization. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Ichor Therapeutics, Inc., LaFayette, New York.,Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Kyle J Parella
- Ichor Therapeutics, Inc., LaFayette, New York.,Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| |
Collapse
|
56
|
Dalgarno PA, Juan-Colás J, Hedley GJ, Piñeiro L, Novo M, Perez-Gonzalez C, Samuel IDW, Leake MC, Johnson S, Al-Soufi W, Penedo JC, Quinn SD. Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents. Sci Rep 2019; 9:12897. [PMID: 31501469 PMCID: PMC6733941 DOI: 10.1038/s41598-019-49210-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.
Collapse
Affiliation(s)
- Paul A Dalgarno
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK.,Institute of Biological Physics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - José Juan-Colás
- Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK
| | - Gordon J Hedley
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK.,School of Chemistry, University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Lucas Piñeiro
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - Mercedes Novo
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
| | - Ifor D W Samuel
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York, England, YO10 5DD, UK.,Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK
| | - Wajih Al-Soufi
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK.
| | - Steven D Quinn
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK. .,Department of Physics, University of York, Heslington, York, England, YO10 5DD, UK. .,Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
57
|
Fischer D, Gessner G, Fill TP, Barnett R, Tron K, Dornblut K, Kloss F, Stallforth P, Hube B, Heinemann SH, Hertweck C, Scherlach K, Brunke S. Disruption of Membrane Integrity by the Bacterium-Derived Antifungal Jagaricin. Antimicrob Agents Chemother 2019; 63:e00707-19. [PMID: 31235622 PMCID: PMC6709453 DOI: 10.1128/aac.00707-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Jagaricin is a lipopeptide produced by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum, the causative agent of mushroom soft rot disease. Apart from causing lesions in mushrooms, jagaricin is a potent antifungal active against human-pathogenic fungi. We show that jagaricin acts by impairing membrane integrity, resulting in a rapid flux of ions, including Ca2+, into susceptible target cells. Accordingly, the calcineurin pathway is required for jagaricin tolerance in the fungal pathogen Candida albicans Transcriptional profiling of pathogenic yeasts further revealed that jagaricin triggers cell wall strengthening, general shutdown of membrane potential-driven transport, and the upregulation of lipid transporters, linking cell envelope integrity to jagaricin action and resistance. Whereas jagaricin shows hemolytic effects, it exhibited either no or low plant toxicity at concentrations at which the growth of prevalent phytopathogenic fungi is inhibited. Therefore, jagaricin may have potential for agricultural applications. The action of jagaricin as a membrane-disrupting antifungal is promising but would require modifications for use in humans.
Collapse
Affiliation(s)
- Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Guido Gessner
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Taicia Pacheco Fill
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Robert Barnett
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kyrylo Tron
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
58
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
59
|
Lete MG, Monasterio BG, Collado MI, Medina M, Sot J, Alonso A, Goñi FM. Fast and slow biomembrane solubilizing detergents: Insights into their mechanism of action. Colloids Surf B Biointerfaces 2019; 183:110430. [PMID: 31419637 DOI: 10.1016/j.colsurfb.2019.110430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 08/06/2019] [Indexed: 02/03/2023]
Abstract
Detergents are water-soluble amphiphiles. Above a critical concentration they self-organize in micelles and in the presence of phospholipids mixed micelles are formed. Much information is available on the structure of these self-assemblies and on the thermodynamics of their formation. The aim of this study was to deepen our understanding of the mechanisms of solubilization. Solubilization of lipid vesicles made of egg phosphatidylcholine (PC) by twenty one commercially available, structurally heterogeneous detergents, has been assessed by a decrease in turbidity of the vesicle suspension. Both steady-state and time-resolved measurements have been performed. The results show that the detergents under study fall into one of two categories, namely fast-solubilizing and slow-solubilizing detergents. This categorization is independent of detergent concentration, i.e. a "slow" cannot be converted into a "fast" surfactant by increasing its bulk concentration. 31P-NMR spectra indicate that slow-acting detergents cause either a gradual, monotonic micellization of bilayers (sodium dodecyl sulphate), or formation of more complex, perhaps non-lamellar, non-micellar intermediates (dodecylmaltoside). In contrast, fast detergents (e.g. Triton X-100) cause lysis and reassembly of vesicles before bulk solubilization takes place. These results support the idea that membrane solubilization by detergents is rapid only when surfactant transbilayer (flipping) motion is easy.
Collapse
Affiliation(s)
- Marta G Lete
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Bingen G Monasterio
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - M Isabel Collado
- SGIKER, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos, Unidades Asociadas BIFI-IQFR and CBsC-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Sot
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain.
| |
Collapse
|
60
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
61
|
Curvophilic-curvophobic balance of monoalkyl-mannosides determines the magnitude of disturbance promoted in synthetic bilayers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
62
|
Rylaarsdam LE, Johnecheck GN, Looyenga BD, Louters LL. GLUT1 is associated with sphingolipid-organized, cholesterol-independent domains in L929 mouse fibroblast cells. Biochimie 2019; 162:88-96. [PMID: 30980844 DOI: 10.1016/j.biochi.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Glucose is a preferred metabolite in most mammalian cells, and proper regulation of uptake is critical for organism homeostasis. The glucose transporter 1 (GLUT1) is responsible for glucose uptake in a wide variety of cells and appears to be regulated in a tissue specific manner. Therefore, a better understanding of GLUT1 regulation within its various cellular environments is essential for developing therapeutic strategies to treat disorders associated with glucose homeostasis. Previous findings suggest that plasma membrane subdomains called lipid rafts may play a role in regulation of GLUT1 uptake activity. While studying this phenomenon in L929 mouse fibroblast cells, we observed that GLUT1 associates with a low density lipid microdomain distinct from traditionally-defined lipid rafts. These structures are not altered by cholesterol removal with methyl-β-cyclodextrin and lack resistance to cold Triton X-100 extraction. Our data indicate that the GLUT1-containing membrane microdomains in L929 cells, as well as GLUT1's basal activity, are instead sphingolipid-dependent, being sensitive to both myriocin and sphingomyelinase treatment. These microdomains appear to be organized primarily by their lipid composition, as disruption of the actin cytoskeleton or microtubules does not alter the association of GLUT1 with them. Furthermore, the association of GLUT1 with these microdomains appears not to require palmitoylation or glycosylation, as pharmacologic inhibition of these processes had no impact on GLUT1 density in membrane fractions. Importantly, we find no evidence that GLUT1 is actively translocated into or out of low density membrane fractions in response to acute activation in L929 cell.
Collapse
Affiliation(s)
- Lauren E Rylaarsdam
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Grace N Johnecheck
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Brendan D Looyenga
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
63
|
Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams. Sci Rep 2019; 9:1530. [PMID: 30728429 PMCID: PMC6365642 DOI: 10.1038/s41598-018-38383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence indicates that obesity can be promoted by chemical ‘obesogens’ that drive adiposity, hunger, inflammation and suppress metabolism. Dioctyl sodium sulfosuccinate (DOSS), a lipid emulsifier and candidate obesogen in vitro, is widely used in processed foods, cosmetics and as stool softener medicines commonly used during pregnancy. In vivo testing of DOSS was performed in a developmental origins of adult obesity model. Pregnant mice were orally administered vehicle control or DOSS at times and doses comparable to stool softener use during human pregnancy. All weaned offspring consumed only standard diet. Adult male but not female offspring of DOSS-treated dams showed significantly increased body mass, overall and visceral fat masses, and decreased bone area. They exhibited significant decreases in plasma adiponectin and increases in leptin, glucose intolerance and hyperinsulinemia. Inflammatory IL-6 was elevated, as was adipose Cox2 and Nox4 gene expressions, which may be associated with promoter DNA methylation changes. Multiple significant phospholipid/sterol lipid increases paralleled profiles from long-term high-fat diet induced obesity in males. Collectively, developmental DOSS exposure leads to increased adult adiposity, inflammation, metabolic disorder and dyslipidemia in offspring fed a standard diet, suggesting that pharmaceutical and other sources of DOSS taken during human pregnancy might contribute to long-term obesity-related health concerns in offspring.
Collapse
|
64
|
Parus A, Framski G, Rypniewski W, Panasiewicz K, Szulc P, Myszka K, Zgoła-Grześkowiak A, Ławniczak Ł, Chrzanowski Ł. Plant growth promoting N-alkyltropinium bromides enhance seed germination, biomass accumulation and photosynthesis parameters of maize (Zea mays). NEW J CHEM 2019. [DOI: 10.1039/c8nj06298f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Alkyltropinium bromides were synthesized and characterized as novel plant-growth promoting agents.
Collapse
Affiliation(s)
- Anna Parus
- Faculty of Chemical Technology
- Poznan University of Technology
- Berdychowo 4
- 60-965 Poznan
- Poland
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry
- Polish Academy of Sciences
- Noskowskiego 12/14
- 61-704 Poznan
- Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry
- Polish Academy of Sciences
- Noskowskiego 12/14
- 61-704 Poznan
- Poland
| | - Katarzyna Panasiewicz
- University of Life Sciences in Poznan
- Department of Agronomy
- Dojazd 11
- 60-632 Poznan
- Poland
| | - Piotr Szulc
- University of Life Sciences in Poznan
- Department of Agronomy
- Dojazd 11
- 60-632 Poznan
- Poland
| | - Kamila Myszka
- University of Life Sciences in Poznan
- Department of Biotechnology and Food Microbiology
- Wojska Polskiego 48
- 60-627 Poznan
- Poland
| | | | - Łukasz Ławniczak
- Faculty of Chemical Technology
- Poznan University of Technology
- Berdychowo 4
- 60-965 Poznan
- Poland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology
- Poznan University of Technology
- Berdychowo 4
- 60-965 Poznan
- Poland
| |
Collapse
|
65
|
Lee KJ, Lee WS, Hwang A, Moon J, Kang T, Park K, Jeong J. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst 2018; 143:332-338. [PMID: 29210381 DOI: 10.1039/c7an01384a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate simple and rapid bacterial detection using a nuclease-responsive DNA probe. The probe consisting of a fluorescent dye and a quencher at the 5' and 3' termini, respectively, was designed to be cleaved by nucleases such as endonucleases, exonucleases, and DNases, which are released from bacteria using an optimized lysis buffer. The fluorescence signal of the cleaved DNA probe correlates with the number of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, and the detection limit was 103 CFU for E. coli and 104 CFU for S. aureus. Moreover, this method is specific for live bacteria and takes just one minute to get the signal including sample collection. These features make the present bacterial detection method a powerful on-site bacterial contamination assay which is simple, rapid, and quantitative.
Collapse
Affiliation(s)
- Kyung Jin Lee
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
66
|
Buckley ST, Bækdal TA, Vegge A, Maarbjerg SJ, Pyke C, Ahnfelt-Rønne J, Madsen KG, Schéele SG, Alanentalo T, Kirk RK, Pedersen BL, Skyggebjerg RB, Benie AJ, Strauss HM, Wahlund PO, Bjerregaard S, Farkas E, Fekete C, Søndergaard FL, Borregaard J, Hartoft-Nielsen ML, Knudsen LB. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med 2018; 10:10/467/eaar7047. [DOI: 10.1126/scitranslmed.aar7047] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/22/2018] [Indexed: 11/02/2022]
Abstract
Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodiumN-[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC. SNAC protects against enzymatic degradation via local buffering actions and only transiently enhances absorption. The mechanism of absorption is shown to be compound specific, transcellular, and without any evidence of effect on tight junctions. These data have implications for understanding how highly efficacious and specific therapeutic peptides could be transformed from injectable to tablet-based oral therapies.
Collapse
|
67
|
Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M, Diao J, Kozlov MM, Chernomordik LV, Millay DP. Myomaker and Myomerger Work Independently to Control Distinct Steps of Membrane Remodeling during Myoblast Fusion. Dev Cell 2018; 46:767-780.e7. [PMID: 30197239 DOI: 10.1016/j.devcel.2018.08.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023]
Abstract
Classic mechanisms for membrane fusion involve transmembrane proteins that assemble into complexes and dynamically alter their conformation to bend membranes, leading to mixing of membrane lipids (hemifusion) and fusion pore formation. Myomaker and Myomerger govern myoblast fusion and muscle formation but are structurally divergent from traditional fusogenic proteins. Here, we show that Myomaker and Myomerger independently mediate distinct steps in the fusion pathway, where Myomaker is involved in membrane hemifusion and Myomerger is necessary for fusion pore formation. Mechanistically, we demonstrate that Myomerger is required on the cell surface where its ectodomains stress membranes. Moreover, we show that Myomerger drives fusion completion in a heterologous system independent of Myomaker and that a Myomaker-Myomerger physical interaction is not required for function. Collectively, our data identify a stepwise cell fusion mechanism in myoblasts where different proteins are delegated to perform unique membrane functions essential for membrane coalescence.
Collapse
Affiliation(s)
- Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dilani G Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joanna Goykhberg
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Crowe
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
68
|
The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The environment pollution with hydrophobic hydrocarbons is a serious problem that requires development of efficient strategies that would lead to bioremediation of contaminated areas. One of the common methods used for enhancement of biodegradation of pollutants is the addition of biosurfactants. Several mechanisms have been postulated as responsible for hydrocarbons bioavailability enhancement with biosurfactants. They include solubilization and desorption of pollutants as well as modification of bacteria cell surface properties. The presented review contains a wide discussion of these mechanisms in the context of alteration of bioremediation efficiency with biosurfactants. It brings new light to such a complex and important issue.
Collapse
|
69
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
70
|
Shukla A, Trivedi SP. An in vitro analysis of the rat C6 glioma cells to elucidate the linear alkylbenzene sulfonate induced oxidative stress and consequent G2/M phase cell cycle arrest and cellular apoptosis. CHEMOSPHERE 2018; 205:443-451. [PMID: 29705635 DOI: 10.1016/j.chemosphere.2018.04.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Linear alkylbenzene Sulphonate (LAS) is the anionic surfactant component of globally consumed detergents. Exposure of sub-inhibitory fractions viz., 1/10th (T1), 1/5th (T2), and 1/2.5th (T3) of IC50 for 48 h, of LAS (5 μM, 10 μM, and 20 μM, respectively) to viable C6 glioma cells of rat, besides imparting morphological alterations leads to gross cytotoxicity. Expression of the damaged DNA coupled with cleaved PARP (p < 0.05; p < 0.01 and p < 0.001) were recorded for T1, T2 and T3, respectively. Subsequently, the cell cycle at G2/M check point was significantly arrested (p < 0.05 for T1 and T2; p < 0.01 for T3). The flow cytometric analysis reveals the initiation of apoptosis in C6 cells as is evident by a significant increase (p < 0.01 for T1, p < 0.001 for T2, and T3) in the intake of annexin-V, the calcium dependent apoptotic phospholipid binding protein. Moreover, significantly increased reactive oxygen species (ROS) (p < 0.05; p < 0.01 and p < 0.001) after 6 h of exposure for all the three sets, registered a declining trend (P < 0.001) when T3 cells were co-treated with N-acetyl cysteine (NAC). Furthermore, the significant attenuation (p < 0.01) of expression of the cleaved PARP and a consequent decrease (p < 0.05) in the cell cycle arrest at G2/M phase after scavenging ROS induced oxidative stress by treating C6 cells with NAC clearly evinces that LAS induced apoptosis is mediated by intracellular ROS. Thus, these findings provide a tangible basis for further investigations including in vivo studies, to unravel the molecular mechanism involved in ROS mediated and LAS induced cytotoxic manifestations.
Collapse
Affiliation(s)
- Anubha Shukla
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
71
|
Kunkel M, Schildknecht S, Boldt K, Zeyffert L, Schleheck D, Leist M, Polarz S. Increasing the Resistance of Living Cells against Oxidative Stress by Nonnatural Surfactants as Membrane Guards. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23638-23646. [PMID: 29949339 PMCID: PMC6091502 DOI: 10.1021/acsami.8b07032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The importation of construction principles or even constituents from biology into materials science is a prevailing concept. Vice versa, the cellular level modification of living systems with nonnatural components is much more difficult to achieve. It has been done for analytical purposes, for example, imaging, to learn something about intracellular processes. Cases describing the improvement of a biological function by the integration of a nonnatural (nano)constituent are extremely rare. Because biological membranes contain some kind of a surfactant, for example, phospholipids, our idea is to modify cells with a newly synthesized surfactant. However, this surfactant is intended to possess an additional functionality, which is the reduction of oxidative stress. We report the synthesis of a surfactant with Janus-type head group architecture, a fullerene C60 modified by five alkyl chains on one side and an average of 20 oxygen species on the other hemisphere. It is demonstrated that the amphiphilic properties of the fullerenol surfactant are similar to that of lipids. Not only quenching of reactive oxygen species (superoxide, hydroxyl radicals, peroxynitrite, and hydrogen peroxide) was successful, but also the fullerenol surfactant exceeds benchmark antioxidant agents such as quercetin. The surfactant was then brought into contact with different cell types, and the viability even of delicate cells such as human liver cells (HepG2) and human dopaminergic neurons (LUHMES) has proven to be extraordinarily high. We could show further that the cells take up the fullerenol surfactant, and as a consequence, they are protected much better against oxidative stress.
Collapse
|
72
|
Duša F, Chen W, Witos J, Wiedmer SK. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5889-5900. [PMID: 29715032 PMCID: PMC6150717 DOI: 10.1021/acs.langmuir.8b01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Nanoplasmonic sensing (NPS), based on localized surface plasmon resonance, with sensors composed of glass covered with golden nanodisks and overlaid with a SiO2 coating was applied in this study. Egg phosphatidylcholine (eggPC), being an easily accessible membrane-forming lipid, was used for preparation of biomimicking membranes. Small unilamellar vesicles with an approximate hydrodynamic diameter of 30 nm, formed by sonication in 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer, were adsorbed within 10 min on the sensor surface either as intact vesicles or as a planar bilayer. The adsorbed biomembrane systems were further utilized for interaction studies with four different well-known surfactants (negatively and positively charged, zwitterionic, and nonionic) and each surfactant was tested at concentrations below and above the critical micelle concentration (CMC). Our results allowed the evaluation of different NPS patterns for every particular supported membrane system, surfactant, and its concentration. The most significant effect on the membrane was achieved upon the introduction of zwitterionic surfactant micelles, which in fact completely solubilized and removed the lipid membranes from the sensor surface. Other surfactant micelles interacted with the membranes and formed mixed structures remaining on the sensor surface. The studies performed at the concentrations below the CMCs of the surfactants showed that different mixed systems were formed. Depending on the supported membrane system and the type of surfactant, the mixed systems indicated different formation kinetics. Additionally, the final water rinse revealed the stability of the formed systems. To investigate the effect of the studied surfactants on the overall surface charge of the biomembrane, capillary electrophoresis (CE) experiments were carried out in parallel with the NPS analysis. The electroosmotic flow mobility of an eggPC-coated fused silica capillary was used to measure the total surface charge of the biomembrane after its treatment with the surfactants. Our results indicated in general good correlation between CE and NPS data. However, some discrepancies were seen while applying either zwitterionic or positively charged surfactants. This confirmed that CE analysis was able to provide additional data about the investigated systems. Taken together, the combination of NPS and CE proved to be an efficient way to describe the nature of interactions between biomimicking membranes and amphiphilic molecules.
Collapse
Affiliation(s)
- Filip Duša
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Wen Chen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Joanna Witos
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Susanne K. Wiedmer
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
73
|
Annamalai RT, Naik T, Prout H, Putnam AJ, Stegemann JP. Biofabrication of injectable fibrin microtissues for minimally-invasive therapies: application of surfactants. ACTA ACUST UNITED AC 2018. [PMID: 29536947 DOI: 10.1088/1748-605x/aab66f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microtissues created from the protein fibrin and containing embedded cells can be used in modular tissue engineering approaches to create larger, hierarchical and complex tissue structures. In this paper we demonstrate an emulsification-based method for the production of such fibrin microtissues containing fibroblasts (FB) and endothelial cells (EC) and designed to promote tissue vascularization. Surfactants can be beneficial in the microtissue fabrication process to reduce aggregation and to facilitate recovery of microtissues from the emulsion, thereby increasing yield. The nonionic surfactants Pluronic L101® and Tween 20® both increased microtissue yield in a dose-dependent fashion. Cell viability of both human FB and human EC remained high after exposure to low surfactant concentrations but decreased with increasing surfactant concentration. L101 was markedly less cytotoxic than Tween, and therefore was the surfactant of choice in this application. The yield of cell-laden microtissues increased with increasing L101 concentration, though microtissues were slightly larger at low concentrations. The total metabolic activity of cells in retrieved microtissues was bimodal and was highest at an L101 concentration of 0.10% wt/vol. Network formation by EC in microtissues embedded in surrounding 3D fibrin hydrogels was also most extensive in microtissues made using an L101 concentration of 0.10% wt/vol. Minimally-invasive delivery of microtissue populations was demonstrated by injection through a standard 18 G needle, and the ability to form robust endothelial networks was maintained in injected microtissue populations. Taken together, these data demonstrate a facile emulsification-based method to create modular, cell-laden hydrogel microtissues that can be delivered by injection to promote tissue regeneration. Appropriate selection of the type and concentration of surfactant used in the process can be used to maximize viability and specialized function of the embedded cells. Such biomaterial-based microtissues may have broad applicability in cell-based therapies and tissue engineering.
Collapse
|
74
|
Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 2018; 9:1379. [PMID: 29643357 PMCID: PMC5895597 DOI: 10.1038/s41467-018-03847-z] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/14/2018] [Indexed: 01/08/2023] Open
Abstract
Secretion of extracellular vesicles (EVs), a process common to eukaryotes, archae, and bacteria, represents a secretory pathway that allows cell-free intercellular communication. Microbial EVs package diverse proteins and influence the host-pathogen interaction, but the mechanisms underlying EV production in Gram-positive bacteria are poorly understood. Here we show that EVs purified from community-associated methicillin-resistant Staphylococcus aureus package cytosolic, surface, and secreted proteins, including cytolysins. Staphylococcal alpha-type phenol-soluble modulins promote EV biogenesis by disrupting the cytoplasmic membrane; whereas, peptidoglycan cross-linking and autolysin activity modulate EV production by altering the permeability of the cell wall. We demonstrate that EVs purified from a S. aureus mutant that is genetically engineered to express detoxified cytolysins are immunogenic in mice, elicit cytolysin-neutralizing antibodies, and protect the animals in a lethal sepsis model. Our study reveals mechanisms underlying S. aureus EV production and highlights the usefulness of EVs as a S. aureus vaccine platform. Extracellular vesicles (EVs) influence host-pathogen interactions, but EV biogenesis in gram-positive bacteria remains elusive. Here authors characterize EVs from Staphylococcus aureus and show that phenol-soluble modulins and autolysins promote EV biogenesis by disrupting the membrane and cell wall.
Collapse
|
75
|
Niga P, Hansson-Mille PM, Swerin A, Claesson PM, Schoelkopf J, Gane PAC, Bergendal E, Tummino A, Campbell RA, Magnus Johnson C. Interactions between model cell membranes and the neuroactive drug propofol. J Colloid Interface Sci 2018; 526:230-243. [PMID: 29734090 DOI: 10.1016/j.jcis.2018.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Vibrational sum frequency spectroscopy (VSFS) complemented by surface pressure isotherm and neutron reflectometry (NR) experiments were employed to investigate the interactions between propofol, a small amphiphilic molecule that currently is the most common general anaesthetic drug, and phospholipid monolayers. A series of biologically relevant saturated phospholipids of varying chain length from C18 to C14 were spread on either pure water or propofol (2,6-bis(1-methylethyl)phenol) solution in a Langmuir trough, and the change in the molecular structure of the film, induced by the interaction with propofol, was studied with respect to the surface pressure. The results from the surface pressure isotherm experiments revealed that propofol, as long as it remains at the interface, enhances the fluidity of the phospholipid monolayer. The VSF spectra demonstrate that for each phospholipid the amount of propofol in the monolayer region decreases with increasing surface pressure. Such squeeze out is in contrast to the enhanced interactions that can be exhibited by more complex amphiphilic molecules such as peptides. At surface pressures of 22-25 mN m-1, which are relevant for biological cell membranes, most of the propofol has been expelled from the monolayer, especially in the case of the C16 and C18 phospholipids that adopt a liquid condensed phase packing of its alkyl tails. At lower surface pressures of 5 mN m-1, the effect of propofol on the structure of the alkyl tails is enhanced when the phospholipids are present in a liquid expanded phase. Specifically, for the C16 phospholipid, NR data reveal that propofol is located exclusively in the head group region, which is rationalized in the context of previous studies. The results imply a non-homogeneous distribution of propofol in the plane of real cell membranes, which is an inference that requires urgent testing and may help to explain why such low concentration of the drug are required to induce general anaesthesia.
Collapse
Affiliation(s)
- Petru Niga
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden.
| | - Petra M Hansson-Mille
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden
| | - Agne Swerin
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Per M Claesson
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | | | - Patrick A C Gane
- Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland; Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, FI-00076 Aalto, Helsinki, Finland
| | - Erik Bergendal
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Andrea Tummino
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France; Eötvös Loránd University, Budapest 112, P.O. Box 32, H-1518, Hungary
| | | | - C Magnus Johnson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
76
|
Patil MD, Dev MJ, Shinde AS, Bhilare KD, Patel G, Chisti Y, Banerjee UC. Surfactant-mediated permeabilization of Pseudomonas putida KT2440 and use of the immobilized permeabilized cells in biotransformation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Roy A, Pyne A, Pal P, Dhara S, Sarkar N. Effect of Vitamin E and a Long-Chain Alcohol n-Octanol on the Carbohydrate-Based Nonionic Amphiphile Sucrose Monolaurate-Formulation of Newly Developed Niosomes and Application in Cell Imaging. ACS OMEGA 2017; 2:7637-7646. [PMID: 30023559 PMCID: PMC6044762 DOI: 10.1021/acsomega.7b00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/26/2017] [Indexed: 06/08/2023]
Abstract
We have introduced new niosome formulations using sucrose monolaurate, vitamin E and n-octanol as independent additives. Detailed characterization techniques including turbidity, dynamic light scattering, transmission electron microscopy, ξ potential, and proton nuclear magnetic resonance measurements have been introduced to monitor the morphological transition of the carbohydrate-based micellar assembly into niosomal aggregates. Moreover, microheterogeneity of these niosomal aggregates has been investigated through different fluorescence spectroscopic techniques using a hydrophobic probe molecule coumarin 153 (C153). Further, it has been observed that vitamin E and octanol have an opposing effect on the rotational motion of C153 in the respective niosome assemblies. The time-resolved anisotropy studies suggest that incorporation of vitamin E and octanol into the surfactant aggregates results in slower and faster rotational motion of C153, respectively, compared to the micellar assemblies. Moreover, the ability to entrap a probe molecule by these niosomes is utilized to encapsulate and deliver the anticancer drug doxorubicin inside the mammalian cells which is monitored through fluorescence microscopic images. Interestingly, the niosome composed of vitamin E demonstrated better cytocompatibility toward primary chondrocyte cell lines compared to the octanol-forming niosome.
Collapse
Affiliation(s)
- Arpita Roy
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Arghajit Pyne
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Pallabi Pal
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Santanu Dhara
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Nilmoni Sarkar
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| |
Collapse
|
78
|
Yang SK, Yusoff K, Mai CW, Lim WM, Yap WS, Lim SHE, Lai KS. Additivity vs Synergism: Investigation of the Additive Interaction of Cinnamon Bark Oil and Meropenem in Combinatory Therapy. Molecules 2017; 22:1733. [PMID: 29113046 PMCID: PMC6150308 DOI: 10.3390/molecules22111733] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.
Collapse
Affiliation(s)
- Shun-Kai Yang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Wei-Meng Lim
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Wai-Sum Yap
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Swee-Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, MAEPS Building, Serdang, Selangor, Malaysia.
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates.
| | - Kok-Song Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
79
|
Zdarta A, Dudzińska-Bajorek B, Nowak A, Guzik U, Kaczorek E. Impact of potent bioremediation enhancing plant extracts on Raoultella ornithinolytica properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:274-282. [PMID: 28755644 DOI: 10.1016/j.ecoenv.2017.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Long-term contact of microorganisms with different compounds in the environment can cause significant changes in cell metabolism. Surfactants adsorption on cell surface or incorporation in the cell membrane, lead to their modification, which helps microorganisms adopt to the conditions of metabolic stress. The main objective of this study was to investigate the effects of three saponin-reach plant extracts from Hedera helix, Saponaria officinalis and Sapindus mucorossi on growth and adaptation of Raoultella ornithinolytica to high concentrations of these substances. For this purpose we investigated cell surface properties, membrane fatty acids and genetic changes of the microorganisms. The results revealed that prolonged exposure of the microorganisms to high concentrations of these surfactants can induce genetic changes of their genes. Moreover, the adaptation to contact with high concentrations of saponins was also associated with changes in composition of fatty acids responsible for the stabilisation of membrane structure and the increase in membrane permeability. The changes affected also the outer layer of cells. A significant increase (p < 0.05) in the cell surface hydrophobicity of tested strain was also observed. The cells after long-term contact with S. officinalis and S. mucorossi acquire properties that may be favourable in hydrophobic substances bioremediation.
Collapse
Affiliation(s)
- A Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | | | - A Nowak
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland
| | - U Guzik
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellonska 28, 40-032 Katowice, Poland
| | - E Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
80
|
Fan HY, Heerklotz H. Digitonin does not flip across cholesterol-poor membranes. J Colloid Interface Sci 2017; 504:283-293. [DOI: 10.1016/j.jcis.2017.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023]
|
81
|
Metola A, Bouchet AM, Alonso-Mariño M, Diercks T, Mäler L, Goñi FM, Viguera AR. Purification and characterization of the colicin A immunity protein in detergent micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2181-2192. [PMID: 28803731 DOI: 10.1016/j.bbamem.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
Abstract
The immunity proteins against pore-forming colicins represent a family of integral membrane proteins that reside in the inner membrane of producing cells. Cai, the colicin A immunity protein, was characterized here in detergent micelles by circular dichroism (CD), size exclusion chromatography, chemical cross-linking, nuclear magnetic resonance (NMR) spectroscopy, cysteine accessibility, and colicin A binding in detergent micelles. Bile-salt derivatives induced extensive protein polymerization that precluded further investigation. The physical characterization of detergent-solubilized protein indicates that phosphate-containing detergents are more efficient in extracting, solubilizing and maintaining Cai in a monomeric state. Yet, their capacity to ensure protein activity, reconstitution, helix packing, and high-quality NMR spectra was inferior to that of milder detergents. Solvent ionic strength and composition greatly modified the solubilizing capacity of milder detergents. Most importantly, binding to the colicin A pore-forming domain (pf-ColA) occurred almost exclusively in sugar-derived detergents. The relative performance of the different detergents in each experiment depends on their impact not only on Cai structure, solubility and oligomerization state, but also on other reaction components and technical aspects. Thus, proteoliposomes were best obtained from protein in LDAO micelles, possibly also due to indirect effects on the lipidic bilayer. The compatibility of a detergent with Cai/pf-ColA complex formation is influenced by its effect on the conformational landscape of each protein, where detergent-mediated pf-ColA denaturation could also lead to negative results. The NMR spectra were greatly affected by the solubility, monodispersity, fold and dynamics of the protein-detergent complexes, and none of those tested here provided NMR spectra of sufficient quality to allow for peak assignment. Cai function could be proven in alkyl glycosides and not in those detergents that afforded the best solubility, reconstitution efficiency or spectral quality indicating that these criteria cannot be taken as unambiguous proof of nativeness without the support of direct activity measurements.
Collapse
Affiliation(s)
- Ane Metola
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Ana M Bouchet
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Marian Alonso-Mariño
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Tammo Diercks
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Ed. 800, 48160 Derio, Spain
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa. Spain
| | - Ana R Viguera
- Instituto Biofisika (CSIC, UPV/EHU), Parque Científico de la UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| |
Collapse
|
82
|
Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9831534. [PMID: 28540307 PMCID: PMC5429943 DOI: 10.1155/2017/9831534] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
As the gap between donors and patients in need of an organ transplant continues to widen, research in regenerative medicine seeks to provide alternative strategies for treatment. One of the most promising techniques for tissue and organ regeneration is decellularization, in which the extracellular matrix (ECM) is isolated from its native cells and genetic material in order to produce a natural scaffold. The ECM, which ideally retains its inherent structural, biochemical, and biomechanical cues, can then be recellularized to produce a functional tissue or organ. While decellularization can be accomplished using chemical and enzymatic, physical, or combinative methods, each strategy has both benefits and drawbacks. The focus of this review is to compare the advantages and disadvantages of these methods in terms of their ability to retain desired ECM characteristics for particular tissues and organs. Additionally, a few applications of constructs engineered using decellularized cell sheets, tissues, and whole organs are discussed.
Collapse
|
83
|
Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proc Natl Acad Sci U S A 2017; 114:3109-3114. [PMID: 28265069 DOI: 10.1073/pnas.1611717114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10-100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions.
Collapse
|
84
|
Pizzirusso A, De Nicola A, Sevink GJA, Correa A, Cascella M, Kawakatsu T, Rocco M, Zhao Y, Celino M, Milano G. Biomembrane solubilization mechanism by Triton X-100: a computational study of the three stage model. Phys Chem Chem Phys 2017; 19:29780-29794. [DOI: 10.1039/c7cp03871b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solubilization mechanism of lipid membranes in the presence of Triton X-100 (TX-100) is investigated at molecular resolution using hybrid particle field–self consistence field simulations.
Collapse
Affiliation(s)
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| | - G. J. Agur Sevink
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Andrea Correa
- Department of Chemical Science
- Federico II University of Naples
- 80126 Napoli
- Italy
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences
- University of Oslo
- 0371 Oslo
- Norway
| | | | - Mattia Rocco
- Biopolimeri e Proteomica
- Ospedale Policlinico San Martino
- Genova
- Italy
| | - Ying Zhao
- Institute of Nano-Photonics
- School of Physics and Materials Engineering
- Dalian Minzu University
- Dalian 116600
- China
| | | | - Giuseppe Milano
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| |
Collapse
|
85
|
Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, Arai S, Wada I, Sugiura T, Yamashita A. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem 2016; 292:1122-1141. [PMID: 27927984 DOI: 10.1074/jbc.m116.746602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase (SMS) is the key enzyme for cross-talk between bioactive sphingolipids and glycerolipids. In mammals, SMS consists of two isoforms: SMS1 is localized in the Golgi apparatus, whereas SMS2 is localized in both the Golgi and plasma membranes. SMS2 seems to exert cellular functions through protein-protein interactions; however, the existence and functions of quaternary structures of SMS1 and SMS2 remain unclear. Here we demonstrate that both SMS1 and SMS2 form homodimers. The SMSs have six membrane-spanning domains, and the N and C termini of both proteins face the cytosolic side of the Golgi apparatus. Chemical cross-linking and bimolecular fluorescence complementation revealed that the N- and/or C-terminal tails of the SMSs were in close proximity to those of the other SMS in the homodimer. Homodimer formation was significantly decreased by C-terminal truncations, SMS1-ΔC22 and SMS2-ΔC30, indicating that the C-terminal tails of the SMSs are primarily responsible for homodimer formation. Moreover, immunoprecipitation using deletion mutants revealed that the C-terminal tail of SMS2 mainly interacted with the C-terminal tail of its homodimer partner, whereas the C-terminal tail of SMS1 mainly interacted with a site other than the C-terminal tail of its homodimer partner. Interestingly, homodimer formation occurred in the endoplasmic reticulum (ER) membrane before trafficking to the Golgi apparatus. Reduced homodimerization caused by C-terminal truncations of SMSs significantly reduced ER-to-Golgi transport. Our findings suggest that the C-terminal tails of SMSs are involved in homodimer formation, which is required for efficient transport from the ER.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yoko Nemoto-Sasaki
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Naoki Matsumoto
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Takashi Tanikawa
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Saori Oka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yusuke Tanaka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Seisuke Arai
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Takayuki Sugiura
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Atsushi Yamashita
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| |
Collapse
|
86
|
Batchu KC, Hänninen S, Jha SK, Jeltsch M, Somerharju P. Factors regulating the substrate specificity of cytosolic phospholipase A 2 -alpha in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1597-1604. [DOI: 10.1016/j.bbalip.2016.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
|
87
|
Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2965-2971. [PMID: 27620333 DOI: 10.1016/j.bbamem.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/26/2022]
Abstract
Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin.
Collapse
|
88
|
Nonionic Microemulsions as Solubilizers of Hydrophobic Drugs: Solubilization of Paclitaxel. MATERIALS 2016; 9:ma9090761. [PMID: 28773882 PMCID: PMC5457098 DOI: 10.3390/ma9090761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023]
Abstract
The strategy using nonionic microemulsion as a solubilizer for hydrophobic drugs was studied and is demonstrated in this work. The aqueous phase behaviors of mixed nonionic surfactants with various oils at 37 °C are firstly constructed to give the optimal formulations of nonionic microemulsions with applications in the enhanced solubilization of the model hydrophobic drug, paclitaxel, at 37 °C. Briefly, the suitable oil phase with paclitaxel significantly dissolved is microemulsified with appropriate surfactants. Surfactants utilized include Tween 80, Cremophor EL, and polyethylene glycol (4.3) cocoyl ether, while various kinds of edible oils and fatty esters are used as the oil phase. On average, the apparent solubility of paclitaxel is increased to ca. 70-100 ppm in the prepared microemulsions at 37 °C using tributyrin or ethyl caproate as the oil phases. The sizes of the microemulsions attained are mostly from ca. 60 nm to ca. 200 nm. The cytotoxicity of the microemulsion formulations is assessed with the cellular viability of 3T3 cells. In general, the cell viability is above 55% after 24 h of cultivation in media containing these microemulsion formulations diluted to a concentration of total surfactants equal to 50 ppm and 200 ppm.
Collapse
|
89
|
Liu S, Guo C, Liang X, Wu F, Dang Z. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:210-218. [PMID: 27045921 DOI: 10.1016/j.ecoenv.2016.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Surfactant-mediated bioremediation has been widely applied in decontaminating PAH-polluted sites. However, the impacts of surfactants on the biodegradation of PAHs have been controversial in the past years. To gain a clear insight into the influencing mechanisms, three nonionic surfactants (Tween80, TritonX-100 and Brij30) were selected to systematically investigate their effects on cell surface properties (membrane permeability, functional groups and elements), cell vitality as well as subsequent phenanthrene degradation ability of Sphingomonas sp. GY2B. Results showed that biodegradation of phenanthrene was stimulated by Tween80, slightly inhibited by TritonX-100 and severely inhibited by Brij30, respectively. Positive effect of Tween80 may arise from its role as the additional carbon source for GY2B to increase bacterial growth and activity, as demonstrated by the increasing viable cells in Tween80 amended degradation systems determined by flow cytometry. Although TritonX-100 could inhibit bacterial growth and disrupt cell membrane, its adverse impacts on microbial cells were weaker than Brij30, which may result in its weaker inhibitive extent. Results from this study can provide a rational basis on selecting surfactants for enhancing bioremediation of PAHs.
Collapse
Affiliation(s)
- Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fengji Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
90
|
Niroomand H, Venkatesan GA, Sarles SA, Mukherjee D, Khomami B. Lipid-Detergent Phase Transitions During Detergent-Mediated Liposome Solubilization. J Membr Biol 2016; 249:523-38. [DOI: 10.1007/s00232-016-9894-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/24/2016] [Indexed: 11/24/2022]
|
91
|
Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Molecules 2016; 21:305. [PMID: 26950108 PMCID: PMC6273827 DOI: 10.3390/molecules21030305] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023] Open
Abstract
Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.
Collapse
|
92
|
Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C. Hemolysis by surfactants--A review. Adv Colloid Interface Sci 2016; 228:1-16. [PMID: 26687805 DOI: 10.1016/j.cis.2015.10.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023]
Abstract
An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.
Collapse
Affiliation(s)
- Magalie Manaargadoo-Catin
- Horiba Medical, Parc Euromédecine, Rue du caducée BP 7290, 31484 Montpellier Cedex 4, France; Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, 15 avenue Charles Flahault, 34093 Montpellier Cedex, France
| | - Anaïs Ali-Cherif
- Horiba Medical, Parc Euromédecine, Rue du caducée BP 7290, 31484 Montpellier Cedex 4, France
| | - Jean-Luc Pougnas
- Horiba Medical, Parc Euromédecine, Rue du caducée BP 7290, 31484 Montpellier Cedex 4, France
| | - Catherine Perrin
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, 15 avenue Charles Flahault, 34093 Montpellier Cedex, France.
| |
Collapse
|
93
|
Sychev SV, Sukhanov SV, Telezhinskaya IN, Ovchinnikova TV. Effective lipid-detergent system for study of membrane active peptides in fluid liposomes. J Pept Sci 2016; 22:98-105. [PMID: 26751806 DOI: 10.1002/psc.2845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 11/12/2022]
Abstract
The structure of peptide antibiotic gramicidin A (gA) was studied in phosphatidylcholin liposomes modified by nonionic detergent Triton X-100. First, the detergent : lipid ratio at which the saturation of lipid membrane by Triton X-100 occurs (Re (sat)), was determined by light scattering. Measurements of steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at sublytic concentrations of detergent showed that after saturation of the membrane by Triton X-100 microviscosity of lipid bilayer is reduced by 20%. The equilibrium conformational state of gA in phosphatidylcholine liposomes at Re (sat) was studied by CD spectroscopy. It was found that the conformational state of this channel-forming peptide changed crucially when Triton X-100 induced transition to more fluid membranes. The gA single-channel measurements were made with Triton X-100 containing bilayers. Tentative assignment of the channel type and gA structures was made by correlation of CD data with conductance histograms. Lipid-detergent system with variable viscosity developed in this work can be used to study the structure and folding of other membrane-active peptides.
Collapse
Affiliation(s)
- Sergei V Sychev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| | - Stanislav V Sukhanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| | - Irina N Telezhinskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| |
Collapse
|
94
|
Houston JE, Kraft M, Scherf U, Evans RC. Sequential detection of multiple phase transitions in model biological membranes using a red-emitting conjugated polyelectrolyte. Phys Chem Chem Phys 2016; 18:12423-7. [DOI: 10.1039/c6cp01553k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge-mediated assembly of an anionic poly(thiophene) leads to a highly sensitive probe of membrane order.
Collapse
Affiliation(s)
- Judith E. Houston
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Mario Kraft
- Macromolecular Chemistry Group (buwmacro) and Institute for Polymer Technology
- Bergische Universität Wuppertal
- Wuppertal
- Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group (buwmacro) and Institute for Polymer Technology
- Bergische Universität Wuppertal
- Wuppertal
- Germany
| | - Rachel C. Evans
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
95
|
Vargas C, Arenas RC, Frotscher E, Keller S. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. NANOSCALE 2015; 7:20685-96. [PMID: 26599076 DOI: 10.1039/c5nr06353a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.
Collapse
Affiliation(s)
- Carolyn Vargas
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
96
|
Greatrex BW, Daines AM, Hook S, Lenz DH, McBurney W, Rades T, Rendle PM. Synthesis, Formulation, and Adjuvanticity of Monodesmosidic Saponins with Olenanolic Acid, Hederagenin and Gypsogenin Aglycones, and some C-28 Ester Derivatives. ChemistryOpen 2015; 4:740-55. [PMID: 27308200 PMCID: PMC4906508 DOI: 10.1002/open.201500149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di- and trisaccharide donors to generate a range of mimics of natural product QS-21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3-O-(Manp(1→3)Glcp)hederagenin was found to produce numerous ring-like micelles when formulated, while C-28 choline ester derivatives preferred self-assembly and did not interact with the liposomes. When alone and in the presence of cholesterol and phospholipid, the choline ester derivatives produced nanocrystalline rods or helical micelles. The effects of modifying sugar stereochemistry and the aglycone on the immunostimulatory effects of the saponins was then evaluated using the activation markers MHC class II and CD86 in murine bone marrow dendritic cells. The most active saponin, 3-O-(Manp(1→3)Glcp)hederagenin, was stimulatory at high concentrations in cell culture, but this did not translate to strong responses in vivo.
Collapse
Affiliation(s)
- Ben W. Greatrex
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
- School of Science & TechnologyUniversity of New EnglandArmidaleNSW2351Australia
| | - Alison M. Daines
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | - Sarah Hook
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Dirk H. Lenz
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | | | - Thomas Rades
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Phillip M. Rendle
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| |
Collapse
|
97
|
Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol. Molecules 2015; 20:20146-60. [PMID: 26569199 PMCID: PMC6332127 DOI: 10.3390/molecules201119682] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
In the present investigation we studied the molecular mechanisms of the monodesmosidic saponin digitonin on natural and artificial membranes. We measured the hemolytic activity of digitonin on red blood cells (RBCs). Also different lipid membrane models (large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs) in the presence and absence of cholesterol were employed. The stability and permeability of the different vesicle systems were studied by using calcein release assay, GUVs membrane permeability assay using confocal microscopy (CM) and fluorescence correlation spectroscopy (FCS) and vesicle size measurement by dynamic light scattering (DLS). The results support the essential role of cholesterol in explaining how digitonin can disintegrate biological and artificial membranes. Digitonin induces membrane permeability or causes membrane rupturing only in the presence of cholesterol in an all-or-none mechanism. This effect depends on the concentrations of both digitonin and cholesterol. At low concentrations, digitonin induces membrane permeability while keeping the membrane intact. When digitonin is combined with other drugs, a synergistic potentiation can be observed because it facilitates their uptake.
Collapse
|
98
|
Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Yoon BK, Jackman JA, Kim MC, Cho NJ. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10223-32. [PMID: 26325618 DOI: 10.1021/acs.langmuir.5b02088] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Medium-chain saturated fatty acids and related compounds (e.g., monoglycerides) represent one class of membrane-active surfactants with antimicrobial properties. Most related studies have been in vitro evaluations of bacterial growth inhibition, and there is limited knowledge about how the compounds in this class destabilize lipid bilayers, which are the purported target within the bacterial cell membrane. Herein, the interaction between three representative compounds in this class and a supported lipid bilayer platform was investigated using quartz crystal microbalance-dissipation and fluorescence microscopy in order to examine membrane destabilization. The three tested compounds were lauric acid, sodium dodecyl sulfate, and glycerol monolaurate. For each compound, we discovered striking differences in the resulting morphological changes of supported lipid bilayers. The experimental trends indicate that the compounds have membrane-disruptive behavior against supported lipid bilayers principally above the respective critical micelle concentration values. The growth inhibition properties of the compounds against standard and methicillin-resistant Staphylococcus aureus bacterial strains were also tested. Taken together, the findings in this work improve our knowledge about how saturated fatty acids and related compounds destabilize lipid bilayers, offering insight into the corresponding molecular mechanisms that lead to membrane morphological responses.
Collapse
Affiliation(s)
| | | | | | - Nam-Joon Cho
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
100
|
Rached F, Lhomme M, Camont L, Gomes F, Dauteuille C, Robillard P, Santos RD, Lesnik P, Serrano CV, Chapman MJ, Kontush A. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1254-61. [PMID: 26037829 DOI: 10.1016/j.bbalip.2015.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Low plasma levels of high-density lipoprotein-cholesterol (HDL-C) are typical of acute myocardial infarction (MI) and predict risk of recurrent cardiovascular events. The potential relationships between modifications in the molecular composition and the functionality of HDL subpopulations in acute MI however remain indeterminate. METHODS AND RESULTS ST segment elevation MI (STEMI) patients were recruited within 24h after diagnosis (n=16) and featured low HDL-C (-31%, p<0.05) and acute-phase inflammation (determined as marked elevations in C-reactive protein, serum amyloid A (SAA) and interleukin-6) as compared to age- and sex-matched controls (n=10). STEMI plasma HDL and its subpopulations (HDL2b, 2a, 3a, 3b, 3c) displayed attenuated cholesterol efflux capacity from THP-1 cells (up to -32%, p<0.01, on a unit phospholipid mass basis) vs. CONTROLS Plasma HDL and small, dense HDL3b and 3c subpopulations from STEMI patients exhibited reduced anti-oxidative activity (up to -68%, p<0.05, on a unit HDL mass basis). HDL subpopulations in STEMI were enriched in two proinflammatory bioactive lipids, lysophosphatidylcholine (up to 3.0-fold, p<0.05) and phosphatidic acid (up to 8.4-fold, p<0.05), depleted in apolipoprotein A-I (up to -23%, p<0.05) and enriched in SAA (up to +10.2-fold, p<0.05); such changes were most marked in the HDL3b subfraction. In vitro HDL enrichment in both lysophosphatidylcholine and phosphatidic acid exerted deleterious effects on HDL functionality. CONCLUSIONS In the early phase of STEMI, HDL particle subpopulations display marked, concomitant alterations in both lipidome and proteome which are implicated in impaired HDL functionality. Such modifications may act synergistically to confer novel deleterious biological activities to STEMI HDL. SIGNIFICANCE Our present data highlight complex changes in the molecular composition and functionality of HDL particle subpopulations in the acute phase of STEMI, and for the first time, reveal that concomitant modifications in both the lipidome and proteome contribute to functional deficiencies in cholesterol efflux and antioxidative activities of HDL particles. These findings may provide new biomarkers and new insights in therapeutic strategy to reduce cardiovascular risk in this clinical setting where such net deficiency in HDL function, multiplied by low circulating HDL concentrations, can be expected to contribute to accelerated atherogenesis.
Collapse
Affiliation(s)
- Fabiana Rached
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France; Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Marie Lhomme
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Laurent Camont
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Fernando Gomes
- Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Carolane Dauteuille
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Paul Robillard
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Raul D Santos
- Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Philippe Lesnik
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Carlos V Serrano
- Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - M John Chapman
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Anatol Kontush
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France.
| |
Collapse
|