51
|
Parrella A, Kundi M, Lavorgna M, Criscuolo E, Russo C, Isidori M. Toxicity of exposure to binary mixtures of four anti-neoplastic drugs in Daphnia magna and Ceriodaphnia dubia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:41-6. [PMID: 25456218 DOI: 10.1016/j.aquatox.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 09/27/2014] [Indexed: 05/24/2023]
Abstract
Anticancer drugs, interfering with DNA in every living organism, may pose a threat to aquatic environment, even more when they occur as complex mixtures. We investigated the combined long term toxic potential of four anti-neoplastic drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET] and imatinib mesylate [IM]) testing their binary mixtures on two primary consumers of the freshwater aquatic chain with close phylogenetic relationship: Daphnia magna and Ceriodaphnia dubia. The combined toxicities were assessed using two distinct effect sizes that should be observed if Bliss independence holds. Direct statistical comparison by analysis of variance of single and combined toxicities under the assumption of Bliss independence allowed to accept or reject the independency hypothesis. Independency was confirmed for all mixtures both in D. magna and in C. dubia, except for IM+ ET and IM+CDDP in D. magna and for ET+CDDP and ET+5-FU in C. dubia which at the highest concentrations showed an antagonistic interaction. A synergic tendency was found testing IM+CDDP on C. dubia at the lowest concentration selected. Thus, the chronic ecotoxicological data evaluated in this study show not only a potential environmental risk of anticancer drugs, especially considering their potential synergistic effects, but also the necessity to integrate statistical models with experimental data to establish the real environmental impact of such compounds.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Michael Kundi
- Institute of Environmental Health, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Emma Criscuolo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
52
|
Parrella A, Lavorgna M, Criscuolo E, Russo C, Fiumano V, Isidori M. Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. CHEMOSPHERE 2014; 115:59-66. [PMID: 24512989 DOI: 10.1016/j.chemosphere.2014.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/25/2013] [Accepted: 01/06/2014] [Indexed: 05/24/2023]
Abstract
The growing use of cytostatic drugs is gaining relevance as an environmental concern. Environmental and distribution studies are increasing due to the development of accurate analytical methods, whereas ecotoxicological studies are still lacking. The aim of the present study was to investigate the acute and chronic toxicity of six cytostatics (5-fluorouracil, capecitabine, cisplatin, doxorubicin, etoposide, and imatinib) belonging to five classes of Anatomical Therapeutic Classification (ATC) on primary consumers of the aquatic chain (Daphnia magna, Ceriodaphnia dubia, Brachionus calyciflorus, and Thamnocephalus platyurus). Acute ecotoxicological effects occurred at concentrations in the order of mgL(-)(1), higher than those predicted in the environment, and the most acutely toxic drugs among those tested were cisplatin and doxorubicin for most aquatic organisms. For chronic toxicity, cisplatin and 5-fluorouracil showed the highest toxic potential in all test organisms, inducing 50% reproduction inhibition in crustaceans at concentrations on the order of μgL(-)(1). Rotifers were less susceptible to these pharmaceuticals. On the basis of chronic results, the low effective concentrations suggest a potential environmental risk of cytostatics. Thus, this study could be an important starting point for establishing the real environmental impact of these substances.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Emma Criscuolo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Vittorio Fiumano
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
53
|
Wang S, Zhang Q, Luo XF, Li J, He H, Yang F, Di Y, Jin C, Jiang XG, Shen S, Fu DL. Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials 2014; 35:9473-9483. [PMID: 25175596 DOI: 10.1016/j.biomaterials.2014.07.064] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
Although regional lymph nodes (RLN) dissection remains the only way to cure pancreatic cancer metastasis, it is unavoidably associated with sizable trauma, multiple complications, and low surgical resection rates. Thus, exploring a treatment approach for the ablation of drug-resistant pancreatic cancer is always of great concern. Moreover, reoperative and intraoperative mapping of RLN is also important during treatment, because only a few lymph nodes can be detected by the naked eye. In our study, graphene oxides modified with iron oxide nanoparticles (GO-IONP) as a nanotheranostic agent is firstly developed to diagnose and treat RLN metastasis of pancreatic cancer. The approach was designed based on clinical practice, the GO-IONP agent directly injected into the tumor was transported to RLN via lymphatic vessels. Compared to commercial carbon nanoparticles currently used in the clinic operation, the GO-IONP showed powerful ability of dual-modality mapping of regional lymphatic system by magnetic resonance imaging (MRI), as well as dark color of the agent providing valuable information that was instrumental for surgeon in making the preoperative plan before operation and intraoperatively distinguish RLN from surrounding tissue. Under the guidance of dual-modality mapping, we further demonstrated that metastatic lymph nodes including abdominal nodes could be effectively ablated by near-infrared (NIR) irradiation with an incision operation. The lower systematic toxicity of GO-IONP and satisfying safety of photothermal therapy (PTT) to neighbor tissues have also been clearly illustrated in our animal experiments. Using GO-IONP as a nanotheranostic agent presents an approach for mapping and photothermal ablation of RLN, the later may serve as an alternative to lymph node dissection by invasive surgery.
Collapse
Affiliation(s)
- Sheng Wang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xian F Luo
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ji Li
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hang He
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Feng Yang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yang Di
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Chen Jin
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xin G Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shun Shen
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai 200032, China; School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China.
| | - De L Fu
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
54
|
c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells. Cell Death Dis 2014; 5:e1455. [PMID: 25299780 PMCID: PMC4237244 DOI: 10.1038/cddis.2014.417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/21/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies with an overall life expectancy of 6 months despite current therapies. NF-κB signalling has been shown to be critical for this profound cell-autonomous resistance against chemotherapeutic drugs and death receptor-induced apoptosis, but little is known about the role of the c-Rel subunit in solid cancer and PDAC apoptosis control. In the present study, by analysis of genome-wide patterns of c-Rel-dependent gene expression, we were able to establish c-Rel as a critical regulator of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in PDAC. TRAIL-resistant cells exhibited a strong TRAIL-inducible NF-κB activity, whereas TRAIL-sensitive cells displayed only a small increase in NF-κB-binding activity. Transfection with siRNA against c-Rel sensitized the TRAIL-resistant cells in a manner comparable to siRNA targeting the p65/RelA subunit. Gel-shift analysis revealed that c-Rel is part of the TRAIL-inducible NF-κB complex in PDAC. Array analysis identified NFATc2 as a c-Rel target gene among the 12 strongest TRAIL-inducible genes in apoptosis-resistant cells. In line, siRNA targeting c-Rel strongly reduced TRAIL-induced NFATc2 activity in TRAIL-resistant PDAC cells. Furthermore, siRNA targeting NFATc2 sensitized these PDAC cells against TRAIL-induced apoptosis. Finally, TRAIL-induced expression of COX-2 was diminished through siRNA targeting c-Rel or NFATc2 and pharmacologic inhibition of COX-2 with celecoxib or siRNA targeting COX-2, enhanced TRAIL apoptosis. In conclusion, we were able to delineate a novel c-Rel-, NFATc2- and COX-2-dependent antiapoptotic signalling pathway in PDAC with broad clinical implications for pharmaceutical intervention strategies.
Collapse
|
55
|
Okamoto M, Fujiwara M, Hori M, Okada K, Yazama F, Konishi H, Xiao Y, Qi G, Shimamoto F, Ota T, Temme A, Tatsuka M. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet 2014; 10:e1004639. [PMID: 25233213 PMCID: PMC4169382 DOI: 10.1371/journal.pgen.1004639] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD). The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU) whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer. The cellular mechanisms for sensing and responding to stress on nucleic acid metabolism or to genotoxic stress are the fundamental and ancient evolutionary biological activities with conserved and diverse biological functions. In yeast, hypomodified mature tRNA species are rapidly decayed under heat stress by the RTD pathway. Yet, it has been shown that tRNA-specific methyltransferases Trm4 and Trm8 protect from tRNA decay. 5-FU, a pyrimidine analog used for cancer treatment, is generally known to act as a thymidylate synthase inhibitor although other ways for the mechanisms of action are suggested. We studied NSUN2 and METTL1, the human orthologs of Trm4 and Trm8 in yeast, and demonstrated that these RTD-related tRNA modifying enzymes are involved in 5-FU sensitivity in cervical cancer HeLa cells. We conclude that the evolutionarily conserved regulation of tRNA modifications is a potential mechanism of chemotherapy resistance in cancer cells.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Mamoru Fujiwara
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Masato Hori
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kaoru Okada
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Futoshi Yazama
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Hiroaki Konishi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Yegui Xiao
- Department of Management Information Systems, Faculty of Management and Information System, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Guangying Qi
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Takahide Ota
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
56
|
Borazanci E, Von Hoff DD. Nab-paclitaxel and gemcitabine for the treatment of patients with metastatic pancreatic cancer. Expert Rev Gastroenterol Hepatol 2014; 8:739-47. [PMID: 24882381 DOI: 10.1586/17474124.2014.925799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenocarcinoma of the pancreas or pancreatic cancer as we will refer to it here, is a cancer of poor prognosis with a high mortality, particularly in the advanced or metastatic setting. Until 2011 and the Phase III results of FOLFIRINOX, standard treatment options were limited to gemcitabine. Combination therapy had shown either a lack of or very limited improvement versus monotherapy with gemcitabine. With the positive results of the MPACT study in 2013 showing improved survival with nab-paclitaxel plus gemcitabine combination therapy, there are now more options for oncologists to treat patients with advanced pancreatic cancer. This paper will highlight the Phase I/II and Phase III trials of nab-paclitaxel plus gemcitabine along with discussing their biology and further possible development in treating patients with pancreatic cancer.
Collapse
|
57
|
Yao W, Ji S, Qin Y, Yang J, Xu J, Zhang B, Xu W, Liu J, Shi S, Liu L, Liu C, Long J, Ni Q, Li M, Yu X. Profilin-1 suppresses tumorigenicity in pancreatic cancer through regulation of the SIRT3-HIF1α axis. Mol Cancer 2014; 13:187. [PMID: 25103363 PMCID: PMC4249601 DOI: 10.1186/1476-4598-13-187] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/27/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tumor cells exhibit abnormal actin remodeling profiles, which involve the altered expressions of several important actin-binding proteins. Profilin1 (Pfn1), originally identified as an actin-associated protein, has been linked to several human malignancies. Our recent studies suggested that Pfn1 facilitates apoptosis in pancreatic cancer cells. Here, we investigated the exact role of Profilin1 (Pfn1) in pancreatic adenocarcinoma (PDAC) and the underlying mechanisms. METHODS Pfn1 protein expression in PDAC specimens was analyzed by immunohistochemistry using a tissue microarray (TMA) containing PDAC tumor tissue and corresponding normal tissue samples from 72 patients. The effect of Pfn1 expression on cancer proliferation was assessed in cells by up- and down-regulation of Pfn1 in vitro and in vivo. Immunoprecipitation and mass spectrometry were used to identify the Pfn1-associated proteins and potential pathways. RESULTS Pfn1 was downregulated in clinical pancreatic adenocarcinoma specimens compared with the surrounding benign tissues. Univariate survival analysis of the PDAC cohorts showed that low expression of Pfn1 was significantly correlated with shortened patient survival (mean 14.2 months versus 20.9 months, P < 0.05). Restoration of Pfn1 in pancreatic cancer cells with low endogenous Pfn1 expression resulted in a nontumorigenic phenotype, suggesting that Pfn1 may be a negative regulator of pancreatic cancer progression. Overexpression of Pfn1 in vivo decreased the tumor volume in orthotopic xenograft nude mice models. Pfn1 upregulated the expression of SIRT3, leading to HIF1α destabilization. This data revealed that aberrant Pfn1 expression contributes to pancreatic cancer progression. CONCLUSIONS Our data suggest that Pfn1 is a tumor suppressor in pancreatic cancer that acts via a novel mechanism of regulating the SIRT3-HIF1α axis, independently of its cytoskeleton-related activity.
Collapse
Affiliation(s)
- Wantong Yao
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Shunrong Ji
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Yi Qin
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Jingxuan Yang
- />The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030 USA
| | - Jin Xu
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Bo Zhang
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Wenyan Xu
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Jiang Liu
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Si Shi
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Liang Liu
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Chen Liu
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Jiang Long
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Quanxing Ni
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| | - Min Li
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
- />The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030 USA
| | - Xianjun Yu
- />Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032 P. R. China
- />Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- />Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 P. R. China
| |
Collapse
|
58
|
Lu Y, Liu C, Xu YF, Cheng H, Shi S, Wu CT, Yu XJ. Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition. Hepatobiliary Pancreat Dis Int 2014; 13:386-94. [PMID: 25100123 DOI: 10.1016/s1499-3872(14)60038-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Stathmin is a ubiquitous cytosolic regulatory phosphoprotein and is overexpressed in different human malignancies. The main physiological function of stathmin is to interfere with microtubule dynamics by promoting depolymerization of microtubules or by preventing polymerization of tubulin heterodimers. Stathmin plays important roles in regulating many cellular functions as a result of its microtubule-destabilizing activity. Currently, the critical roles of stathmin in cancer cells, as well as in lymphocytes have been valued. This review discusses stathmin and microtubule dynamics in cancer development, and hypothesizes their possible relationship with epithelial-mesenchymal transition (EMT). DATA SOURCES A PubMed search using such terms as "stathmin", "microtubule dynamics", "epithelial-mesenchymal transition", "EMT", "malignant potential" and "cancer" was performed to identify relevant studies published in English. More than 100 related articles were reviewed. RESULTS The literature clearly documented the relationship between stathmin and its microtubule-destabilizing activity of cancer development. However, the particular mechanism is poorly understood. Microtubule disruption is essential for EMT, which is a crucial process during cancer development. As a microtubule-destabilizing protein, stathmin may promote malignant potential in cancer cells by initiating EMT. CONCLUSIONS We propose that there is a stathmin-microtubule dynamics-EMT (S-M-E) axis during cancer development. By this axis, stathmin together with its microtubule-destabilizing activity contributes to EMT, which stimulates the malignant potential in cancer cells.
Collapse
Affiliation(s)
- Yu Lu
- Pancreatic Cancer Institute, Fudan University; Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
59
|
Chhabra R, Saini N. MicroRNAs in cancer stem cells: current status and future directions. Tumour Biol 2014; 35:8395-405. [PMID: 24964962 DOI: 10.1007/s13277-014-2264-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023] Open
Abstract
The presence of stem-like cells in cancer, popularly known as cancer stem cells, have been known for a long time but it was the research of Bonnet and Dick in leukemia which got cancer researchers interested in them. Over the past few years, a lot of research has gone into the characterization of cancer stem cells (CSCs) from different tumors. CSCs have been elucidated in almost all solid tumors. The growth of this field has not been without controversies as many researchers considered CSCs to be a transient population of little consequence. The field has nevertheless progressed providing us not only a better understanding of cancer and its related facets like proliferation, EMT, and metastasis but also generating a hope for new generation therapeutics with CSCs as their targets. This search for drugs which target CSCs has also focused on miRNAs. miRNAs are small non-coding regulatory RNA molecules capable of fine-tuning the gene expression. The miRNA profile of CSCs is remarkably different from non-stem cancer cells and many miRNAs have also been shown to regulate self-renewal and differentiation properties of CSCs. The differential miRNA profile in CSCs make them probable biomarkers for the prognosis of cancer and their specificity in targeting the properties of CSCs make them potential targets for therapeutic intervention. This review critically analyzes the advancement of the miRNA research in CSC context and also explores the prospect of miRNA therapies against CSCs.
Collapse
Affiliation(s)
- Ravindresh Chhabra
- Department of Biotechnology, Panjab University, Sector-14, Chandigarh, 160014, India,
| | | |
Collapse
|
60
|
Zhang LN, Chen K, Qian L, Hu YQ, Xu LN, Zhou GX, Zhang H. Effect of treatment with elemene on expression of apoptosis-related proteins in pancreatic carcinoma xenografts in nude mice. Shijie Huaren Xiaohua Zazhi 2014; 22:2385-2392. [DOI: 10.11569/wcjd.v22.i17.2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of PTEN, p53 and Bcl-2 proteins in pancreatic carcinoma xenografts in nude mice after treatment with elemene, and to explore the effect of elemene on the apoptosis of pancreatic cancer cells.
METHODS: Thirty mice with subcutaneous xenografts of a pancreatic cancer cell line (SW1990) were randomly divided into five groups: a negative control group, low- and high-dose elemene-treated groups, a gemcitabine-treated group, and an elemene plus gemcitabine group. Western blot and immunohistochemical staining were used to determine the expression of PTEN, p53 and Bcl-2 proteins in pancreatic carcinoma xenografts in nude mice after treatment with elemene.
RESULTS: The expression of PTEN and p53 proteins had a trend of up-regulation, while the expression of Bcl-2 protein had a trend of down-regulation in pancreatic carcinoma xenografts in nude mice after treatment with elemene. The results of immunohistochemical staining showed the same trend. Compared with the negative control group, the expression of p53 was significantly up-regulated, while Bcl-2 was down-regulated in the high-dose elemene group. Compared with the gemcitabine-treated group, the expression of p53 was significantly up-regulated, but Bcl-2 had no significant change in the combination treatment group. Immunohistochemical staining showed similar results to Western blot analysis.
CONCLUSION: Elemene can up-regulate the expression of PTEN and p53 proteins and down-regulate the expression of Bcl-2 protein in pancreatic cancer in a dose dependent manner, thereby inducing the apoptosis of pancreatic cancer cells.
Collapse
|
61
|
Qin Y, Zhu W, Xu W, Zhang B, Shi S, Ji S, Liu J, Long J, Liu C, Liu L, Xu J, Yu X. LSD1 sustains pancreatic cancer growth via maintaining HIF1α-dependent glycolytic process. Cancer Lett 2014; 347:225-232. [PMID: 24561118 DOI: 10.1016/j.canlet.2014.02.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
The histone demethylase LSD1 (lysine specific demethylase 1) plays an important role in the epigenetic regulation of gene transcription. Our study investigated the role of LSD1 in pancreatic cancer and demonstrated that LSD1 was significantly up-regulated in pancreatic cancer patient tissue samples, and elevated LSD1 protein levels positively correlated with overall survival of pancreatic cancer patients. Using in vitro and in vivo models, we demonstrated that knock-down of LSD1 repressed proliferation and tumorigenicity of pancreatic cancer cells. Mechanistically, our study demonstrated that LSD1 synergized with HIF1α (hypoxia inducible factor-1α) in maintaining glycolytic process, which fueled pancreatic cancer uncontrolled proliferation.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Wenwei Zhu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China.
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
62
|
Long J, Luo GP, Xiao ZW, Liu ZQ, Guo M, Liu L, Liu C, Xu J, Gao YT, Zheng Y, Wu C, Ni QX, Li M, Yu X. Cancer statistics: current diagnosis and treatment of pancreatic cancer in Shanghai, China. Cancer Lett 2014; 346:273-277. [PMID: 24462819 DOI: 10.1016/j.canlet.2014.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/29/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
A multi-center population-based study in Shanghai, China was performed to explore the implications for the management of pancreatic cancer by comparing diagnosis and survival rates. Novel imaging modalities including MRI (13.9%), PET/CT (1.8%), and EUS (5.6%) were not widely used in our population. Only 39.7% of cases were histologically verified (surgery with histologic diagnosis 31.0%, cytological diagnosis 8.7%, surgery without histologic diagnosis 12.1%, and clinical diagnosis 48.2%). Overall, 30.0% of patients underwent curative-intent operation, and only 9.8% of patients received comprehensive treatment. The prognosis of pancreatic cancer patients was significantly better for patients who were treated in high-volume centers than in low-volume centers. We propose that more effort should be put on novel diagnostic modalities, histological confirmation, and comprehensive treatment in China. Multidisciplinary teams specialized in pancreatic cancer therapy in high-volume centers are urgently needed.
Collapse
Affiliation(s)
- Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Guo-pei Luo
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Zhi-wen Xiao
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Zu-qiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Meng Guo
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Yu-tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai 200032, PR China
| | - Ying Zheng
- Department of Oncology, Shanghai Center for Disease Control and Prevention, Shanghai 200336, PR China
| | - Chunxiao Wu
- Department of Oncology, Shanghai Center for Disease Control and Prevention, Shanghai 200336, PR China
| | - Quan-xing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China
| | - Min Li
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China; The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
63
|
Ryu JS, Raucher D. Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Lett 2014; 348:177-84. [PMID: 24680816 DOI: 10.1016/j.canlet.2014.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
This work describes the effects of elastin-like polypeptide (ELP) with the p21(Waf1/Cip1)-derived cell cycle inhibitory peptide (p21) on pancreatic tumor cells with gemcitabine. The thermo-responsive property of ELP permits use of a mild, local hyperthermia to target tumors for the transport of chemotherapeutics. In this study, a p21-ELP construct with Bac cell penetrating peptide was designed, and its anticancer activities in pancreatic cancer cell lines was examined. In combination with gemcitabine, the peptide demonstrated enhanced in vitro cytotoxicity as well as tumor growth inhibition in an animal model. Our data suggest that this ELP construct, with gemcitabine, may improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Jung Su Ryu
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, United States
| | - Drazen Raucher
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, United States.
| |
Collapse
|
64
|
Powerful inhibition of experimental human pancreatic cancers by receptor targeted cytotoxic LH-RH analog AEZS-108. Oncotarget 2014; 4:751-60. [PMID: 23744510 PMCID: PMC3742835 DOI: 10.18632/oncotarget.1044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic carcinoma is one of the cancers with the worse prognosis, thus any therapeutic improvement is imperative. Cytotoxic LH-RH analog, AN-152 (proprietary designation, AEZS-108), consisting of doxorubicin (DOX) conjugated to D-Lys⁶LH-RH, is now in clinical trials for targeted therapy of several sex hormone-dependent tumors that express LH-RH receptors. We investigated LH-RH receptors in human pancreatic carcinoma and the effects of AN-152 (AEZS-108) on experimental pancreatic cancers. We determined LH-RH receptor presence in human pancreatic cancer samples by immunohistochemistry and, in three human pancreatic cancer lines (SW-1990, Panc-1 and CFPAC-1), by binding assays and Western blotting. The effects of the cytotoxic LH-RH analog were investigated on growth of these same cancer lines xenografted into nude mice. We also analyzed differences between the antitumor effects of the cytotoxic analog and its cytotoxic radical alone, doxorubicin (DOX), on the expression of cancer-related genes by PCR arrays. LH-RH receptors were expressed in two randomly selected surgically removed human pancreatic cancer samples and in all three cancer lines. Cytotoxic LH-RH analogs powerfully inhibited growth of all three tumor lines in nude mice; AN-152 was significantly stronger than DOX on Panc-1 and CFPAC-1 cancers. PCR array showed that cytotoxic LH-RH analog AN-152 affected the expression of genes associated with cellular migration, invasion, metastasis and angiogenesis more favorably than DOX, however the changes in gene expression varied considerably among the three cancer lines. Cytotoxic LH-RH analog, AEZS-108, may be a useful agent for the treatment of LH-RH receptor positive advanced pancreatic carcinoma.
Collapse
|
65
|
Sipieter F, Ladik M, Vandenabeele P, Riquet F. Shining light on cell death processes - a novel biosensor for necroptosis, a newly described cell death program. Biotechnol J 2014; 9:224-40. [DOI: 10.1002/biot.201300200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/03/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
|
66
|
Romano G. The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. SCIENTIFICA 2013; 2013:317186. [PMID: 24381788 PMCID: PMC3870877 DOI: 10.1155/2013/317186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 06/01/2023]
Abstract
Akt serine/threonine kinases, or PKB, are key players in the regulation of a wide variety of cellular activities, such as growth, proliferation, protection from apoptotic injuries, control of DNA damage responses and genome stability, metabolism, migration, and angiogenesis. The Akt-related pathway responds to the stimulation mediated by growth factors, cytokines, hormones, and several nutrients. Akt is present in three isoforms: Akt1, Akt2, and Akt3, which may be alternatively named PKB α , PKB β , and PKB γ , respectively. The Akt isoforms are encoded on three diverse chromosomes and their biological functions are predominantly distinct. Deregulations in the Akt-related pathway were observed in many human maladies, including cancer, cardiopathies, neurological diseases, and type-2 diabetes. This review discusses the significance of the abnormal activities of the Akt axis in promoting and sustaining malignancies, along with the development of tumor cell populations that exhibit enhanced resistance to chemo- and/or radiotherapy. This occurrence may be responsible for the relapse of the disease, which is unfortunately very often related to fatal consequences in patients.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
67
|
Chan WM, Rahman MM, McFadden G. Oncolytic myxoma virus: the path to clinic. Vaccine 2013; 31:4252-8. [PMID: 23726825 PMCID: PMC3755036 DOI: 10.1016/j.vaccine.2013.05.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
68
|
Yang J, Zhang Y, Cui X, Yao W, Yu X, Cen P, Hodges SE, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr Mol Med 2013. [PMID: 23331012 DOI: 10.2174/156652413805076786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deregulated expression of zinc transporters was linked to several cancers. However, the detailed expression profile of all human zinc transporters in normal human organs and in human cancer, especially in pancreatic cancer is not available. The objectives of this study are to investigate the complete expression patterns of 14 ZIP and 10 ZnT transporters in a large number of normal human organs and in human pancreatic cancer tissues and cell lines. We examined the expression patterns of ZIP and ZnT transporters in 22 different human organs and tissues, 11 pairs of clinical human pancreatic cancer specimens and surrounding normal/benign tissues, as well as 10 established human pancreatic cancer cell lines plus normal human pancreatic ductal epithelium (HPDE) cells, using real time RT-PCR and immunohistochemistry. The results indicate that human zinc transporters have tissue specific expression patterns, and may play different roles in different organs or tissues. Almost all the ZIPs except for ZIP4, and most ZnTs were down-regulated in human pancreatic cancer tissues compared to the surrounding benign tissues. The expression patterns of individual ZIPs and ZnTs are similar among different pancreatic cancer lines. Those results and our previous studies suggest that ZIP4 is the only zinc transporter that is significantly up-regulated in human pancreatic cancer and might be the major zinc transporter that plays an important role in pancreatic cancer growth. ZIP4 might serve as a novel molecular target for pancreatic cancer diagnosis and therapy.
Collapse
Affiliation(s)
- J Yang
- Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSE R266, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Lett 2013; 340:113-23. [PMID: 23872274 DOI: 10.1016/j.canlet.2013.07.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is notorious for its difficult diagnosis at early stage and poor recurrence-free prognosis. This study aimed to investigate the possible involvement of Oct4 and Nanog in pancreatic cancer. The high expressions of Oct4 and Nanog in human pancreatic cancer tissues were found to indicate a worse prognostic value of patients. The pancreatic cancer stem cells (PCSCs) that isolated from PANC-1 cell line by flow cytometry exhibited high expressions of Oct4 and Nanog. To investigate whether Oct4 and Nanog play crucial role in maintaining the stemness of PCSCs, double knockdown of Oct4 and Nanog demonstrated that Oct4 and Nanog significantly reduced proliferation, migration, invasion, chemoresistance, and tumorigenesis of PCSCs in vitro and in vivo. The altered expression of the genes related to pancreatic carcinogenesis, metastasis, drug resistance and epithelial-mesenchymal transdifferentiation (EMT) might affect the biological characteristics of PCSCs. Our results suggest that Oct4 and Nanog may serve as a potential marker of prognosis and a novel target of therapy for pancreatic cancer.
Collapse
|
70
|
Sha W, Olesch C, Hanaka H, Rådmark O, Weigert A, Brüne B. Necrosis in DU145 prostate cancer spheroids induces COX-2/mPGES-1-derived PGE2 to promote tumor growth and to inhibit T cell activation. Int J Cancer 2013; 133:1578-88. [PMID: 23536473 DOI: 10.1002/ijc.28181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/12/2013] [Indexed: 12/16/2022]
Abstract
Cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2 ) supports the growth of a spectrum of cancers. The potential benefit of COX-2-inhibiting non-steroidal anti-inflammatory drugs (NSAIDs) for cancer treatment is however limited by their well-known cardiovascular side-effects. Therefore, targeting microsomal PGE synthase 1 (mPGES-1), the downstream enzyme in the COX-2-dependent pathway of PGE2 production might be attractive, although conflicting data regarding a potential tumor-supporting function of mPGES-1 were reported. We determined the impact of mPGES-1 in human DU145 prostate cancer cell growth. Surprisingly, knockdown of mPGES-1 did not alter growth of DU145 monolayer cells, but efficiently inhibited the growth of DU145 multicellular tumor spheroids (MCTS). Opposed to MCTS, monolayer cells did not secrete PGE2 due to a lack of COX-2 expression, which was induced during spheroid formation. Pharmacological inhibition of COX-2 and mPGES-1 supported the crucial role of PGE2 for growth of MCTS. The functionality of spheroid-derived PGE2 was demonstrated by its ability to inhibit cytotoxic T cell activation. When investigating mechanisms of spheroid-induced COX-2 induction, we observed that among microenvironmental factors neither glucose deprivation, hypoxia nor tumor cell apoptosis enhanced COX-2 expression. Interestingly, interfering with apoptosis in spheroids triggered a shift towards necrosis, thus augmenting COX-2 expression. We went on to demonstrate that necrotic cells induced COX-2 mRNA expression and PGE2 secretion from live tumor cells. In conclusion, necrosis-dependent COX-2 upregulation in MCTS promoted PGE2 -dependent tumor growth and inhibited activated cytotoxic T cells. Hence, blocking mPGES-1 as a therapeutic option may be considered for COX-2/mPGES-1-positive solid cancers.
Collapse
Affiliation(s)
- Weixiao Sha
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Zhang B, Xu J, Liu C, Long J, Liu L, Xu Y, Wu C, Luo G, Ni Q, Li M, Yu X. Application of "papillary-like main pancreatic duct invaginated" pancreaticojejunostomy for normal soft pancreas cases. Sci Rep 2013; 3:2068. [PMID: 23797701 PMCID: PMC3691567 DOI: 10.1038/srep02068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023] Open
Abstract
Pancreaticojejunostomy is the key procedure of pancreaticoduodenectomy. Our study introduced a new pancreaticojejunal (PJ) anastomosis named "papillary-like main pancreatic duct invaginated" pancreaticojejunostomy. Nighty-two patients underwent pancreaticojejunostomy with either conventional duct-to-mucosa pancreaticojejunostomy or the new "papillary-like main pancreatic duct invaginated" techniques were analyzed retrospectively from January 2010 to September 2012. The incidence of pancreatic fistula was 15.7% (8/51) for the "papillary-like main pancreatic duct invaginated" group and 19.5% (8/41) for the duct-to-mucosa fashion respectively. It is noteworthy that the rate of grade B/C postoperative pancreatic fistula (POPF) in the "papillary-like main pancreatic duct invaginated" group was significantly lower than that of the duct-to-mucosa group (P = 0.039). There were no differences in the incidence of postoperative morbidity and mortality such as postoperative hemorrhage, delayed gastric emptying or remnant pancreatitis. The "papillary-like main pancreatic duct invaginated" pancreaticojejunostomy could provide a feasible option to pancreatic surgeons for patients with normal soft pancreas.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
- These authors contributed equally to this article
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
- These authors contributed equally to this article
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
- These authors contributed equally to this article
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Yongfeng Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Chuntao Wu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Guopei Luo
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Min Li
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
72
|
Chen T, Liu L, Xu HX, Wang WQ, Wu CT, Yao WT, Yu XJ. Significance of caveolin-1 regulators in pancreatic cancer. Asian Pac J Cancer Prev 2013; 14:4501-4507. [PMID: 24083692 DOI: 10.7314/apjcp.2013.14.8.4501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved in many biological processes that include substance uptake and transmembrane signaling. Many of these processes and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pancreas and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
73
|
Arlt A, Schäfer H, Kalthoff H. The 'N-factors' in pancreatic cancer: functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis 2012; 1:e35. [PMID: 23552468 PMCID: PMC3511680 DOI: 10.1038/oncsis.2012.35] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies, with an overall life expectancy of 6 months. Despite considerable advances in the understanding of the molecular mechanisms involved in the carcinogenesis of PDAC, the outcome of the disease was not significantly improved over the last 20 years. Although some achievements in molecular-targeted therapies have been made (that is, targeting the epidermal growth factor receptor by erlotinib), which already entered clinical settings, and despite the promising outcome of the FOLFIRINOX trial, there is an urgent need for improvement of the chemotherapy in this disease. A plethora of molecular alterations are thought to be responsible for the profound chemoresistance, including mutations in oncogenes and tumor suppressors. Besides these classical hallmarks of cancer, the constitutive or inducible activity of transcription factor pathways are characteristic changes in PDAC. Recently, three transcription factors-nuclear factor-κB (NF-κB), nuclear factor of activated T cells (NFAT) and nuclear factor-E2-related factor-2 (Nrf2)-have been shown to be crucial for tumor development and chemoresistance in pancreatic cancer. These transcription factors are key regulators of a variety of genes involved in nearly all aspects of tumorigenesis and resistance against chemotherapeutics and death receptor ligands. Furthermore, the pathways of NF-κB, NFAT and Nrf2 are functional, interacting on several regulatory steps, and, especially, natural compounds such as curcumin interfere with more than one pathway. Thus, targeting these pathways by established inhibitors or new drugs might have great potential to improve the outcome of PDAC patients, most likely in combination with established anticancer drugs. In this article, we summarize recent progress in the characterization of these transcription-factor pathways and their role in PDAC and therapy resistance. We also discuss future concepts for the treatment of PDAC relying on these pathways.
Collapse
Affiliation(s)
- A Arlt
- Laboratory of Molecular Gastroenterology and Hepatology, Department of Internal Medicine I, Kiel, Germany
| | - H Schäfer
- Laboratory of Molecular Gastroenterology and Hepatology, Department of Internal Medicine I, Kiel, Germany
| | - H Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, Comprehensive Cancer Center North, Kiel, Germany
| |
Collapse
|
74
|
Cen P, Ni X, Yang J, Graham DY, Li M. Circulating tumor cells in the diagnosis and management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2012; 1826:350-6. [PMID: 22683404 DOI: 10.1016/j.bbcan.2012.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 12/16/2022]
Abstract
Pancreatic cancers are typically resistant to chemo and radiation therapy and are predisposed to distant metastases. Circulating tumor cells (CTCs) are tumor cells disseminated from primary and metastatic sites and can be isolated from peripheral blood. CTC may overcome the limitation of the current available tumor markers, CA19-9. As a surrogate for 'real-time biopsy', CTCs allow recurrent assessment of a tumor's biological activity. We review the current methodologies for CTC extraction and characterization including antibody-based immunological assays, PCR-based assays, and novel technologies based on the physical or biological characteristics of CTCs. CTCs also provide an accessible link to the existence of epithelial to mesenchymal transition, tumor stem cell markers, and ongoing clonal mutations and epigenetic changes in the tumor. We also explore the potential of using CTC profiling in diagnosis, selection of neoadjuvant and adjuvant therapy, detection of recurrent disease, examination of pharmacodynamic biomarkers, as well as in gene therapy and immunotherapy for pancreatic cancer. Ongoing CTC characterization not only has the potential to represent all cells shed from primary pancreatic tumor and each metastatic site, but also allows dynamic sampling at multiple time points during the clinical course to identify the subpopulations of CTCs and the specific molecules driving metastasis and chemo resistance. We predict that CTC genotyping and phenotyping will play an increasing role in personalized therapy and in identification of novel therapeutic targets as well as monitoring the course and status of the disease.
Collapse
Affiliation(s)
- Putao Cen
- Department of Internal Medicine, The University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
75
|
Ni X, Yang J, Li M. Imaging-guided curative surgical resection of pancreatic cancer in a xenograft mouse model. Cancer Lett 2012; 324:179-85. [PMID: 22617626 DOI: 10.1016/j.canlet.2012.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer related deaths in North America. The poor survival statistics are due to the fact that there are no reliable tests for early diagnosis and no effective therapies once metastasis has occurred. Surgical resection is the only curative treatment for pancreatic cancer; however, only less than 15% of the patients are eligible for surgery at diagnosis. New therapies are urgently needed for this malignant disease. And combinational therapy including surgery, chemotherapy and molecular targeted therapy may further improve the efficacy of individual therapies. However, a reliable mouse model which mimics the human disease and can be used for testing the surgical treatment and surgery-based combinational therapy is not available. In this study, we have established a mouse model for curative surgical resection of pancreatic cancer. Human pancreatic cancer cells were used to create orthotopic xenografts in nude mice, distal pancreatectomy was performed using imaging-guided technology to remove the pancreatic tumors, and sham surgery was performed in the control group. All mice survived the operation and no complication was observed. Surgical resection at early stage improved the survival rate and quality of life of the mice compared with the sham surgery and surgical resection at the late stage. If combined with other therapies such as chemotherapy and molecular targeted therapy, it could further improve the outcome of pancreatic cancer. This mouse model is a useful tool to study the surgical therapy and the tumor recurrence of pancreatic cancer, and could potentially impact the therapeutic choices for this deadly disease.
Collapse
Affiliation(s)
- Xiaoling Ni
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|