51
|
A selective peroxisome proliferator-activated receptor-γ agonist benefited propionic acid induced autism-like behavioral phenotypes in rats by attenuation of neuroinflammation and oxidative stress. Chem Biol Interact 2019; 311:108758. [DOI: 10.1016/j.cbi.2019.108758] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
|
52
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
53
|
Kinjo T, Ito M, Seki T, Fukuhara T, Bolati K, Arai H, Suzuki T. Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res 2019; 1723:146403. [PMID: 31446017 DOI: 10.1016/j.brainres.2019.146403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
In pregnant women with epilepsy, it is imperative to balance the safety of the mother and the potential teratogenicity of anticonvulsants, which could cause impairments such as intellectual disability and cleft lip. In this study, we examined behavioral and hippocampal neurogenesis alterations in male offspring of rats exposed to valproic acid (VPA) during pregnancy. Pregnant Wistar rats received daily intraperitoneal injections of VPA (100 mg/kg/day or 200 mg/kg/day) from embryonic day 12.5 until birth. At postnatal day 29, animals received an injection of bromodeoxyuridine (BrdU). At postnatal day 30, animals underwent the open field (OF), elevated plus-maze, and Y-maze tests. After behavioral testing, animals were decapitated, and their brains were dissected for immunohistochemistry. Of the offspring of the VPA200 mothers, 66.6% showed a malformation. In the OF test, these animals showed locomotor hyperactivity. In the elevated plus-maze, offspring of VPA-treated mothers spent significantly more time in the open arms, irrespective of the treatment dose. The number of BrdU-positive cells in the dentate gyrus of the offspring of VPA-treated mothers increased significantly in a dose-dependent manner compared with the control. A significant positive correlation between spontaneous locomotor activity in the OF and BrdU-positive cell counts was observed across groups. In conclusion, VPA administration during pregnancy results in malformations and attention-deficit/hyperactivity disorder-like behavioral abnormalities in the offspring. An increase in cell proliferation in the hippocampus may underlie the behavioral changes observed. Repeated use of high doses of VPA during pregnancy may increase the risk of neurodevelopmental abnormalities dose dependently and should be carefully considered.
Collapse
Affiliation(s)
- Tomoya Kinjo
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Masanobu Ito
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 1608421, Japan.
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Kuerban Bolati
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Heii Arai
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Toshihito Suzuki
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| |
Collapse
|
54
|
Li Z, Jagadapillai R, Gozal E, Barnes G. Deletion of Semaphorin 3F in Interneurons Is Associated with Decreased GABAergic Neurons, Autism-like Behavior, and Increased Oxidative Stress Cascades. Mol Neurobiol 2019; 56:5520-5538. [PMID: 30635860 PMCID: PMC6614133 DOI: 10.1007/s12035-018-1450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Autism and epilepsy are diseases which have complex genetic inheritance. Genome-wide association and other genetic studies have implicated at least 500+ genes associated with the occurrence of autism spectrum disorders (ASD) including the human semaphorin 3F (Sema 3F) and neuropilin 2 (NRP2) genes. However, the genetic basis of the comorbid occurrence of autism and epilepsy is unknown. The aberrant development of GABAergic circuitry is a possible risk factor in autism and epilepsy. Molecular biological approaches were used to test the hypothesis that cell-specific genetic variation in mouse homologs affects the formation and function of GABAergic circuitry. The empirical analysis with mice homozygous null for one of these genes, Sema 3F, in GABAergic neurons substantiated these predictions. Notably, deletion of Sema 3F in interneurons but not excitatory neurons during early development decreased the number of interneurons/neurites and mRNAs for cell-specific GABAergic markers and increased epileptogenesis and autistic behaviors. Studies of interneuron cell-specific knockout of Sema 3F signaling suggest that deficient Sema 3F signaling may lead to neuroinflammation and oxidative stress. Further studies of mouse KO models of ASD genes such as Sema 3F or NRP2 may be informative to clinical phenotypes contributing to the pathogenesis in autism and epilepsy patients.
Collapse
Affiliation(s)
- Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, University of Louisville Autism Center, 1405 East Burnett Ave, Louisville, KY, 40217, USA.
| |
Collapse
|
55
|
Mirza R, Sharma B. Beneficial effects of pioglitazone, a selective peroxisome proliferator-activated receptor-γ agonist in prenatal valproic acid-induced behavioral and biochemical autistic like features in Wistar rats. Int J Dev Neurosci 2019; 76:6-16. [PMID: 31128204 DOI: 10.1016/j.ijdevneu.2019.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/23/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in children. It is diagnosis by two main behavioral phenotypes i.e. social-communication impairments and repetitive behavior. ASD is complex disorder with unsolved etiology due to multiple genes involvement, epigenetic mechanism and environmental factors. Valproic acid (VPA), a teratogen is known to induce characteristic features related to ASD in rodents. Numerous studies suggest the potential therapeutic effects of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in different brain disorders. This research evaluates the utility of selective agonist of PPAR-γ, pioglitazone in prenatal VPA induced experimental ASD symptomatology in Wistar rats. The prenatal administration of VPA has induced social impairment, repetitive behavior, hyperlocomotion, anxiety and low exploratory activity in rats. Also, prenatal VPA-treated rats have shown higher levels of oxidative stress (increased in thiobarbituric acid reactive species, and decreased in reduced glutathione level) and inflammation (increased in interleukin-6, tumor necrosis factor-alpha and decreased in interleukin-10) in the cerebellum, brainstem and prefrontal cortex. Treatment with pioglitazone significantly attenuated the prenatal VPA-induced social impairment, repetitive behavior, hyperactivity, anxiety and low exploratory activity. Furthermore, pioglitazone also reduced the prenatal VPA-induced oxidative stress and neuroinflammation in aforementioned brain regions. Hence, it may be concluded that pioglitazone may provide neurobehavioral and biochemical benefits in prenatal VPA-induced autistic phenotypes in rats.
Collapse
Affiliation(s)
- Roohi Mirza
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, India.,CNS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
56
|
Ornoy A, Weinstein-Fudim L, Ergaz Z. Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? Int J Mol Sci 2019; 20:ijms20051074. [PMID: 30832249 PMCID: PMC6429371 DOI: 10.3390/ijms20051074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Since the first animal model of valproic acid (VPA) induced autistic-like behavior, many genetic and non-genetic experimental animal models for Autism Spectrum Disorder (ASD) have been described. The more common non-genetic animal models induce ASD in rats and mice by infection/inflammation or the prenatal or early postnatal administration of VPA. Through the establishment of these models, attempts have been made to ameliorate or even prevent ASD-like symptoms. Some of the genetic models have been successfully treated by genetic manipulations or the manipulation of neurotransmission. Different antioxidants have been used (i.e., astaxanthin, green tea, piperine) to reduce brain oxidative stress in VPA-induced ASD models. Agents affecting brain neurotransmitters (donepezil, agmatine, agomelatine, memantine, oxytocin) also successfully reduced ASD-like symptoms. However, complete prevention of the development of symptoms was achieved only rarely. In our recent study, we treated mouse offspring exposed on postnatal day four to VPA with S-adenosine methionine (SAM) for three days, and prevented ASD-like behavior, brain oxidative stress, and the changes in gene expression induced by VPA. In this review, we describe, in addition to our data, the existing literature on the prevention/amelioration of ASD-like symptoms. We also discuss the possible mechanisms underlying some of these phenomena. Finally, we describe some of the clinical trials in children with ASD that were carried out as a result of data from animal studies, especially those with polyunsaturated fatty acids (PUFAs).
Collapse
Affiliation(s)
- Asher Ornoy
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel.
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel.
| | - Zivanit Ergaz
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel.
- Neonatology Department, Hadassah Hebrew University Medical Center, Jerusalem 9112001, Israel.
| |
Collapse
|
57
|
Mirza R, Sharma B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull 2019; 147:36-46. [PMID: 30769127 DOI: 10.1016/j.brainresbull.2019.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with two major behavioral symptoms i.e. repetitive behavior and social-communication impairment. The unknown etiology of ASD is responsible for the difficulty in identifying the possible therapeutic modulators for ASD. Valproic acid (VPA) is an anticonvulsant drug in both human and rodents with teratogenic effects during pregnancy. Therefore, prenatal exposure of VPA induced autism spectrum disorder like phenotypes in both human and rodents. Peroxisome proliferator-activated receptor-alpha (PPAR-α) is widely localized in the brain. This research investigates the utility of fenofibrate, a selective agonist of PPAR-α in prenatal VPA-induced experimental ASD in Wistar rats. The prenatal VPA has induced social impairment (three chambers social behavior apparatus), repetitive behavior (Y-maze), hyperlocomotion (actophotometer), anxiety (elevated plus maze) and low exploratory activity (hole board test). Also, prenatal VPA treated rats have shown higher levels of oxidative stress (increased in thiobarbituric acid reactive species and decreased in reduced glutathione level) and inflammation (increased in interleukin-6, tumor necrosis factor-α and decreased in interleukin-10) in the cerebellum, brainstem and prefrontal cortex. Treatment with fenofibrate significantly attenuated prenatal VPA-induced social impairment, repetitive behavior, hyperactivity, anxiety, and low exploratory activity. Furthermore, fenofibrate also decreased the prenatal VPA-induced oxidative stress and inflammation in brain regions. Hence, it may be concluded that fenofibrate may provide neurobehavioral and biochemical benefits in prenatal VPA-induced autism phenotypes in rats.
Collapse
Affiliation(s)
- Roohi Mirza
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Delhi, India.
| |
Collapse
|
58
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
59
|
Mirza R, Sharma B. Selective modulator of peroxisome proliferator-activated receptor-α protects propionic acid induced autism-like phenotypes in rats. Life Sci 2018; 214:106-117. [PMID: 30366038 DOI: 10.1016/j.lfs.2018.10.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/15/2023]
Abstract
AIMS The present study investigated the neuropharmacological role of PPAR-α modulator, fenofibrate in postnatal-propionic acid induced symptomatology related with autism spectrum disorders (ASD) in Wistar rats. MAIN METHODS The propionic acid (250 mg/kg, p.o.) was administered to rats from postnatal 21st day to 23rd day to induce autism-related neurobehavioral and neurobiochemical alterations in rats. Then, rats were treated with fenofibrate (100 mg/kg and 200 mg/kg, orally) from postnatal 24th day till 48th day. The social behavior (three chambers social testing apparatus), repetitive behavior (Y-maze), locomotor activity (actophotometer), anxiety (elevated plus maze) and exploratory behavior (hole board test) were assessed. Biochemically, oxidative stress (thiobarbituric acid reactive species and reduced glutathione level) and neuroinflammation (interleukin-6, tumor necrosis factor-α and interleukin-10) were evaluated in the cerebellum, brainstem and prefrontal cortex of rats. KEY FINDINGS Propionic acid-treated rats showed social impairment, repetitive behavior, hyperlocomotion, anxiety and low exploratory activity. Also, these animals showed higher levels of oxidative stress (increased in thiobarbituric acid reactive species and decreased in reduced glutathione level) as well as inflammation (increased in interleukin-6, tumor necrosis factor-α and decreased in interleukin-10) and inflammation in aforementioned brain-regions. Treatment with fenofibrate significantly attenuated the propionic acid induced-social impairment, repetitive behavior, hyperactivity, anxiety and low exploratory activity. Furthermore, fenofibrate also reduced the oxidative stress and neuroinflammation in propionic acid-treated rats. SIGNIFICANCE A selective PPAR-α agonist, fenofibrate provides neurobehavioral and neurobiochemical benefits in postnatal-propionic acid induced autism-related phenotype in rats. Thus, fenofibrate may further be studied for its possible benefits in ASD symptoms.
Collapse
Affiliation(s)
- Roohi Mirza
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Delhi, India.
| |
Collapse
|
60
|
Ornoy A, Koren G, Yanai J. Is post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reprod Toxicol 2018; 80:92-104. [DOI: 10.1016/j.reprotox.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
61
|
Bhandari R, Paliwal JK, Kuhad A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
62
|
Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett 2018; 726:133664. [PMID: 29966749 DOI: 10.1016/j.neulet.2018.06.033] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic interface between the peripheral blood supply and the cerebral parenchyma, controlling the transport of material to and from the brain. Tight junctions between the endothelial cells of the cerebral microvasculature limit the passage of large, negatively charged molecules via paracellular diffusion whereas transcellular transportation across the endothelial cell is controlled by a number of mechanisms including transporter proteins, endocytosis, and diffusion. Here, we review the evidence that perturbation of these processes may underlie the development of psychiatric disorders including schizophrenia, autism spectrum disorder (ASD), and affective disorders. Increased permeability of the BBB appears to be a common factor in these disorders, leading to increased infiltration of peripheral material into the brain culminating in neuroinflammation and oxidative stress. However, although there is no common mechanism underpinning BBB dysfunction even within each particular disorder, the tight junction protein claudin-5 may be a clinically relevant target given that both clinical and pre-clinical research has linked it to schizophrenia, ASD, and depression. Additionally, we discuss the clinical significance of the BBB in diagnosis (genetic markers, dynamic contrast-enhanced-magnetic resonance imaging, and blood biomarkers) and in treatment (drug delivery).
Collapse
|
63
|
Cuevas-Olguin R, Roychowdhury S, Banerjee A, Garcia-Oscos F, Esquivel-Rendon E, Bringas ME, Kilgard MP, Flores G, Atzori M. Cerebrolysin prevents deficits in social behavior, repetitive conduct, and synaptic inhibition in a rat model of autism. J Neurosci Res 2017; 95:2456-2468. [PMID: 28609577 DOI: 10.1002/jnr.24072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a syndrome of diverse neuropsychiatric diseases of growing incidence characterized by repetitive conduct and impaired social behavior and communication for which effective pharmacological treatment is still unavailable. While the mechanisms and etiology of ASD are still unknown, a consensus is emerging about the synaptic nature of the syndrome, suggesting a possible avenue for pharmacological treatment with synaptogenic compounds. The peptidic mixture cerebrolysin (CBL) has been successfully used during the last three decades in the treatment of stroke and neurodegenerative disease. Animal experiments indicate that at least one possible mechanism of action of CBL is through neuroprotection and/or synaptogenesis. In the present study, we tested the effect of CBL treatment (daily injection of 2.5 mL/Kg i.p. during 15 days) on a rat model of ASD. This was based on the offspring (43 male and 51 female pups) of a pregnant female rat injected with valproic acid (VPA, 600 mg/Kg) at the embryonic day 12.5, which previous work has shown to display extensive behavioral, as well as synaptic impairment. Comparison between saline vs. CBL-injected VPA animals shows that CBL treatment improves behavioral as well as synaptic impairments, measured by behavioral performance (social interaction, Y-maze, plus-maze), maximal response of inhibitory γ-amino butyric acid type A receptor (GABAA R)-mediated synaptic currents, as well as their kinetic properties and adrenergic and muscarinic modulation. We speculate that CBL might be a viable and effective candidate for pharmacological treatment or co-treatment of ASD patients. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roberto Cuevas-Olguin
- Facultad de Ciencias, Programa de Biología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78290, México
| | - Swagata Roychowdhury
- National Institute of Children and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Anwesha Banerjee
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
- Emory School of Medicine, Department of Cell Biology, Emory University, 615 Michael St. WBRB #415, Atlanta, GA 30322, USA
| | | | - Eric Esquivel-Rendon
- Facultad de Ciencias, Programa de Biología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78290, México
| | - María Elena Bringas
- Benemerita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla Pue., 72000, México
| | - Michael P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gonzalo Flores
- Benemerita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla Pue., 72000, México
| | - Marco Atzori
- Facultad de Ciencias, Programa de Biología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78290, México
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
64
|
Chadman KK. Animal models for autism in 2017 and the consequential implications to drug discovery. Expert Opin Drug Discov 2017; 12:1187-1194. [PMID: 28971687 DOI: 10.1080/17460441.2017.1383982] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is characterized by deficits in social communication and restricted interests/repetitive behaviors, for which there are currently no approved drug treatments. The core symptoms of ASD vary widely in severity and are often accompanied by other neuropsychiatric disorders. Drug discovery has been challenging because of the lack of understanding of the underlying pathophysiology of ASD as well as the heterogeneity of symptoms and symptom severity. Areas covered: In this review, the author discusses animal models of ASD used as targets for drug discovery, focusing primarily on non-syndromic models, primarily rodents. They highlight the wide range of drug targets examined in animal models. While very little of this work has resulted in drug therapy for the behavioral symptoms of ASD yet, it has increased our knowledge of the biology of ASD that is critical for driving drug discovery and has already provided many new drug targets for investigation. Expert opinion: The information gathered from the animal models of ASD is increasing our understanding of the underlying pathophysiology for ASD and is leading to better therapeutic targets. However, the issue of small sample size, heterogeneity within clinical samples, and a lack of replicable outcome measures must be addressed to move forward.
Collapse
Affiliation(s)
- Kathryn K Chadman
- a Behavioral Pharmacology Laboratory , NYS Office for People with Developmental Disabilities, Institute for Basic Research in Developmental Disabilities , Staten Island , NY , USA
| |
Collapse
|
65
|
Custódio CS, Mello BSF, Filho AJMC, de Carvalho Lima CN, Cordeiro RC, Miyajima F, Réus GZ, Vasconcelos SMM, Barichello T, Quevedo J, de Oliveira AC, de Lucena DF, Macedo DS. Neonatal Immune Challenge with Lipopolysaccharide Triggers Long-lasting Sex- and Age-related Behavioral and Immune/Neurotrophic Alterations in Mice: Relevance to Autism Spectrum Disorders. Mol Neurobiol 2017; 55:3775-3788. [DOI: 10.1007/s12035-017-0616-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
|
66
|
Cheng N, Rho JM, Masino SA. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci 2017; 10:34. [PMID: 28270747 PMCID: PMC5318388 DOI: 10.3389/fnmol.2017.00034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.
Collapse
Affiliation(s)
- Ning Cheng
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
| | - Jong M. Rho
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
- Clinical Neurosciences, University of CalgaryCalgary, AB, Canada
- Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Susan A. Masino
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| |
Collapse
|
67
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
68
|
Green TL, Burket JA, Deutsch SI. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism. Brain Res Bull 2016; 125:159-67. [PMID: 27378651 DOI: 10.1016/j.brainresbull.2016.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
Abstract
NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.
Collapse
Affiliation(s)
- Torrian L Green
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA, 23507, United States
| | - Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA, 23507, United States
| | - Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA, 23507, United States.
| |
Collapse
|