51
|
Jin M, Gu S, Ye D, Li Y, Jing F, Li Q, Chen K. Association between genetic variants in the promoter region of a novel antisense long noncoding RNA RP11-392P7.6 and colorectal cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:434-442. [PMID: 28612367 DOI: 10.1002/em.22100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
There is a widespread occurrence of antisense transcripts' regulation on cancer-related genes in cancer biology. RP11-392P7.6 is antisense to the coding region of cancer-related gene GPRC5D, which has been found recently. The aim of this study was to investigate the associations of tagSNPs in the promoter region of RP11-392P7.6 with the risk of colorectal cancer. We conducted a two-stage case-control study, with a discovery set (320 cases and 319 controls) and a validation set (501 cases and 538 controls). Four tagSNPs (rs1531970, rs1642199, rs4763903, and rs10845671) were selected based on 1000 Genomes Project data and genotyped by using the Sequenom MassARRAY genotyping platform. In the discovery set, three tagSNPs (rs1642199, rs4763903, and rs10845671) were revealed promising associations with the risk of colorectal cancer, among which the rs10845671 variants were further replicated in the validation set (OR = 1.47, 95% CI = 1.10-1.20 in heterozygote codominant model; OR = 1.38, 95% CI = 1.04-1.83 in dominant model). When combined the two sets, the above positive associations remained unchanged. Rs10845671 was found to be associated with an increased risk of colorectal cancer (OR = 1.43, 95% CI = 1.14-1.81 in heterozygote codominant model; OR = 1.35, 95% CI = 1.08-1.69 in dominant model). These findings indicate that rs10845671 may contribute to the susceptibility to colorectal cancer and be a candidate biomarker for colorectal cancer risk prediction. Environ. Mol. Mutagen. 58:434-442, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Simeng Gu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Yingjun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Fangyuan Jing
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Qilong Li
- Institute for Cancer Prevention of Jiashan County, Zhejiang, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
52
|
Long noncoding RNA CRNDE stabilized by hnRNPUL2 accelerates cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways. Cell Death Dis 2017; 8:e2862. [PMID: 28594403 PMCID: PMC5520914 DOI: 10.1038/cddis.2017.258] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Recent studies have furthered our understanding of the function of long noncoding RNAs (lncRNAs) in numerous biological processes, including cancer. This study investigated the expression of a novel lncRNA, colorectal neoplasia differentially expressed (CRNDE), in colorectal carcinoma (CRC) tissues and cells by real-time RT-PCR and in situ hybridization, and its biological function using a series of in vitro and in vivo experiments to determine its potential as a prognostic marker and therapeutic target. CRNDE was found to be upregulated in primary CRC tissues and cells (P<0.05), and the upregulation of CRNDE expression is a powerful predictor of advanced TNM stage (P<0.05) and poor prognosis for CRC patients (P=0.002). The promoting effects of CRNDE on the cell proliferation, cell cycling and metastasis of CRC cells were confirmed both in vitro and in vivo by gain-of-function and loss-of-function experiments. Mechanistically, it was demonstrated that CRNDE could form a functional complex with heterogeneous nuclear ribonucleoprotein U-like 2 protein (hnRNPUL2) and direct the transport of hnRNPUL2 between the nucleus and cytoplasm. hnRNPUL2 that was accumulated in the cytoplasm could interact with CRNDE both physically and functionally, increasing the stability of CRNDE RNA. Moreover, gene expression profile data showed that CRNDE depletion in cells downregulated a series of genes involved in the Ras/mitogen-activated protein kinase signaling pathways. Collectively, these findings provide novel insights into the function and mechanism of lncRNA CRNDE in the pathogenesis of CRC and highlight its potential as a therapeutic target for CRC intervention.
Collapse
|
53
|
Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 2017; 6:1066-1076. [PMID: 28951829 PMCID: PMC5605720 DOI: 10.1016/j.molmet.2017.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Epigenetics, in the broadest sense, governs all aspects of the life of any multicellular organism, as it controls how differentiated cells arrive at their unique phenotype during development and differentiation, despite having a uniform (with some exceptions such as T-cells and germ cells) genetic make-up. The endocrine pancreas is no exception. Transcriptional regulators and epigenetic modifiers shape the differentiation of the five major endocrine cell types from their common precursor in the fetal pancreatic bud. Beyond their role in cell differentiation, interactions of the organism with the environment are also often encoded into permanent or semi-permanent epigenetic marks and affect cellular behavior and organismal health. Epigenetics is defined as any heritable – at least through one mitotic cell division – change in phenotype or trait that is not the result of a change in genomic DNA sequence, and it forms the basis that mediates the environmental impact on diabetes susceptibility and islet function. Scope of review We will summarize the impact of epigenetic regulation on islet cell development, maturation, function, and pathophysiology. We will briefly recapitulate the major epigenetic marks and their relationship to gene activity, and outline novel strategies to employ targeted epigenetic modifications as a tool to improve islet cell function. Major conclusions The improved understanding of the epigenetic underpinnings of islet cell differentiation, function and breakdown, as well as the development of innovative tools for their manipulation, is key to islet cell biology and the discovery of novel approaches to therapies for islet cell failure.
Collapse
Affiliation(s)
- Maria L Golson
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| |
Collapse
|
54
|
Sheng SR, Wu JS, Tang YL, Liang XH. Long noncoding RNAs: emerging regulators of tumor angiogenesis. Future Oncol 2017; 13:1551-1562. [PMID: 28513194 DOI: 10.2217/fon-2017-0149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in multiple biological processes especially human diseases, of which, tumor seems to be one of the most significant. Angiogenesis has been deemed to have a pivotal role in a series of tumor biological behaviors in tumorigenesis, progression and prognosis. Emerging evidences suggested that lncRNAs are involved in tumor angiogenesis and lncRNAs have already been verified to be potential biomarkers and promising therapeutic targets. This review summarized emerging angiogenesis-related lncRNAs, discussed their mechanisms interacting with cytokines, cancer stem cells, miRNAs and tumor hypoxia microenvironment, and demonstrated if lncRNAs could be new candidate targets of antiangiogenesis therapy.
Collapse
Affiliation(s)
- Su-Rui Sheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
55
|
Identification of Long Noncoding RNAs Deregulated in Papillary Thyroid Cancer and Correlated with BRAF V600E Mutation by Bioinformatics Integrative Analysis. Sci Rep 2017; 7:1662. [PMID: 28490781 PMCID: PMC5431778 DOI: 10.1038/s41598-017-01957-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
Papillary Thyroid Cancer (PTC) is an endocrine malignancy in which BRAFV600E oncogenic mutation induces the most aggressive phenotype. In this way, considering that lncRNAs are arising as key players in oncogenesis, it is of high interest the identification of BRAFV600E-associated long noncoding RNAs, which can provide possible candidates for secondary mechanisms of BRAF-induced malignancy in PTC. In this study, we identified differentially expressed lncRNAs correlated with BRAFV600E in PTC and, also, extended the cohort of paired normal and PTC samples to more accurately identify differentially expressed lncRNAs between these conditions. Indirectly validated targets of the differentially expressed lncRNAs in PTC compared to matched normal samples demonstrated an involvement in surface receptors responsible for signal transduction and cell adhesion, as well as, regulation of cell death, proliferation and apoptosis. Targets of BRAFV600E-correlated lncRNAs are mainly involved in calcium signaling pathway, ECM-receptor interaction and MAPK pathway. In summary, our study provides candidate lncRNAs that can be either used for future studies related to diagnosis/prognosis or as targets for PTC management.
Collapse
|
56
|
Rao AKDM, Rajkumar T, Mani S. Perspectives of long non-coding RNAs in cancer. Mol Biol Rep 2017; 44:203-218. [PMID: 28391434 DOI: 10.1007/s11033-017-4103-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/31/2017] [Indexed: 01/17/2023]
Abstract
A recent advance in transcriptomics has spawned the 'Decade of non-coding RNAs' by potentiating the growing numbers of long non-coding RNA in cancer. LncRNA involvement in cancer denotes its significance beyond our perception as they participate in tumor suppression and promoting oncogenesis, which raises them as a mighty class of effectors or regulators. Aberrantly expressed lncRNAs interact with major protein and coding partners, which ultimately deregulate normal cellular processes and drive the cell towards malignant state. Identification of theses interactions are utmost important as lncRNAs can be ideal targets for therapy. Dysregulation of lncRNAs by genomic alterations like single nucleotide variations and gene fusions are also potential modulators of their secondary structure. In this review, we discuss the various molecular interactions of lncRNAs with major bio-molecules and genetic variations in lncRNA genes and their importance in cancer. This systematic review outlines the vivid role of lncRNAs in cancer context and opens up future conceptual applications.
Collapse
Affiliation(s)
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), No:38, Sardar Patel Road, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), No:38, Sardar Patel Road, Adyar, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
57
|
Wahid B, Ali A, Rafique S, Idrees M. New Insights into the Epigenetics of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1609575. [PMID: 28401148 PMCID: PMC5376429 DOI: 10.1155/2017/1609575] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone modifications, DNA methylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion, metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
- Hazara University, Mansehra, Pakistan
| |
Collapse
|
58
|
Wang XH, Chen ZG, Xu RL, Lv CQ, Liu J, Du B. TGF-β1 signaling pathway serves a role in HepG2 cell regulation by affecting the protein expression of PCNA, gankyrin, p115, XIAP and survivin. Oncol Lett 2017; 13:3239-3246. [PMID: 28529566 DOI: 10.3892/ol.2017.5814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves a key role in the pathogenesis of liver cancer. To investigate the association between TGF-β1 and the following proteins: Proliferating cell nuclear antigen (PCNA), gankyrin, general vesicular transport factor p115 (p115), X-linked inhibitor of apoptosis protein (XIAP) and survivin, HepG2 liver cancer cells were transfected with small interfering RNA (siRNA) directed against TGF-β1, or were treated with exogenous TGF-β1. TGF-β1 protein expression levels were assessed at 72 and 96 h using western blotting, cell growth was evaluated using a Cell Counting kit-8 assay, and flow cytometry was used to examine cell cycle distribution and apoptosis. In addition, PCNA, gankyrin, p115, XIAP and survivin protein levels were evaluated using western blotting. TGF-β1 protein expression levels were decreased at 72 and 96 h following siRNA transfection, indicating that the siRNA against TGF-β1 was effective. In the TGF-β1-knockdown group, the HepG2 cells exhibited G1 or S-phase cell cycle arrest; therefore, the number of G2-phase cells was decreased, cell growth was inhibited and apoptotic peaks were observed. By contrast, no significant alteration in cell cycle distribution or apoptosis was observed in the cells treated with exogenous TGF-β1. In the exogenous TGF-β1 group, PCNA and XIAP protein expression levels were increased, whereas gankyrin, p115 and survivin protein expression was observed to be dependent on the duration of treatment. By contrast, PCNA, gankyrin, XIAP and survivin protein expression decreased following TGF-β1 knockdown; however, p115 protein expression increased. In conclusion, the TGF-β1 signaling pathway may affect cell growth, cell cycle distribution and apoptosis through the regulation of PCNA, gankyrin, p115, XIAP and survivin protein expression in liver cancer. The results of the present study may improve the current understanding of the role of the TGF-β signaling pathway during the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Xin-Hong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhi-Guo Chen
- Center of Educational Technology and Information, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Rui-Ling Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Cheng-Qian Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing Du
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
59
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
60
|
Wang H, Fu Z, Dai C, Cao J, Liu X, Xu J, Lv M, Gu Y, Zhang J, Hua X, Jia G, Xu S, Jia X, Xu P. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci Rep 2016; 6:38983. [PMID: 27941916 PMCID: PMC5150236 DOI: 10.1038/srep38983] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/14/2016] [Indexed: 01/14/2023] Open
Abstract
Long noncoding RNA (lncRNA) has been recognized as a regulator of gene expression, and the dysregulation of lncRNAs is involved in the progression of many types of cancer, including epithelial ovarian cancer (EOC). To explore the potential roles of lncRNAs in EOC, we performed lncRNA and mRNA microarray profiling in malignant EOC, benign ovarian cyst and healthy control tissues. In this study, 663 transcripts of lncRNAs were found to be differentially expressed in malignant EOC compared with benign and normal control tissues. We also selected 18 altered lncRNAs to confirm the validity of the microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, especially the cell cycle. Furthermore, Series Test of Cluster (STC) and lncRNA-mRNA co-expression network analyses were conducted to predict lncRNA expression trends and the potential target genes of lncRNAs. We also determined that two antisense lncRNAs (RP11-597D13.9 and ADAMTS9-AS1) were associated with their nearby coding genes (FAM198B, ADAMTS9), which participated in cancer progression. This study offers helpful information to understand the initiation and development mechanisms of EOC.
Collapse
Affiliation(s)
- Huan Wang
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China.,Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Chencheng Dai
- The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Jian Cao
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China.,Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Xiaoguang Liu
- Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Juan Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China.,Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Mingming Lv
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Yun Gu
- Department of Pathology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Jingmin Zhang
- Department of Pathology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xiangdong Hua
- Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Genmei Jia
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Sujuan Xu
- Department of Clinical Laboratory, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xuemei Jia
- Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| |
Collapse
|
61
|
Zhang Q, Matsuura K, Kleiner DE, Zamboni F, Alter HJ, Farci P. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology. J Transl Med 2016; 14:328. [PMID: 27894309 PMCID: PMC5125040 DOI: 10.1186/s12967-016-1085-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dysregulation of long noncoding RNA (lncRNA) expression contributes to the pathogenesis of many human diseases, including liver diseases. Several lncRNAs have been reported to play a role in the development of hepatocellular carcinoma (HCC). However, most studies have analyzed lncRNAs only in hepatitis B virus (HBV)-related HCC or in a single group of HCC patients regardless of the viral etiology. METHODS To investigate whether lncRNAs are differentially expressed in HCC of different viral etiology, we profiled 101 disease-related lncRNAs, including 25 lncRNAs previously associated with HCC, in liver specimens obtained from well-characterized patients with HBV-, hepatitis C virus (HCV)-, or hepatitis D virus (HDV)-associated HCC. RESULTS We identified eight novel HCC-related lncRNAs that were significantly dysregulated in HCC tissues compared to their surrounding non-tumorous tissues. Some of these lncRNAs were significantly dysregulated predominantly in one specific hepatitis virus-related HCC, including PCAT-29 in HBV-related HCC, aHIF and PAR5 in HCV-related HCC, and Y3 in HDV-related HCC. Among the lncRNAs previously reported in HCC, we found that DBH-AS1, hDREH and hPVT1 were differentially expressed in HCC of different viral etiology. CONCLUSIONS Our study suggests that HCC of different viral etiology is regulated by different lncRNAs. The identification of lncRNAs unique to specific hepatitis virus-related HCC may provide new tools for improving the diagnosis of HCC and open new avenues for disease-specific therapeutic interventions.
Collapse
Affiliation(s)
- Quan Zhang
- Laboratory of Infectious Diseases, Hepatic Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,Department of Experimental Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Kentaro Matsuura
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fausto Zamboni
- Liver Transplantation Center, Brotzu Hospital, Cagliari, Italy
| | - Harvey J Alter
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Patrizia Farci
- Laboratory of Infectious Diseases, Hepatic Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
62
|
Zhu XT, Yuan JH, Zhu TT, Li YY, Cheng XY. Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J 2016; 283:3739-3754. [DOI: 10.1111/febs.13839] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/16/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-ting Zhu
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| | - Ji-hang Yuan
- Department of Medical Genetics; Second Military Medical University; Shanghai China
| | - Teng-teng Zhu
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| | - Yang-yang Li
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| | - Xiao-yang Cheng
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| |
Collapse
|
63
|
Long non-coding RNA Unigene56159 promotes epithelial-mesenchymal transition by acting as a ceRNA of miR-140-5p in hepatocellular carcinoma cells. Cancer Lett 2016; 382:166-175. [PMID: 27597739 DOI: 10.1016/j.canlet.2016.08.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022]
Abstract
HBV infection has been reported to be closely associated with HCC development; however, the underlying mechanisms are unclear. Emerging evidence has indicated that long non-coding RNAs (lncRNAs) play important regulatory roles in the pathogenesis and progression of cancers. To investigate the important role and mechanism of lncRNAs in the progression of HBV-related HCC, we screened lncRNAs in HBV-positive and HBV-negative HCC tissues. We identified a novel lncRNA, lncRNA-Unigene56159, which is highly expressed in HBV-related HCC tissues, and further analysis showed that this lncRNA was induced by HBV in vitro. Functionally, Unigene56159 significantly promoted cell migration/invasion and epithelial-mesenchymal transition (EMT) in HCC. Mechanistically, Unigene56159 could directly bind to miR-140-5p and effectively act as a competing endogenous RNA (ceRNA) for miR-140-5p to de-repress the expression of the target gene Slug. Collectively, our findings indicate that the Unigene56159/miR-140-5p/Slug axis contributes to HCC cell migration and invasion, which may provide novel insights into the function of lncRNA-driven hepatocarcinogenesis.
Collapse
|
64
|
Wang T, Ma S, Qi X, Tang X, Cui D, Wang Z, Chi J, Li P, Zhai B. Long noncoding RNA ZNFX1-AS1 suppresses growth of hepatocellular carcinoma cells by regulating the methylation of miR-9. Onco Targets Ther 2016; 9:5005-14. [PMID: 27574442 PMCID: PMC4990377 DOI: 10.2147/ott.s103329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many long noncoding RNAs have been reported to play pivotal roles in cancer biology. Among them, the long noncoding RNA ZNFX1-AS1 has been confirmed to function in breast cancer progression, but the role of ZNFX1-AS1 in hepatocellular carcinoma (HCC) growth and the related molecular mechanisms still remains unknown. In the present study, we first identified the expression of ZNFX1-AS1 in HCC patients' specimens and HCC cell lines through quantitative reverse transcription polymerase chain reaction. Next, the effects of ZNFX1-AS1 on HCC cell growth and apoptosis were analyzed. MTT assay was used to measure the cell numbers, and fluorescence-activated cell sorting analysis was performed to evaluate cell apoptosis. Finally, the relationship between ZNFX1-AS1 and miR-9 in HCC was studied. Our results suggest that ZNFX1-AS1 was markedly downregulated in HCC samples and cell lines. Overexpression of ZNFX1-AS1 inhibited the cell proliferation and colony formation in HCC cell lines and also induced HCC cell apoptosis. Additionally, miR-9 was lowly expressed in HCC tissues and positively correlated with ZNFX1-AS1 expression. Meanwhile, significant upregulation of miR-9 and downregulation of the methylation of miR-9 promoter CpG island were observed when ZNFX1-AS1 was overexpressed. In summary, our results indicate that ZNFX1-AS1 plays a vital role in HCC progression via regulating the methylation of miR-9 and may be a potential tumor suppressor.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Sicong Ma
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xingxing Qi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyin Tang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Dan Cui
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiachang Chi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Li
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
65
|
Yu J, Han J, Zhang J, Li G, Liu H, Cui X, Xu Y, Li T, Liu J, Wang C. The long noncoding RNAs PVT1 and uc002mbe.2 in sera provide a new supplementary method for hepatocellular carcinoma diagnosis. Medicine (Baltimore) 2016; 95:e4436. [PMID: 27495068 PMCID: PMC4979822 DOI: 10.1097/md.0000000000004436] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver in adults worldwide. Several studies have demonstrated that long noncoding RNAs (lncRNAs) are involved in the development of various types of cancer, including HCC. These findings prompted us to examine the detectability of lncRNAs in blood samples from patients with HCC. In this study, we explored the expression levels of 31 cancer-related lncRNAs in sera from 71 HCC patients and 64 healthy individuals by reverse transcription and quantitative polymerase chain reaction (RT-qPCR). We found that 25 lncRNAs could be detected in the serum and that 7 had significantly different expression levels. A 2-lncRNA signature (PVT1 and uc002mbe.2) identified by stepwise regression showed potential as a diagnostic marker for HCC. The area under the receiver operating characteristic (ROC) curve was 0.764 (95% CI: 0.684-0.833). The sensitivity and specificity values of this serum 2-lncRNA signature for distinguishing HCC patients from the healthy group were 60.56% and 90.62%, respectively. The diagnostic ability of the combination of the serum 2-lncRNA signature with alpha-fetoprotein (AFP) was much greater than that of AFP alone. The expression levels of the 2 lncRNAs were associated with clinical parameters including tumor size, Barcelona Clinic Liver Cancer (BCLC) stage, and serum bilirubin.
Collapse
Affiliation(s)
- Jinyu Yu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Junqing Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Jian Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences
| | - Guanzhen Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
| | - Hui Liu
- Department of Gastroenterology
| | | | | | - Tao Li
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | | | - Chuanxi Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University
- Correspondence: Chuanxi Wang, PhD, Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, 250021 China (e-mail: )
| |
Collapse
|
66
|
Xu S, Wang H, Pan H, Shi Y, Li T, Ge S, Jia R, Zhang H, Fan X. ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett 2016; 381:41-8. [PMID: 27461581 DOI: 10.1016/j.canlet.2016.07.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Melanoma is an extremely aggressive disease with rapid progression, high metastatic potential and recurrence. Simultaneous correction of multiple tumor-specific gene abnormalities has become an attractive approach for developing therapeutics to treat melanoma. To potentiate anti-melanoma activity, we tested a "domino effect-like" therapeutic approach by uniquely targeting one defect and automatically triggering the endogenous corrections of other defects. Using this strategy, in a suspicious INK4b-ARF-INK4a gene cluster at chromosome 9p21, aberrant INK4a and INK4b defects were simultaneously endogenously auto-corrected after targeting the suppression of abnormal ANRIL lncRNA. In cell culture, this treatment significantly reduced the tumor metastatic capacity and tumor formation compared with absence of treatment. In animals harboring tumor xenografts, this therapeutic approach significantly inhibited tumor growth and reduced the tumor weight. Our results reveal a novel therapeutic strategy that significantly potentiates anti-melanoma efficiency by reprogramming the aberrant INK4-hub.
Collapse
Affiliation(s)
- Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huixue Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hui Pan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingyun Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Tianyuan Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
67
|
Yue H, Zhu J, Xie S, Li F, Xu Q. MDC1-AS, an antisense long noncoding RNA, regulates cell proliferation of glioma. Biomed Pharmacother 2016; 81:203-209. [PMID: 27261595 DOI: 10.1016/j.biopha.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Growing number of long noncoding RNAs (lncRNAs) are emerging as new modulators in cancer origination and progression. A lncRNA, mediator of DNA damage checkpoint protein 1antisense RNA (MDC1-AS), with unknown function, is the antisense transcript of tumor suppressor MDC1. METHOD In this study, we investigated the expression pattern and functional role of lncRNA MDC1-AS in glioma by using real time PCR and gain-/loss-of-function studies. RESULT The results showed that the expression levels of lncRNA MDC1-AS and MDC1 were significantly downregulated in glioma tissues compared with normal brain tissues, and in glioma cell lines U87MG, U251 and HEB. Overexpression of MDC1-AS resulted in significant inhibition of cell proliferation and cell cycle in U87MG and U251. We also found that MDC1-AS expression was positively correlated with MDC1 expression. In addition, the inhibitory role of MDC1-AS was remarkably diminished when MDC1 was knockdown. CONCLUSION Together, the results suggest that MDC1-AS is a novel tumor suppressor through up-regulation of its antisense tumor-suppressing gene MDC1 in glioma and leads us to propose that MDC1-AS may serve as a potential biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Hongsheng Yue
- Department of Neurosurgery, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan 250013, PR China
| | - Jie Zhu
- Department of Neurosurgery, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan 250013, PR China
| | - Shugang Xie
- Department of Neurosurgery, Shanghe County People's Hospital, Ji'nan 251600, PR China
| | - Fangfang Li
- Nursing Department, Shandong Cancer Hospital and Institute, Ji'nan 250117, PR China
| | - Qun Xu
- Nursing Department, Ji'nan Vocational College of Nursing, Ji'nan 250102, PR China.
| |
Collapse
|
68
|
Abstract
The recognition of functional roles for transcribed long non-coding RNA (lncRNA) has provided a new dimension to our understanding of cellular physiology and disease pathogenesis. LncRNAs are a large group of structurally complex RNA genes that can interact with DNA, RNA, or protein molecules to modulate gene expression and to exert cellular effects through diverse mechanisms. The emerging knowledge regarding their functional roles and their aberrant expression in disease states emphasizes the potential for lncRNA to serve as targets for therapeutic intervention. In this concise review, we outline the mechanisms of action of lncRNAs, their functional cellular roles, and their involvement in disease. Using liver cancer as an example, we provide an overview of the emerging opportunities and potential approaches to target lncRNA-dependent mechanisms for therapeutic purposes.
Collapse
|
69
|
Zong X, Nakagawa S, Freier SM, Fei J, Ha T, Prasanth SG, Prasanth KV. Natural antisense RNA promotes 3' end processing and maturation of MALAT1 lncRNA. Nucleic Acids Res 2016; 44:2898-908. [PMID: 26826711 PMCID: PMC4824109 DOI: 10.1093/nar/gkw047] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/17/2016] [Indexed: 01/09/2023] Open
Abstract
The RNase P-mediated endonucleolytic cleavage plays a crucial role in the 3′ end processing and cellular accumulation of MALAT1, a nuclear-retained long noncoding RNA that promotes malignancy. The regulation of this cleavage event is largely undetermined. Here we characterize a broadly expressed natural antisense transcript at the MALAT1 locus, designated as TALAM1, that positively regulates MALAT1 levels by promoting the 3′ end cleavage and maturation of MALAT1 RNA. TALAM1 RNA preferentially localizes at the site of transcription, and also interacts with MALAT1 RNA. Depletion of TALAM1 leads to defects in the 3′ end cleavage reaction and compromises cellular accumulation of MALAT1. Conversely, overexpression of TALAM1 facilitates the cleavage reaction in trans. Interestingly, TALAM1 is also positively regulated by MALAT1 at the level of both transcription and RNA stability. Together, our data demonstrate a novel feed-forward positive regulatory loop that is established to maintain the high cellular levels of MALAT1, and also unravel the existence of sense-antisense mediated regulatory mechanism for cellular lncRNAs that display RNase P-mediated 3′ end processing.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois Urbana, IL 61801, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama 351-0198, Japan
| | | | - Jingyi Fei
- Center for Physics of living cells, Department of Physics, University of Illinois, Urbana, IL, USA
| | - Taekjip Ha
- Center for Physics of living cells, Department of Physics, University of Illinois, Urbana, IL, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois Urbana, IL 61801, USA
| | | |
Collapse
|
70
|
Xue Y, Ma G, Zhang Z, Hua Q, Chu H, Tong N, Yuan L, Qin C, Yin C, Zhang Z, Wang M. A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer. Oncotarget 2016; 6:484-93. [PMID: 25514464 PMCID: PMC4381609 DOI: 10.18632/oncotarget.2861] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022] Open
Abstract
Antisense long noncoding RNAs (lncRNAs) play important roles in regulating the expression of coding genes in post-transcriptional level. However, detailed expression profile of lncRNAs and functions of antisense lncRNAs in bladder cancer remains unclear. To investigate regulation of lncRNAs in bladder cancer and demonstrate their functions, we performed lncRNAs microarray analysis in 3 paired bladder cancer tissues. Further molecular assays were conducted to determine the potential role of identified antisense lncRNA MDC1-AS. As a result, a series of lncRNAs were differentially expressed in bladder cancer tissues in microarray screen. In a larger size of samples validation, we found that the expression levels of MDC1-AS and MDC1 was down-regulated in bladder cancer. After over-expression of MDC1-AS, increased levels of MDC1 were observed in bladder cancer cells. We also found a remarkably inhibitory role of antisense lncRNA MDC1-AS on malignant cell behaviors in bladder cancer cells EJ and T24. Subsequently, knockdown of MDC1 revealed that suppressing role of MDC1-AS was attributed to up-regulation of MDC1. In summary, we have identified a novel antisense lncRNA MDC1-AS, which may participate in bladder cancer through up-regulation of its antisense tumor-suppressing gene MDC1. Further studies should be conducted to demonstrate detailed mechanism of our findings.
Collapse
Affiliation(s)
- Yao Xue
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Qiuhan Hua
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
71
|
Liu YR, Tang RX, Huang WT, Ren FH, He RQ, Yang LH, Luo DZ, Dang YW, Chen G. Long noncoding RNAs in hepatocellular carcinoma: Novel insights into their mechanism. World J Hepatol 2015; 7:2781-2791. [PMID: 26668690 PMCID: PMC4670950 DOI: 10.4254/wjh.v7.i28.2781] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs (lncRNAs) are differentially expressed in HCC and implicate they may play distinct roles in the pathogenesis and metastasis of HCC. However, the underlying mechanisms remain largely unclear. In this review, we summarized the functions and mechanisms of those known aberrantly expressed lncRNAs identified in human HCC tissues. We hope to enlighten more comprehensive researches on the detailed mechanisms of lncRNAs and their application in clinic, such as being used as diagnostic and prognostic biomarkers and the targets for potential therapy. Although studies on lncRNAs in HCC are still deficient, an improved understanding of the roles played by lncRNAs in HCC will lead to a much more effective utilization of those lncRNAs as novel candidates in early detection, diagnosis, prevention and treatment of HCC.
Collapse
|
72
|
Mohankumar S, Patel T. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Brief Funct Genomics 2015; 15:249-56. [PMID: 26634812 PMCID: PMC4880007 DOI: 10.1093/bfgp/elv058] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Analysis of extracellular vesicles (EV) and their contents may be useful as disease biomarkers if they reflect the contents of cells of origin, differ between normal and diseased tissue and can be reliably detected. An increasing number of long noncoding RNA (lncRNA) are being reported to be aberrantly expressed in human cancers. These tumor-associated lncRNA may have potential as new biomarkers of disease. In this review, we highlight lncRNAs that are commonly associated with hepatocellular cancer, and summarize their potential biological roles and underlying molecular mechanisms. While lncRNA can be detected in the circulation, their low expression within circulating vesicles will require the use of highly sensitive detection technologies such as digital polymerase chain reaction or next-generation sequencing. While the integrity and functional role of tumor-specific lncRNAs within EV have yet to be established, their presence or enrichment within tumor cell-derived EV offers promise for their potential as disease biomarkers.
Collapse
|
73
|
Long non-coding RNA CARLo-5 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Clin Exp Med 2015; 17:33-43. [PMID: 26433964 DOI: 10.1007/s10238-015-0395-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
Abstract
Recently, many studies show that long non-coding RNAs (lncRNAs) play important roles in cancer biology. Although its expression was reported dysregulated during tumorigenesis, the contributions of lncRNAs to hepatocellular carcinoma (HCC) are still largely unknown. In particular, the lncRNA CARLo-5 has a functional role in cell-cycle regulation in colon cancer, while the clinical significance and biological function of CARLo-5 in HCC remain unelucidated. In order to fill those study blanks, the expression level of CARLo-5 in human HCC specimens was tested, and its correlation with clinicopathologic features as well as the prognosis for patients with HCC was analyzed. Additionally, MTT, wound healing and transwell assays were employed to investigate the biological function of CARLo-5. The results showed that CARLo-5 levels were significantly overexpressed in HCC tissues compared to ANLT. Besides, high expression of CARLo-5 was associated with liver cirrhosis (P = 0.001), tumor number (P < 0.001), vascular invasion (P = 0.001), capsular formation (P = 0.014) and Edmondson-Steiner grade (P < 0.001), which proved that CARLo-5 was an independent risk factor for overall survival and disease-free survival. In addition, in highly metastatic HCC cell lines (HCCLM3 and MHCC97-L), CARLo-5 was up-regulated, but in lowly metastatic HCC cell lines (HepG2, SNU387), it showed down-regulated. Besides, by using gain and loss of function experiments in HCC cell lines (HCCLM3 and HepG2), the results showed that CARLo-5 overexpression significantly enhanced cell proliferation, migration and invasion in vitro. Our study also revealed that CARLo-5 was prominently up-regulated in HCC specimens and its high expression was associated with poor prognosis of HCC patients. Totally, those findings together indicate that CARLo-5 promotes proliferation and metastasis of HCC and potentially emerged as a novel therapeutic target.
Collapse
|
74
|
Ni B, Yu X, Guo X, Fan X, Yang Z, Wu P, Yuan Z, Deng Y, Wang J, Chen D, Wang L. Increased urothelial cancer associated 1 is associated with tumor proliferation and metastasis and predicts poor prognosis in colorectal cancer. Int J Oncol 2015; 47:1329-1338. [PMID: 26238511 DOI: 10.3892/ijo.2015.3109] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/26/2015] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNA, urothelial cancer associated 1 (UCA1), is reported to play a critical role in progression of carcinogenesis. In the present study, we identified differential expression of UCA1 in colorectal cancer (CRC) and paired peritumoral tissues using gene expression microarray analyses. qPCR analysis confirmed that UCA1 was upregulated in CRC (p<0.001) and the expression of UCA1 was statistically correlated with lymph node metastasis (P=0.040), distant metastasis (P=0.043) and tumor stage (P=0.010). Kaplan-Meier analysis indicated that patients with high UCA1 expression had a poor prognosis. Moreover, multivariate analysis identified UCA1 overexpression as an independent predictor for CRC. We also found that knockdown of UCA1 significantly suppressed cell proliferation and metastasis in CRC cells. Flow cytometry assays showed UCA1 silencing induced G0/G1 growth arrest and apoptosis of CRC cells. To further investigate the regulatory mechanisms of UCA1, we identified that Ets-2 bound to the UCA1 core promoter using luciferase assays. Collectively, our findings suggested that UCA1 might be an important prognostic indicator in CRC and may be a potential target for diagnosis and gene therapy.
Collapse
Affiliation(s)
- Beibei Ni
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xihu Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiaoyan Guo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xinjuan Fan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zihuan Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Peihuang Wu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zixu Yuan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Dianke Chen
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lei Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
75
|
Bo H, Gong Z, Zhang W, Li X, Zeng Y, Liao Q, Chen P, Shi L, Lian Y, Jing Y, Tang K, Li Z, Zhou Y, Zhou M, Xiang B, Li X, Yang J, Xiong W, Li G, Zeng Z. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget 2015; 6:20404-18. [PMID: 26246469 PMCID: PMC4653014 DOI: 10.18632/oncotarget.4057] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 02/03/2023] Open
Abstract
Altered expression of long noncoding RNAs (lncRNAs) associated with human carcinogenesis. We performed a cDNA microarray analysis of lncRNA expression in 12 cases of nasopharyngeal carcinoma (NPC) and 4 non-tumor nasopharyngeal epitheliums. One lncRNA, actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), was identified and selected for further study. AFAP1-AS1 expression was upregulated in NPC and associated with NPC metastasis and poor prognosis. In vitro experiments demonstrated that AFAP1-AS1 knockdown significantly inhibited the NPC cell migration and invasive capability. AFAP1-AS1 knockdown also increased AFAP1 protein expression. Proteomic and bioinformatics analyses suggested that AFAP1-AS1 affected the expression of several small GTPase family members and molecules in the actin cytokeratin signaling pathway. AFAP1-AS1 promoted cancer cell metastasis via regulation of actin filament integrity. AFAP1-AS1 might be a potential novel marker that can predict cancer patient prognosis and as a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Hao Bo
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yizhou Jing
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ke Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zheng Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianbo Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Xiong
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
76
|
Yuan SX, Zhang J, Xu QG, Yang Y, Zhou WP. Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma. Cancer Lett 2015; 379:239-44. [PMID: 26282784 DOI: 10.1016/j.canlet.2015.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
The epigenetic mechanism that incorporates DNA methylation alterations, histone modifications, and non-coding RNA expression has been identified as a major characteristic in distinguishing physiological and pathological settings of cancers including hepatocellular carcinoma (HCC), the third leading cause of mortality related cancer. The advance in methylation modification of chromatin elements (for both genomic DNA and histone tails) and the emerging roles of long noncoding RNA (lncRNA) have given us a better understanding of molecular mechanisms underlying HCC. Recently, methods like genome-wide lncRNA profiling and histone hallmark detection were reported to discover mass tumor-associated lncRNAs epigenetically deregulated by differential chromosome modification, mainly by genomic DNA and histone methylation. Therefore, aberrant methylation modification of certain particular lncRNA genes could be crucial events correlating with unfavorable outcomes in HCC. In addition, amount of lncRNAs could act as a manipulator for DNA methylation or a scaffold for histone modification to affect key signaling pathways in hepatocarcinogenesis. This suggests that methylation modification of chromatin elements may have functional crosstalk with lncRNA. Here, we aim to outline the emerging role of the methylation and lncRNA, and their crosstalk of molecular mechanism.
Collapse
Affiliation(s)
- Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
77
|
Zeng Z, Bo H, Gong Z, Lian Y, Li X, Li X, Zhang W, Deng H, Zhou M, Peng S, Li G, Xiong W. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumour Biol 2015; 37:729-37. [PMID: 26245991 DOI: 10.1007/s13277-015-3860-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cancer. Significant fraction of lncRNAs is represented on widely used microarray platforms; however, many of which have no known function. To discover novel lung cancer-related lncRNAs, we analyzed the lncRNA expression patterns in five sets of previously published lung cancer gene expression profile data that were represented on Affymetrix HG-U133 Plus 2.0 array, and identified dysregulated lncRNAs in lung cancer. One lncRNA, actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), was the most significantly upregulated in lung cancer and associated with poor prognosis. In vitro experiments demonstrated that AFAP1-AS1 knockdown significantly inhibited the cell invasive and migration capability in lung cancer cells. AFAP1-AS1 knockdown also increased the expression of its antisense protein coding gene, actin filament associated protein 1 (AFAP1), and affected the expression levels of several small GTPase family members and molecules in the actin cytokeratin signaling pathway, which suggested that AFAP1-AS1 promoted cancer cell metastasis via regulation of actin filament integrity. Our findings extend the number of noncoding RNAs functionally implicated in lung cancer progression and highlight the role of AFAP1-AS1 as potential prognostic biomarker and therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Zhaoyang Zeng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Bo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
78
|
Fatima R, Akhade VS, Pal D, Rao SMR. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana MR Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
79
|
Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312 DOI: 10.1186/s40591-015-0042-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana Mr Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
80
|
Chen WM, Huang MD, Kong R, Xu TP, Zhang EB, Xia R, Sun M, De W, Shu YQ. Antisense Long Noncoding RNA HIF1A-AS2 Is Upregulated in Gastric Cancer and Associated with Poor Prognosis. Dig Dis Sci 2015; 60:1655-62. [PMID: 25686741 DOI: 10.1007/s10620-015-3524-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been recently shown to play important regulatory roles in fundamental biological processes, and many of them are deregulated in several human cancers. LncRNA hypoxia-inducible factor 1alpha antisense RNA-2 (HIF1A-AS2) is overexpressed in nonpapillary clear-cell renal carcinomas and involved in cancer progression. AIM This study was to evaluate the expression of HIF1A-AS2 in gastric cancer (GC) and further explore its biological function in GC cells. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction was used to detect the expression level of HIF1A-AS2 in GC tissues. The correlation of its expression with clinicopathological features was analyzed. Area under receiver operating characteristic curve (ROC(AUC)) was constructed to evaluate the diagnostic value of HIF1A-AS2. Besides, tumor cell proliferation was assessed following knockdown of HIF1A-AS2, by MTT and colony formation assay in vitro, and tumor formation assay in a nude mouse model in vivo. RESULTS The expression of HIF1A-AS2 was upregulated in GC tumorous tissues compared with the adjacent normal tissues (P < 0.001). Its overexpression was correlated with TNM stages (P = 0.008), tumor invasion (P = 0.016), lymph node metastasis (P = 0.042), and poor prognosis (P = 0.001). In addition, ROC(AUC) of HIF1A-AS2 was up to 0.673 (95 % CI 0.596-0.744, P < 0.001). Moreover, knockdown of HIF1A-AS2 expression by siRNA could inhibit cell proliferation in vitro and tumorigenesis in vivo. CONCLUSIONS HIF1A-AS2 is overexpressed in GC and may play a pivotal role in tumor cell proliferation. It can be used as a potential diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Wen-Ming Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu Province, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Yang ZG, Gao L, Guo XB, Shi YL. Roles of long non-coding RNAs in gastric cancer metastasis. World J Gastroenterol 2015; 21:5220-5230. [PMID: 25954095 PMCID: PMC4419062 DOI: 10.3748/wjg.v21.i17.5220] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/18/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-related deaths. Metastasis, which is an important element of gastric cancer, leads to a high mortality rate and to a poor prognosis. Gastric cancer metastasis has a complex progression that involves multiple biological processes. The comprehensive mechanisms of metastasis remain unclear, though traditional regulation modulates the molecular functions associated with metastasis. Long non-coding RNAs (lncRNAs) have a role in different gene regulatory pathways by epigenetic modification and by transcriptional and post-transcription regulation. lncRNAs participate in various diseases, including Alzheimer’s disease, cardiovascular disease, and cancer. The altered expressions of certain lncRNAs are linked to gastric cancer metastasis and invasion, as with tumor suppressor genes or oncogenes. Studies have partly elucidated the roles of lncRNAs as biomarkers and in therapies, as well as their gene regulatory mechanisms. However, comprehensive knowledge regarding the functional mechanisms of gene regulation in metastatic gastric cancer remains scarce. To provide a theoretical basis for therapeutic intervention in metastatic gastric cancer, we reviewed the functions of lncRNAs and their regulatory roles in gastric cancer metastasis.
Collapse
|
82
|
Yang X, Xie X, Xiao YF, Xie R, Hu CJ, Tang B, Li BS, Yang SM. The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett 2015; 360:119-24. [PMID: 25721084 DOI: 10.1016/j.canlet.2015.02.035] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. However, the treatments for HCC are limited, and most of them are only available to the early stage. In the later stages, traditional chemotherapy has only marginal effects and may include toxicity. Thus, the identification of new predictive markers is urgently needed. New targets for non-conventional treatments will help to accelerate research on the molecular pathogenesis of HCC. A new class of transcripts, long non-coding RNAs (lncRNAs), has recently been found to be pervasively transcribed in the human genome. Aberrant expression of several lncRNAs was found to be involved in the tumorigenesis of HCC. In this review, we describe the possible molecular mechanisms that underlie lncRNA expression changes in HCC, as well as potential future applications of lncRNA research in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Rei Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Bo-Sheng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
83
|
|
84
|
Sun J, Bie B, Zhang S, Yang J, Li Z. Long non-coding RNAs: critical players in hepatocellular carcinoma. Int J Mol Sci 2014; 15:20434-48. [PMID: 25387074 PMCID: PMC4264176 DOI: 10.3390/ijms151120434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex disease with multiple underlying pathogenic mechanisms caused by a variety of etiologic factors. Emerging evidence showed that long non-coding RNAs (lncRNAs), with size larger than 200 nucleotides (nt), play important roles in various types of cancer development and progression. In recent years, some dysregulated lncRNAs in HCC have been revealed and roles for several of them in HCC have been characterized. All these findings point to the potential of lncRNAs as prospective novel therapeutic targets in HCC. In this review, we summarize known dysregulated lncRNAs in HCC, and review potential biological roles and underlying molecular mechanisms of lncRNAs in HCC. Additionally, we discussed prospects of lncRNAs as potential biomarker and therapeutic target for HCC. In conclusion, this paper will help us gain better understanding of molecular mechanisms by which lncRNAs perform their function in HCC and also provide general strategies and directions for future research.
Collapse
Affiliation(s)
- Jin Sun
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Beibei Bie
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Shu Zhang
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Jun Yang
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
85
|
Zhao J, Greene CM, Gray SG, Lawless MW. Long noncoding RNAs in liver cancer: what we know in 2014. Expert Opin Ther Targets 2014; 18:1207-18. [PMID: 25145388 DOI: 10.1517/14728222.2014.941285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with an estimated over half a million new cases diagnosed annually. Due to the difficulty in early diagnosis and lack of effective treatment options, HCC is currently ranked as the second highest neoplastic-related mortality in the world, with an extremely low 5-year survival rate of between 6 and 11%. Long noncoding RNAs (lncRNAs), are genes lacking protein coding ability, have recently emerged as pivotal participants in biological processes, often dysregulated in a range of cancers, including HCC. AREAS COVERED In this review, we highlight the recent findings of lncRNAs in HCC pathogenesis, with particular attention on epigenetic events. In silico analysis was utilized to emphasize intrinsic linkages within the ncRNA families associated with hepatocarcinogenesis. EXPERT OPINION While our understanding of lncRNAs in the onset and progression of HCC is still in its infancy, there is no doubt that understanding the activities of ncRNAs will certainly secure strong biomarkers and improve treatment options for HCC patients.
Collapse
Affiliation(s)
- Jun Zhao
- Experimental Medicine, UCD School of Medicine and Medical Science, Mater Misericordiae University Hospital, Catherine McAuley Centre, Nelson Street , Dublin 7 , Ireland
| | | | | | | |
Collapse
|