51
|
MUC1 Expression by Immunohistochemistry Is Associated with Adverse Pathologic Features in Prostate Cancer: A Multi-Institutional Study. PLoS One 2016; 11:e0165236. [PMID: 27846218 PMCID: PMC5112958 DOI: 10.1371/journal.pone.0165236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022] Open
Abstract
Background The uncertainties inherent in clinical measures of prostate cancer (CaP) aggressiveness endorse the investigation of clinically validated tissue biomarkers. MUC1 expression has been previously reported to independently predict aggressive localized prostate cancer. We used a large cohort to validate whether MUC1 protein levels measured by immunohistochemistry (IHC) predict aggressive cancer, recurrence and survival outcomes after radical prostatectomy independent of clinical and pathological parameters. Material and Methods MUC1 IHC was performed on a multi-institutional tissue microarray (TMA) resource including 1,326 men with a median follow-up of 5 years. Associations with clinical and pathological parameters were tested by the Chi-square test and the Wilcoxon rank sum test. Relationships with outcome were assessed with univariable and multivariable Cox proportional hazard models and the Log-rank test. Results The presence of MUC1 expression was significantly associated with extracapsular extension and higher Gleason score, but not with seminal vesicle invasion, age, positive surgical margins or pre-operative serum PSA levels. In univariable analyses, positive MUC1 staining was significantly associated with a worse recurrence free survival (RFS) (HR: 1.24, CI 1.03–1.49, P = 0.02), although not with disease specific survival (DSS, P>0.5). On multivariable analyses, the presence of positive surgical margins, extracapsular extension, seminal vesicle invasion, as well as higher pre-operative PSA and increasing Gleason score were independently associated with RFS, while MUC1 expression was not. Positive MUC1 expression was not independently associated with disease specific survival (DSS), but was weakly associated with overall survival (OS). Conclusion In our large, rigorously designed validation cohort, MUC1 protein expression was associated with adverse pathological features, although it was not an independent predictor of outcome after radical prostatectomy.
Collapse
|
52
|
Sousa AM, Rei M, Freitas R, Ricardo S, Caffrey T, David L, Almeida R, Hollingsworth MA, Santos-Silva F. Effect of MUC1/β-catenin interaction on the tumorigenic capacity of pancreatic CD133 + cells. Oncol Lett 2016; 12:1811-1817. [PMID: 27602113 PMCID: PMC4998183 DOI: 10.3892/ol.2016.4888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Despite the fact that the biological function of cluster of differentiation (CD)133 remains unclear, this glycoprotein is currently used in the identification and isolation of tumor-initiating cells from certain malignant tumors, including pancreatic cancer. In the present study, the involvement of mucin 1 (MUC1) in the signaling pathways of a highly tumorigenic CD133+ cellular subpopulation sorted from the pancreatic cancer cell line HPAF-II was evaluated. The expression of MUC1-cytoplasmic domain (MUC1-CD) and oncogenic signaling transducers (epidermal growth factor receptor, protein kinase C delta, glycogen synthase kinase 3 beta and growth factor receptor-bound protein 2), as well as the association between MUC1 and β-catenin, were characterized in HPAF-II CD133+ and CD133low cell subpopulations and in tumor xenografts generated from these cells. Compared with HPAF CD133low cells, HPAF-II CD133+ cancer cells exhibited increased tumorigenic potential in immunocompromised mice, which was associated with overexpression of MUC1 and with the accordingly altered expression profile of MUC1-associated signaling partners. Additionally, MUC1-CD/β-catenin interactions were increased both in the HPAF-II CD133+ cell subpopulation and derived tumor xenografts compared with HPAF CD133low cells. These results suggest that, in comparison with HPAF CD133low cells, CD133+ cells exhibit higher expression of MUC1, which contributes to their tumorigenic phenotype through increased interaction between MUC1-CD and β-catenin, which in turn modulates oncogenic signaling cascades.
Collapse
Affiliation(s)
- Andreia Mota Sousa
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal
| | - Margarida Rei
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Rita Freitas
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Sara Ricardo
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | - Thomas Caffrey
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Leonor David
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | - Raquel Almeida
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal; Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Michael Anthony Hollingsworth
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Filipe Santos-Silva
- Institute of Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| |
Collapse
|
53
|
Liu X, Yun F, Shi L, Li ZH, Luo NR, Jia YF. Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer. Asian Pac J Cancer Prev 2016; 16:6201-6. [PMID: 26434817 DOI: 10.7314/apjcp.2015.16.15.6201] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular process though which an epithelial phenotype can be converted into a phenotype of mesenchymal cells. Under physiological conditions EMT is important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, especially in carcinogenesis and metastatic progression. Major signaling pathways involved in EMT include transforming growth factor β(TGF-β), Wnt, Notch, Hedgehog and other signaling pathways. These pathways are related to several transcription factors, including Twist, Smads and zinc finger proteins snail and slug. These interact with each other to provide crosstalk between the relevant signaling pathways. This review lays emphasis on studying the relationship between EMT and signaling pathways in carcinogenesis and metastatic progression.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China E-mail :
| | | | | | | | | | | |
Collapse
|
54
|
Yang J, Zhang K, Song H, Wu M, Li J, Yong Z, Jiang S, Kuang X, Zhang T. Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget 2016; 7:32306-17. [PMID: 27058759 PMCID: PMC5078014 DOI: 10.18632/oncotarget.8615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Increasing evidences suggested visfatin, a newly discovered obesity-induced adipocytokine, is involved in promotion of cancer malignancy and correlated with worse clinical prognosis. While its effects and mechanisms on progression of colorectal cancer (CRC) remain unclear. Our clinical data show that visfatin protein is over expressed, positive associated with lymph node metastasis, high-grade tumor, and poor prognosis in 87 CRC patients. The levels of plasma visfatin are significantly upregulated in Stage IV colon cancer. Visfatin can significantly promote the in vitro migration and invasion of CRC cells via induction epithelial mesenchymal transition (EMT). It can increase the expression and nuclear translocation of Snail, a key transcription factor in regulating EMT. While silencing of Snail attenuates visfatin induced EMT. Further studies reveal visfatin can inhibit the association of Snail with GSK-3β and subsequently suppress ubiquitylation of Snail. In addition, visfatin can increase the expression and nuclear translocation of β-catenin, elevate its binding with Snail promoter, and then increase the transcription of Snail. While inhibitor of PI3K/Akt, LY294002, abolishes visfatin induced up regulation of Snail, Vimentin (Vim), β-catenin, and phosphorylated GSK-3β. In summary, our data suggest that increased expression of visfatin are associated with a more aggressive phenotype of CRC patients. It can trigger the EMT of CRC cells via Akt/GSK-3β/β-catenin signals.
Collapse
Affiliation(s)
- Jing Yang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Haixing Song
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Mingbo Wu
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingyi Li
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Ziyi Yong
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Sheng Jiang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan, China
| | - Tao Zhang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
55
|
Osteopontin-A Master Regulator of Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5040039. [PMID: 27023622 PMCID: PMC4850462 DOI: 10.3390/jcm5040039] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Osteopontin (OPN) plays an important functional role in both physiologic and pathologic states. OPN is implicated in the progression of fibrosis, cancer, and metastatic disease in several organ systems. The epithelial-mesenchymal transition (EMT), first described in embryology, is increasingly being recognized as a significant contributor to fibrotic phenotypes and tumor progression. Several well-established transcription factors regulate EMT and are conserved across tissue types and organ systems, including TWIST, zinc finger E-box-binding homeobox (ZEB), and SNAIL-family members. Recent literature points to an important relationship between OPN and EMT, implicating OPN as a key regulatory component of EMT programs. In this review, OPN’s interplay with traditional EMT activators, both directly and indirectly, will be discussed. Also, OPN’s ability to restructure the tissue and tumor microenvironment to indirectly modify EMT will be reviewed. Together, these diverse pathways demonstrate that OPN is able to modulate EMT and provide new targets for directing therapeutics.
Collapse
|
56
|
Differential expression and clinical relevance of MUC1 in renal cell carcinoma metastasis. World J Urol 2016; 34:1635-1641. [PMID: 26995391 DOI: 10.1007/s00345-016-1804-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/05/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To determine the differential expression patterns and prognostic relevance of Mucin-1 (MUC1) expression in clear cell renal cell carcinoma (RCC) metastasis. METHODS Tissue microarrays (TMA) from samples of 151 RCC metastases, 61 primary RCCs and corresponding benign renal tissues were immunohistochemically stained for MUC1 and semi-quantitatively evaluated by immunoreactivity scores (IRS). MUC1 differential expression in metastasis, primary RCC and normal tissue were comparatively analyzed. Patient characteristics and clinical follow-up for patients with metastatic RCC (mRCC) were recorded. Correlations of MUC1 expression with mRCC survival were determined. RESULTS Median cytoplasmic expression was highest in benign tissue (IRS = 1.04). Primary RCC (0.50) and metastasis (0.12) showed significantly lower cytoplasmic staining intensity. Membranous expression in benign tissue was, however, significantly lower (0.21) compared with primary RCC (0.59) and metastasis (0.57). Notable differences of MUC1 cytoplasmic and membranous expression were observed between different metastasis sites. Significantly higher (P = 0.014) membranous expression was observed in pulmonary versus non-pulmonary lesions, while no significant differences of cytoplasmic MUC1 expression were observed. The prognostic relevance of MUC1 expression in metastatic RCC was limited. CONCLUSIONS MUC1 is differentially expressed in benign renal tissue, primary RCC and RCC metastasis. Membranous MUC1 expression was significantly elevated in pulmonary metastases compared to non-pulmonary lesions, which may reflect individual biology and putative response to MUC1-based anti-cancer therapy.
Collapse
|
57
|
Yu S, Yan C, Yang X, He S, Liu J, Qin C, Huang C, Lu Y, Tian Z, Jia L. Pharmacoproteomic analysis reveals that metapristone (RU486 metabolite) intervenes E-cadherin and vimentin to realize cancer metastasis chemoprevention. Sci Rep 2016; 6:22388. [PMID: 26932781 PMCID: PMC4773818 DOI: 10.1038/srep22388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/28/2022] Open
Abstract
Metapristone is the most predominant biological active metabolite of mifepristone, and being developed as a novel cancer metastasis chemopreventive agent by us. Despite its prominent metastasis chemopreventive effect, the underlying mechanism remains elusive. Our study, for the first time, demonstrated that metapristone had the ability to prevent breast cancer cells from migration, invasion, and interfere with their adhesion to endothelial cells. To explore the underlying mechanism of metapristone, we employed the iTRAQ technique to assess the effect of metapristone on MDA-MB-231 cells. In total, 5,145 proteins were identified, of which, 311 proteins showed significant differences in metapristone-treated cells compared to the control group (P-value < 0.05). Bioinformatic analysis showed many differentially expressed proteins (DEPs) functionally associated with post-translational modification, chaperones, translation, transcription, replication, signal transduction, etc. Importantly, many of the DEPs, such as E-cadherin, vimentin, TGF-β receptor I/II, smad2/3, β-catenin, caveolin, and dystroglycan were associated with TGF-β and Wnt signaling pathways, which were also linked to epithelial-to-mesenchymal transition (EMT) process. Further validation of the epithelial marker "E-caderin" and mesenchymal marker "vimetin" were carried out using immunoblot and immunofluorescence. These results have revealed a novel mechanism that metapristone-mediated metastasis chemoprevention is through intervening the EMT-related signaling pathways.
Collapse
Affiliation(s)
- Suhong Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Cuicui Yan
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xingtian Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Sudang He
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Chongtao Qin
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian, 350108, China
| | - Chuanzhong Huang
- Internal Oncology Laboratory, Fujian Provincial Key Laboratory of Translational Medicine Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, 350002, China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhongping Tian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
58
|
Abstract
Multiple myeloma (MM) cell lines and primary tumor cells are addicted to the MYC oncoprotein for survival. Little is known, however, about how MYC expression is upregulated in MM cells. The mucin 1 C-terminal subunit (MUC1-C) is an oncogenic transmembrane protein that is aberrantly expressed in MM cell lines and primary tumor samples. The present studies demonstrate that targeting MUC1-C with silencing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 editing or with the GO-203 inhibitor is associated with downregulation of MYC messenger RNA and protein. The results show that MUC1-C occupies the MYC promoter and thereby activates the MYC gene by a β-catenin/transcription factor 4 (TCF4)-mediated mechanism. In this way, MUC1-C (1) increases β-catenin occupancy on the MYC promoter, (2) forms a complex with β-catenin and TCF4, and, in turn, (3) drives MYC transcription. Analysis of MM cells using quantitative real-time reverse transcription polymerase chain reaction arrays further demonstrated that silencing MUC1-C is associated with downregulation of MYC target genes, including CCND2, hTERT, and GCLC Analysis of microarray data sets further demonstrated that MUC1 levels positively correlate with MYC expression in MM progression and in primary cells from over 800 MM patients. These findings collectively provide convincing evidence that MUC1-C drives MYC expression in MM.
Collapse
|
59
|
Li X, Wang X, Tan Z, Chen S, Guan F. Role of Glycans in Cancer Cells Undergoing Epithelial-Mesenchymal Transition. Front Oncol 2016; 6:33. [PMID: 26925388 PMCID: PMC4756103 DOI: 10.3389/fonc.2016.00033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023] Open
Abstract
The term “cancer” refers to a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. Epithelial–mesenchymal transition (EMT), a process whereby epithelial cells lose their cell polarity and cell–cell adhesion ability, and acquire migratory and invasive properties to gain mesenchymal phenotype, is an important step leading to tumor metastasis. Glycans, such as N-glycans, O-glycans, and glycosphingolipids, are involved in numerous biological processes, including inflammation, virus/bacteria–host interactions, cell–cell interactions, morphogenesis, and cancer development and progression. Aberrant expression of glycans has been observed in several EMT models, and the functional roles of such glycans in cancer development and progression has been investigated. We summarize here recent research progress regarding the functions of glycans in cancer cells undergoing EMT. Better understanding of the mechanisms underlying aberrant glycan patterns in EMT and cancer will facilitate the development of such glycans as cancer biomarkers or as targets in design and synthesis of anti-tumor drugs.
Collapse
Affiliation(s)
- Xiang Li
- Wuxi Medical School, Jiangnan University , Wuxi , China
| | - Xin Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Zengqi Tan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Si Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi , China
| |
Collapse
|
60
|
Pai P, Rachagani S, Dhawan P, Batra SK. Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 2016; 37:223-32. [PMID: 26762229 DOI: 10.1093/carcin/bgw005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and β-catenin. In the current review, we summarize several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
61
|
David JM, Hamilton DH, Palena C. MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncoimmunology 2016; 5:e1117738. [PMID: 27141403 PMCID: PMC4839328 DOI: 10.1080/2162402x.2015.1117738] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a molecular and cellular program in which epithelial cells lose their well-differentiated phenotype and adopt mesenchymal characteristics. This process, which occurs naturally during embryogenesis, has also been shown to be associated with cancer progression and with tumor recurrence following conventional therapies. Brachyury is a transcription factor that mediates EMT during development, and is aberrantly expressed in various human cancers where it promotes tumor cell EMT, metastatic dissemination, and resistance to conventional therapies. We have recently shown that very high expression of brachyury can protect tumor cells against immune cell-mediated cytotoxicity. In seeking to elucidate mechanisms of immunotherapy resistance, we have discovered a novel positive association between brachyury and mucin-1 (MUC1). MUC1 is overexpressed in the majority of carcinomas, and it has been shown to mediate oncogenic signaling and confer resistance to genotoxic agents. We found that MUC1 is concomitantly upregulated in tumor cell lines that highly express brachyury due to an enhancement of MUC1 mRNA stability. Analysis of patient lung tumor tissues also identified a positive association between these two proteins in the majority of samples. Inhibition of MUC1 by siRNA-based gene silencing markedly enhanced the susceptibility of brachyury-expressing cancer cells to killing by tumor necrosis-related apoptosis-inducing ligand (TRAIL) and to perforin/granzyme-dependent lysis by immune cytotoxic cells. These studies confirm a protective role for MUC1 in brachyury-expressing cancer cells, and suggest that inhibition of MUC1 can restore the susceptibility of mesenchymal-like cancer cells to immune attack.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
62
|
Ito T, Pei J, Dulaimi E, Menges C, Abbosh PH, Smaldone MC, Chen DYT, Greenberg RE, Kutikov A, Viterbo R, Uzzo RG, Testa JR. Genomic Copy Number Alterations in Renal Cell Carcinoma with Sarcomatoid Features. J Urol 2015; 195:852-8. [PMID: 26602888 DOI: 10.1016/j.juro.2015.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/31/2023]
Abstract
PURPOSE Sarcomatoid changes in renal cell carcinoma are associated with a poor prognosis. The identification of genetic alterations that drive this aggressive phenotype could aid in the development of more effective targeted therapies. In this study we aimed to pinpoint unique copy number alterations in sarcomatoid renal cell carcinoma compared to classical renal cell carcinoma subtypes. MATERIALS AND METHODS Genomic copy number analysis was performed using single nucleotide polymorphism based microarrays on tissue extracted from the tumors of 81 patients who underwent renal mass excision, including 17 with sarcomatoid renal cell carcinoma. RESULTS Sarcomatoid renal cell carcinoma showed a significantly higher number of copy number alterations than clear cell, papillary and chromophobe renal cell carcinoma (mean 18.0 vs 5.8, 6.5 and 7.2, respectively, p <0.0001). Copy number losses of chromosome arms 9q, 15q, 18p/q and 22q, and gains of 1q and 8q occurred in a significantly higher proportion of sarcomatoid renal cell carcinomas than in the other 3 histologies. Patients with sarcomatoid renal cell carcinoma demonstrated significantly worse overall survival compared to those without that condition on Kaplan-Meier analysis (p = 0.0001). Patients with 9 or more copy number alterations also demonstrated significantly worse overall survival than those with fewer than 9 copy number alterations (p = 0.004). CONCLUSIONS Sarcomatoid changes in renal cell carcinoma are associated with a high rate of chromosomal imbalances with losses of 9q, 15q, 18p/q and 22q, and gains of 1q and 8q occurring at significantly higher frequencies in comparison to nonsarcomatoid renal cell carcinoma. Identifying candidate driver genes or tumor suppressor loci in these chromosomal regions may help identify targets for future therapies.
Collapse
Affiliation(s)
- Timothy Ito
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jianming Pei
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Essel Dulaimi
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Craig Menges
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Philip H Abbosh
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Marc C Smaldone
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David Y T Chen
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Richard E Greenberg
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Kutikov
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rosalia Viterbo
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert G Uzzo
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Biology Program and Blood Cell Development and Function Program (ED), Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
63
|
Fujii T, Shimada K, Tatsumi Y, Hatakeyama K, Obayashi C, Fujimoto K, Konishi N. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1. BMC Cancer 2015; 15:818. [PMID: 26514209 PMCID: PMC4625524 DOI: 10.1186/s12885-015-1846-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Background A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19–24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan. Methods Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells. Results Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors. Conclusions Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1846-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomomi Fujii
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Keiji Shimada
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Yoshihiro Tatsumi
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan. .,Department of Urology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Chiho Obayashi
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University School of Medicine, Nara, Japan.
| | - Noboru Konishi
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
64
|
Wang J, Liu G, Li Q, Wang F, Xie F, Zhai R, Guo Y, Chen T, Zhang N, Ni W, Yuan H, Tai G. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions. Oncotarget 2015; 6:19264-78. [PMID: 26057631 PMCID: PMC4662489 DOI: 10.18632/oncotarget.4267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Mucin1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas. In this study, wound-healing, transwell migration and matrigel invasion assays showed that MUC1 promotes human hepatocellular carcinoma (HCC) cell migration and invasion by MUC1 gene silencing and overexpressing. Treatment with exogenous transforming growth factor beta (TGF-β)1, TGF-β type I receptor (TβRI) inhibitor, TGF-β1 siRNAs, or activator protein 1 (AP-1) inhibitor to MUC1-overexpressing HCC cells revealed that MUC1-induced autocrine TGF-β via JNK/AP-1 pathway promotes the cell migration and invasion. In addition, the migration and invasion of HCC cells were more significantly inhibited by JNK inhibitor compared with that by TβRI inhibitor or TGF-β1 siRNAs. Further studies demonstrated that MUC1-mediated JNK activation not only enhances the phosphorylation of Smad2 C-terminal at Ser-465/467 site (Smad2C) through TGF-β/TβRI, but also directly enhances the phosphorylation of Smad2 linker region at Ser-245/250/255 site (Smad2L), and then both of them collaborate to upregulate matrix metalloproteinase (MMP)-9-mediated cell migration and invasion of HCC. These results indicate that MUC1 is an attractive target in liver cancer therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guomu Liu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiongshu Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Fang Wang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Fei Xie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ruiping Zhai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yingying Guo
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tanxiu Chen
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Nannan Zhang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
65
|
Bouillez A, Gnemmi V, Gaudelot K, Hémon B, Ringot B, Pottier N, Glowacki F, Butruille C, Cauffiez C, Hamdane M, Sergeant N, Van Seuningen I, Leroy X, Aubert S, Perrais M. MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway. Oncotarget 2015; 5:754-63. [PMID: 24504508 PMCID: PMC3996672 DOI: 10.18632/oncotarget.1768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MUC1 is a membrane-anchored mucin and its cytoplasmic tail (CT) can interact with many signaling pathways and act as a co-transcription factor to activate genes involved in tumor progression and metastasis. MUC1 is overexpressed in renal cell carcinoma with correlation to prognosis and has been implicated in the hypoxic pathway, the main renal carcinogenetic pathway. In this context, we assessed the effects of MUC1 overexpression on renal cancer cells properties. Using shRNA strategy and/or different MUC1 constructs, we found that MUC1-extracellular domain and MUC1-CT are involved in increase of migration, cell viability, resistance to anoikis and in decrease of cell aggregation in cancer cells. Invasiveness depends only on MUC1-CT. Then, by using siRNA strategy and/or pharmacological inhibitors or peptides, we showed that sheddases ADAM10, ADAM17 and gamma-secretase are necessary for MUC1 C-terminal subunit (MUC1-C) nuclear location and in increase of invasion property. Finally, MUC1 overexpression increases ADAM10/17 protein expression suggesting a positive regulatory loop. In conclusion, we report that MUC1 acts in renal cancer progression and MUC1-C nuclear localization drives invasiveness of cancer cells through a sheddase/gamma secretase dependent pathway. MUC1 appears as a therapeutic target by blocking MUC1 cleavage or nuclear translocation by using pharmacological approach and peptide strategies.
Collapse
Affiliation(s)
- Audrey Bouillez
- Inserm, UMR837, Equipe 5 "Mucines, différenciation et cancérogenèse épithéliales", Jean-Pierre Aubert Research Center, Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chua CEL, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med 2014; 19:1-10. [PMID: 25472813 PMCID: PMC4288343 DOI: 10.1111/jcmm.12403] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/18/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
67
|
Alam M, Ahmad R, Rajabi H, Kufe D. MUC1-C Induces the LIN28B→LET-7→HMGA2 Axis to Regulate Self-Renewal in NSCLC. Mol Cancer Res 2014; 13:449-60. [PMID: 25368430 DOI: 10.1158/1541-7786.mcr-14-0363] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The LIN28B→let-7 pathway contributes to regulation of the epithelial-mesenchymal transition (EMT) and stem cell self-renewal. The oncogenic MUC1-C transmembrane protein is aberrantly overexpressed in lung and other carcinomas; however, there is no known association between MUC1-C and the LIN28B→let-7 pathway. Here in non-small cell lung cancer (NSCLC), silencing MUC1-C downregulates the RNA-binding protein LIN28B and coordinately increases the miRNA let-7. Targeting MUC1-C function with a dominant-negative mutant or a peptide inhibitor provided confirming evidence that MUC1-C induces LIN28B→let-7 signaling. Mechanistically, MUC1-C promotes NF-κB p65 chromatin occupancy of the LIN28B first intron and activates LIN28B transcription, which is associated with suppression of let-7. Consistent with let-7-mediated inhibition of HMGA2 transcripts, targeting of MUC1-C also decreases HMGA2 expression. HMGA2 has been linked to stemness, and functions as a competing endogenous RNA (ceRNA) of let-7-mediated regulation of the TGFβ coreceptor TGFBR3. Accordingly, targeting MUC1-C suppresses HMGA2 mRNA and protein, which is associated with decreases in TGFBR3, reversal of the EMT phenotype, and inhibition of self-renewal capacity. These findings support a model in which MUC1-C activates the ⇑LIN28B→⇓let-7→⇑HMGA2 axis in NSCLC and thereby promotes EMT traits and stemness. IMPLICATIONS A novel pathway is defined in which MUC1-C drives LIN28B→let-7→HMGA2 signaling, EMT, and self-renewal in NSCLC.
Collapse
Affiliation(s)
- Maroof Alam
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rehan Ahmad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
68
|
Liu W, Liu Y, Liu H, Zhang W, An H, Xu J. Snail predicts recurrence and survival of patients with localized clear cell renal cell carcinoma after surgical resection. Urol Oncol 2014; 33:69.e1-10. [PMID: 25218485 DOI: 10.1016/j.urolonc.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Snail (known as SNAI1), a zinc-finger transcription factor, is best known for the induction of epithelial-to-mesenchymal transition, which has emerged as a recognized mechanism underlying epithelial cancer progression. Herein, the aim is to determine the effect of Snail expression on recurrence and survival of patients with localized clear cell renal cell carcinoma (ccRCC) following surgery. METHODS We retrospectively enrolled 255 patients (188 in group A and 67 in group B) with localized ccRCC undergoing nephrectomy at a single center. Prognostic value and clinical outcomes were evaluated. RESULTS In both groups, cytoplasmic Snail intensity correlates positively with Fuhrman grade. High nuclear but not cytoplasmic Snail intensity indicates early recurrence and poor survival of patients with localized ccRCC. Moreover, high nuclear Snail intensity predicts unfavorable survival of patients with T2-4 stage cancer and early recurrence of all stage patients. Nuclear Snail intensity was identified as an independent adverse prognostic factor for recurrence and survival. The predictive accuracy of University of Los Angeles Integrated Staging System and the Mayo Clinic Stage, Size, Grade, and Necrosis prognostic models was improved when nuclear Snail expression was added. CONCLUSION Nuclear Snail expression is a potential independent adverse prognostic biomarker for recurrence and survival of patients with localized ccRCC after nephrectomy.
Collapse
Affiliation(s)
- Weisi Liu
- Key Laboratory of Glycoconjugate Research, MOH, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yidong Liu
- Key Laboratory of Glycoconjugate Research, MOH, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Haiou Liu
- Key Laboratory of Glycoconjugate Research, MOH, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiejie Xu
- Key Laboratory of Glycoconjugate Research, MOH, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
69
|
Kim MJ, Lim J, Yang Y, Lee MS, Lim JS. N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling. Cancer Lett 2014; 354:33-42. [PMID: 25153349 DOI: 10.1016/j.canlet.2014.06.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/17/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
Although NDRG2 has recently been found to be a candidate tumor suppressor, its precise role in the epithelial-mesenchymal transition (EMT) is not well understood. In the present study, we demonstrated that NDRG2 overexpression in MDA-MB-231 cells down-regulated the expression of Snail, a transcriptional repressor of E-cadherin and a key regulator of EMT, as well as the phosphorylation of signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor that is activated in many human malignancies including breast cancer. In addition, we confirmed that the expression of Snail and phospho-STAT3 was recovered when NDRG2 was knocked down by siRNA in MCF7 cells in which NDRG2 is endogenously expressed. Interestingly, MDA-MB-231-NDRG2 cells showed remarkably decreased Snail expression after treatment with JSI-124 (also known as cucurbitacin I) or Stattic, STAT3 inhibitors, compared to MDA-MB-231-mock cells. Moreover, STAT3 activation by EGF treatment induced higher Snail expression, and NDRG2 overexpression resulted in the inhibition of Snail expression in MDA-MB-231 cells stimulated by EGF in the absence or presence of STAT3 inhibitor. Treatment of MDA-MB-231 cells with STAT3 inhibitor led to a moderate decrease in wound healing and migration capacity, whereas STAT3 inhibitor treatment of MDA-MB-231-NDRG2 cells resulted in a significant attenuation of migration in both resting and EGF-stimulated cells. Collectively, our data demonstrate that the inhibition of STAT3 signaling by NDRG2 suppresses EMT progression of EMT via the down-regulation of Snail expression.
Collapse
Affiliation(s)
- Myung-Jin Kim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Hyochangwongil 52, Yongsan-Gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
70
|
Zhang L, Gallup M, Zlock L, Chen YTF, Finkbeiner WE, McNamara NA. Pivotal role of MUC1 glycosylation by cigarette smoke in modulating disruption of airway adherens junctions in vitro. J Pathol 2014; 234:60-73. [PMID: 24838315 DOI: 10.1002/path.4375] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 11/10/2022]
Abstract
Cigarette smoke increases the risk of lung cancer by 20-fold and accounts for 87% of lung cancer deaths. In the normal airway, heavily O-glycosylated mucin-1 (MUC1) and adherens junctions (AJs) establish a structural barrier that protects the airway from infectious, inflammatory and noxious stimuli. Smoke disrupts cell-cell adhesion via its damaging effects on the AJ protein epithelial cadherin (E-cad). Loss of E-cad is a major hallmark of epithelial-mesenchymal transition (EMT) and has been reported in lung cancer, where it is associated with invasion, metastasis and poor prognosis. Using organotypic cultures of primary human bronchial epithelial (HBE) cells treated with smoke-concentrated medium (Smk), we have demonstrated that E-cad loss is regulated through the aberrant interaction of its AJ binding partner, p120-catenin (p120ctn), and the C-terminus of MUC1 (MUC1-C). Here, we reported that even before MUC1-C became bound to p120ctn, smoke promoted the generation of a novel 400 kDa glycoform of MUC1's N-terminus (MUC1-N) differing from the 230 kDa and 150 kDa glycoforms in untreated control cells. The subsequent smoke-induced, time-dependent shedding of glycosylated MUC1-N exposed MUC1-C as a putative receptor for interactions with EGFR, Src and p120ctn. Smoke-induced MUC1-C glycosylation modulated MUC1-C tyrosine phosphorylation (TyrP) that was essential for MUC1-C/p120ctn interaction through dose-dependent bridging of Src/MUC1-C/galectin-3/EGFR signalosomes. Chemical deglycosylation of MUC1 using a mixture of N-glycosylation inhibitor tunicamycin and O-glycosylation inhibitor benzyl-α-GalNAc disrupted the Src/MUC1-C/galectin-3/EGFR complexes and thereby abolished smoke-induced MUC1-C-TyrP and MUC1-C/p120ctn interaction. Similarly, inhibition of smoke-induced MUC1-N glycosylation using adenoviral shRNA directed against N-acetyl-galactosaminyl transferase-6 (GALNT6, an enzyme that controls the initiating step of O-glycosylation) successfully suppressed MUC1-C/p120ctn interaction, prevented E-cad degradation and maintained cellular polarity in response to smoke. Thus, GALNT6 shRNA represents a potential therapeutic modality to prevent the initiation of events associated with EMT in the smoker's airway.
Collapse
Affiliation(s)
- Lili Zhang
- Francis I Proctor Foundation, University of California, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
71
|
Cheng XS, Li YF, Tan J, Sun B, Xiao YC, Fang XB, Zhang XF, Li Q, Dong JH, Li M, Qian HH, Yin ZF, Yang ZB. CCL20 and CXCL8 synergize to promote progression and poor survival outcome in patients with colorectal cancer by collaborative induction of the epithelial–mesenchymal transition. Cancer Lett 2014; 348:77-87. [DOI: 10.1016/j.canlet.2014.03.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/13/2023]
|
72
|
Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2014; 1846:142-51. [PMID: 24785432 DOI: 10.1016/j.bbcan.2014.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
Epithelial cancer patients not considered eligible for surgical resection frequently benefit from chemotherapy. Chemotherapy is the treatment of cancer with one or combination of cytotoxic or cytostatic drugs. Recent advances in chemotherapy allowed a great number of cancer patients to receive treatment with significant results. Unfortunately, resistance to chemotherapeutic drug treatment is a major challenge for clinicians in the majority of epithelial cancers because it is responsible for the inefficiency of therapies. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Implications of mucins have been described in relation to cancer cell behavior and cell signaling pathways associated with epithelial tumorigenesis. Because of the frequent alteration of the pattern of mucin expression in cancers as well as their structural and functional characteristics, mucins are thought to also be involved in response to therapies. In this report, we review the roles of mucins in chemoresistance and the associated underlying molecular mechanisms (physical barrier, resistance to apoptosis, drug metabolism, cell stemness, epithelial-mesenchymal transition) and discuss the therapeutic tools/strategies and/or prognosis biomarkers for personalized chemotherapy that could be proposed from these studies.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France.
| | - Nicolas Skrypek
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| |
Collapse
|
73
|
Freire-de-Lima L. Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 2014; 4:59. [PMID: 24724053 PMCID: PMC3971198 DOI: 10.3389/fonc.2014.00059] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 01/11/2023] Open
Abstract
Glycosylation changes are a feature of disease states. One clear example is cancer cells, which commonly express glycans at atypical levels or with different structural attributes than those found in normal cells. Epithelial–mesenchymal transition (EMT) was initially recognized as an important step for morphogenesis during embryonic development, and is now shown to be one of the key steps promoting tumor metastasis. Cancer cells undergoing EMT are characterized by significant changes in glycosylation of the extracellular matrix (ECM) components and cell-surface glycoconjugates. Current scientific methodology enables all hallmarks of EMT to be monitored in vitro and this experimental model has been extensively used in oncology research during the last 10 years. Several studies have shown that cell-surface carbohydrates attached to proteins through the amino acids, serine, or threonine (O-glycans), are involved in tumor progression and metastasis, however, the impact of O-glycans on EMT is poorly understood. Recent studies have demonstrated that transforming growth factor-beta (TGF-β), a known EMT inducer, has the ability to promote the up-regulation of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin, a major ECM component expressed by cancer cells and embryonic tissues. Armed with the knowledge that cell-surface glycoconjugates play a major role in the maintenance of cell homeostasis and that EMT is closely associated with glycosylation changes, we may benefit from understanding how unusual glycans can govern the molecular pathways associated with cancer progression. This review initially focuses on some well-known changes found in O-glycans expressed by cancer cells, and then discusses how these alterations may modulate the EMT process.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ, Brazil
| |
Collapse
|