51
|
Cidreira ACM, de Castro KC, Hatami T, Linan LZ, Mei LHI. Cellulose nanocrystals-based materials as hemostatic agents for wound dressings: a review. Biomed Microdevices 2021; 23:43. [PMID: 34491430 DOI: 10.1007/s10544-021-00581-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/18/2022]
Abstract
Wound dressings are devices used to stop bleeding and provide appropriate environmental conditions to accelerate wound healing. The effectiveness of wound dressing materials can be crucial to prevent deaths from excessive bleeding in surgeries and promote complete restoration of the injury. Some requirements for an ideal wound dressing are rapid hemostatic effect, high swelling capacity, antibacterial properties, biocompatibility, biodegradability, and mechanical strength. However, finding all these properties in a single material remains a challenge. In this context, nanocomposites have demonstrated an excellent capacity for this application because of their multifunctionality. One of the emerging materials used in nanocomposite manufacture is cellulose nanocrystals (CNCs), which are rod-like crystalline nanometric structures present on cellulose chains. These nanoparticles are attractive for wound healing applications because of their high aspect ratio, high mechanical properties, functionality and low density. Hence, this work aimed to present an overview of nanocomposites constituted by CNCs for wound healing applications. The review focuses on the most common materials used as matrices, the types of dressing, and their fabrication techniques. Novel wound dressings composites have improved hemostatic, swelling, and mechanical properties compared to other pure biopolymers while preserving their other biological properties. Films, nanofibers mats, sponges, and hydrogels have been prepared with CNCs nanocomposites, and in vitro and in vivo tests have proved their suitability for wound healing.
Collapse
Affiliation(s)
- Anne Carolyne Mendonça Cidreira
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil.
| | - Karine Cappuccio de Castro
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil
| | - Tahmasb Hatami
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil
| | - Lamia Zuniga Linan
- Laboratory of Materials and Process Engineering (LaMEP), Chemical Engineering Department (DEEQ), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1933, Bacanga, São Luís, MA, CEP 65080-805, Brazil
| | - Lucia Helena Innocentini Mei
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil
| |
Collapse
|
52
|
Oun AA, Kamal KH, Farroh K, Ali EF, Hassan MA. Development of fast and high-efficiency sponge-gourd fibers (Luffa cylindrica)/hydroxyapatite composites for removal of lead and methylene blue. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
53
|
|
54
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
55
|
|
56
|
Sun R, Zhu J, Wu H, Wang S, Li W, Sun Q. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities. Int J Biol Macromol 2021; 180:510-522. [PMID: 33745975 DOI: 10.1016/j.ijbiomac.2021.03.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
In this work, 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanocrystals (TOCNs) were loaded into sodium alginate/chitosan multilayer film as nanofillers to investigate the modulation of the surface charge density of TOCNs on the film properties. First, the surface charge density of TOCNs was controlled by adjusting the carboxyl content and morphological size by varying the oxidant dosage. After oxidation, TOCN with higher surface charge density was observed to display a higher crystallinity, a more open internal structure, a better dispersibility and a slightly weaker thermal stability. In addition, a 15-layer film composed of sodium alginate and chitosan, called (SA/CH)15, was constructed by layer-by-layer assembly. Both in situ deposition monitoring and free-standing multilayer film formation indicated that TOCNs relied on strong electrostatic interactions and hydrogen bonding to achieve a compact and uniform interlayer and a thinner thickness of (SA/CH)15, which was more evident at a high surface charge density. The addition of TOCNs also enhanced the mechanical properties, thermal stability, hydrophobicity, and barrier properties of (SA/CH)15. In particular, the resulting sodium alginate/chitosan multilayer film exhibited an improved packaging performance when nanocomposite was performed using TOCN with a surface charge density of 3.22 ± 0.11 e nm-2.
Collapse
Affiliation(s)
- Ruonan Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China.
| | - Shiqing Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Wenxiang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| |
Collapse
|
57
|
Naidu DS, John MJ. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. Int J Biol Macromol 2021; 179:448-456. [PMID: 33711367 DOI: 10.1016/j.ijbiomac.2021.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Cellulose nanofibrils (CNFs) can be used as an effective reinforcement material for biopolymer films intended for food packaging applications. The aim of this study was to improve the mechanical and barrier properties of xylan-alginate films by incorporating CNFs into the xylan-alginate matrix. CNFs was produced from maize stalk waste residues through a combination of chemical and mechanical treatment. The CNFs was incorporated into the xylan-alginate matrix between 1 and 10 wt%. The suitability of the CNFs reinforced composite films for food packaging applications was investigated by testing the mechanical, thermal and optical properties as well as the moisture sorption, solubility and water vapour permeability of the films. The CNFs produced had fibre diameters between 10 and 80 nm and transmission electron microscopy images showed that the CNFs were highly entangled hence forming a web like structure. It was found that the incorporation of CNFs into the xylan-alginate matrix increased the tensile strength and Young's modulus of the films. The incorporation of CNFs improved the WVP of the films but did not show any significant effect on the thermal properties of the films.
Collapse
Affiliation(s)
- Darrel Sarvesh Naidu
- Centre for Nanostructures and Advanced Materials, CSIR, South Africa; Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Maya Jacob John
- Centre for Nanostructures and Advanced Materials, CSIR, South Africa; Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa.
| |
Collapse
|
58
|
Ceaser R, Chimphango AFA. Comparative analysis of physical and functional properties of cellulose nanofibers isolated from alkaline pre-treated wheat straw in optimized hydrochloric acid and enzymatic processes. Int J Biol Macromol 2021; 171:331-342. [PMID: 33422512 DOI: 10.1016/j.ijbiomac.2021.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Two methods, HCl and enzymatic treatments, were evaluated for diversification of morphological and functional properties of cellulose nanofibers (CNF) from two- stage-alkaline pre-treated wheat straw (WS). The extraction conditions were optimized by a central composite designed experimental approach varying time (4-8 h) and temperature (80-120 °C) for the HCl-based treatment and time (4-8 h), and FiberCare dosage (50-100 endo-1,4-β-glucanase unit/g) and Viscozyme (10-20 fungal β-glucanase units/g) for the enzyme-based treatment. The CNF yields, morphological (polydispersity index (PdI), length and diameter), and functional (crystallinity and thermal degradation) properties were compared. The CNF produced by the HCl (HCN) and enzymatically (ECN) attained diameters ~17 nm had PdI, length, and crystallinity of 0.53, 514 nm & 70%, and 0.92, 1.0 μm & 48%, respectively. Thus, the HCN morphology suits homogenous nano-applications, whereas that of the ECN, would suit heterogenous nano-applications. The HCN and ECN yields were similar (~20%) with optimal production time of 7.41 and 4.64 h, respectively. Both the HCN & ECN can be classified as thermally stable nanocolloids with maximum thermal degradation temperatures of ~380 °C and Zeta potential ~-16 mV. The two CNF production methods have potential synergetic effects on CNF production, morphological, and functional properties.
Collapse
Affiliation(s)
- Regan Ceaser
- Process Engineering Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Annie F A Chimphango
- Process Engineering Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
59
|
Li H, Shi H, He Y, Fei X, Peng L. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int J Biol Macromol 2020; 164:4104-4112. [PMID: 32898536 DOI: 10.1016/j.ijbiomac.2020.09.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Pea hull is a renewable, readily available and abundant agricultural waste whose high-value utilization deserves more attentions. This work aimed at the isolation of cellulose nanocrystals (CNC) from pea hull and evaluation its reinforcement capability for carboxymethyl cellulose (CMC) film. The obtained CNC displayed needle-like shapes with length of 81-286 nm, diameter of 8-21 nm, aspect ratio of 16 and crystallinity index of 0.77. The effects of CNC content on the morphologies, optical, mechanical, water vapor barrier and thermal properties of CMC/CNC films were investigated. SEM images showed that the CNC was evenly distributed in the CMC matrix to form homogenous films when the content of CNC was ≤5 wt%. The CMC/CNC composite films showed improved UV barrier, mechanical strength, water vapor barrier and thermal stability. Compared with pure CMC film, an increase of 50.8% in tensile strength and a decrease of 53.4% in water vapor permeability were observed for 5 wt% CNC-reinforced composite film. Furthermore, 5 wt% CNC-reinforced composite film was used for red chilies packaging, which is very effective at reducing weight loss and maintaining vitamin C compared with uncoated red chilies. These results indicated that the CMC/CNC composite film may have promising application potential as edible food packaging material.
Collapse
Affiliation(s)
- Hui Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongbo Shi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunqing He
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiang Fei
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
60
|
Kusmono, Listyanda RF, Wildan MW, Ilman MN. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 2020; 6:e05486. [PMID: 33235939 PMCID: PMC7670211 DOI: 10.1016/j.heliyon.2020.e05486] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/28/2020] [Accepted: 11/06/2020] [Indexed: 01/13/2023] Open
Abstract
Cellulose nanocrystals (CNCs) were isolated from ramie fibers through chemical pretreatments accompanied by sulfuric acid hydrolysis. The influences of both temperature and hydrolysis time on the properties of CNCs were discussed in the present study. The characterization of CNCs was conducted using FT-IR, XRD, TEM, and TGA. The results showed the characteristics of obtained CNCs were influenced significantly by both temperature and time of hydrolysis. The crystallinity, dimensions, and thermal stability of CNCs were found to reduce by increasing both temperature and reaction time of hydrolysis. The optimal hydrolysis parameters were achieved at 45 °C for 30 min with 58% sulfuric acid to produce CNCs, rod-like particles with a high crystallinity (90.77%), diameter (6.67 nm), length (145.61 nm), and best thermal stability among all CNCs. The obtained CNCs had a higher potential for application of alternative reinforcing fillers in the nanocomposites.
Collapse
Affiliation(s)
- Kusmono
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta, 55281, Indonesia
| | - R. Faiz Listyanda
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta, 55281, Indonesia
| | - Muhammad Waziz Wildan
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta, 55281, Indonesia
| | - Mochammad Noer Ilman
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta, 55281, Indonesia
| |
Collapse
|
61
|
Zhang W, Zhang Y, Cao J, Jiang W. Improving the performance of edible food packaging films by using nanocellulose as an additive. Int J Biol Macromol 2020; 166:288-296. [PMID: 33129905 DOI: 10.1016/j.ijbiomac.2020.10.185] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Due to the environmental pollution problems caused by plastic-based packaging, the development of edible food packaging films is imminent. However, the performance of most edible packaging films is insufficient to meet practical applications, so recent studies have focused on the research of various fillers to improve film properties. This article reviews recent applications of cellulose nanocrystals (CNC) and cellulose nanofiber (CNF) in edible food packaging films including the effect on thickness, optical properties, barrier properties, water sensitivity, mechanical properties, antioxidant and antimicrobial properties. The main conclusion of this review is that the incorporation of CNC and CNF could significantly improve the performance of edible food packaging films. Particular finding is that although CNC and CNF can be used as excellent addition to improve the performance of edible food packaging films, there is a key "optimum" concentration. In addition, we also found that CNC and CNF as excellent controlled release agents and stabilizers significantly increased the antioxidant and antibacterial properties of edible food packaging films.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
62
|
Zhang C, Yang X, Li Y, Qiao C, Wang S, Wang X, Xu C, Yang H, Li T. Enhancement of a zwitterionic chitosan derivative on mechanical properties and antibacterial activity of carboxymethyl cellulose-based films. Int J Biol Macromol 2020; 159:1197-1205. [DOI: 10.1016/j.ijbiomac.2020.05.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
63
|
Coelho CCDS, Silva RBS, Carvalho CWP, Rossi AL, Teixeira JA, Freitas-Silva O, Cabral LMC. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int J Biol Macromol 2020; 159:1048-1061. [DOI: 10.1016/j.ijbiomac.2020.05.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
|
64
|
Sá NMSM, Mattos ALA, Silva LMA, Brito ES, Rosa MF, Azeredo HMC. From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int J Biol Macromol 2020; 161:1337-1345. [PMID: 32777430 DOI: 10.1016/j.ijbiomac.2020.07.269] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
While the cashew culture is focused on processing and commercialization of cashew nuts, the pseudofruit (cashew apples) - highly perishable and of limited acceptance - are mostly wasted. The cashew tree pruning fiber (CTPF) is another interesting cashew byproduct. In this study, films have been made from bacterial cellulose produced from cashew apple juice, and added with lignin (0-15 wt%) and cellulose nanocrystals (0-8 wt%), both from CTPF, which enhanced tensile properties and decreased water vapor permeability of the films. Moreover, lignin, although imparting brown color and opacity to the films, was effective to provide the films with UV-absorbing and antioxidant properties, making the films interesting for packaging of food products susceptible to lipid oxidation. The films did not exhibit antimicrobial activity against bacteria or yeasts.
Collapse
Affiliation(s)
- Nádia M S M Sá
- Federal University of Ceara, Department of Chemical Engineering, Campus Pici, Bl. 709, 60455-760 Fortaleza, CE, Brazil
| | - Adriano L A Mattos
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Fortaleza, CE 60511-110, Brazil
| | - Lorena M A Silva
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Fortaleza, CE 60511-110, Brazil
| | - Edy S Brito
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Fortaleza, CE 60511-110, Brazil
| | - Morsyleide F Rosa
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Fortaleza, CE 60511-110, Brazil
| | - Henriette M C Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Fortaleza, CE 60511-110, Brazil; Embrapa Instrumentação, R. 15 de Novembro, 1452, Caixa Postal 741, São Carlos, SP CEP 13560-970, Brazil.
| |
Collapse
|
65
|
Tavker N, Gaur UK, Sharma M. Agro-waste extracted cellulose supported silver phosphate nanostructures as a green photocatalyst for improved photodegradation of RhB dye and industrial fertilizer effluents. NANOSCALE ADVANCES 2020; 2:2870-2884. [PMID: 36132383 PMCID: PMC9417693 DOI: 10.1039/d0na00181c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
The efficiency and reusability of photocatalysts are the dominant factors for their pragmatic use. The visible light induced semiconductor silver phosphate is a superior photocatalyst effective under visible light but its stability is still an undiscussed issue. To overcome this stability issue in this present manuscript, eco-friendly agro-waste extracted cellulose supported silver phosphate nanostructures have been designed for the first time through a simple chemical process. At first, silver phosphate nanostructures were synthesized by the co-precipitation method. Then, different weights of cellulose were added to the silver nitrate solution to form cellulose supported silver phosphate nanostructures. The photodegradation efficiency for each weight ratio was examined in which the photocatalyst Ag-8 nanostructures showed a high rate (0.024 min-1) for degradation of Rhodamine B (RhB) using a low intensity tungsten bulb. Real sample analysis has also been carried out using this photocatalyst for the degradation of industrial fertilizer effluents. The degradation rate of all the nanostructures was found to be high in comparison to pristine silver phosphate as well as the extracted bare cellulose. The photocatalytic activity is enhanced because of the participation of cellulose as a support which makes an interface for silver phosphate and assists it in delaying the charge recombination period under visible light. To understand the photochemical reaction of electrons and holes, scavenger studies were also performed.
Collapse
Affiliation(s)
- Neha Tavker
- School of Nano Sciences, Central University of Gujarat Sector 30 Gandhinagar 382030 India
| | - Umesh K Gaur
- Department of Physics, National Institute of Technology Jalandhar Punjab 144011 India
| | - Manu Sharma
- School of Nano Sciences, Central University of Gujarat Sector 30 Gandhinagar 382030 India
| |
Collapse
|
66
|
Singh K, Kumar A, Mishra P, Gupta SP. Binding aspects of carboxymethyl cellulose onto polymeric surface from its aqueous solutions. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1786396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kaman Singh
- Advanced Center of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P., India
| | - Ashok Kumar
- Advanced Center of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P., India
| | - Prashant Mishra
- Advanced Center of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P., India
| | - Satya Prakash Gupta
- Advanced Center of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P., India
| |
Collapse
|
67
|
Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. Int J Biol Macromol 2020; 154:1419-1425. [DOI: 10.1016/j.ijbiomac.2019.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
|
68
|
Effect of Cellulose Nanocrystals Nanofiller on the Structure and Sorption Properties of Carboxymethyl Cellulose-Glycerol-Cellulose Nanocrystals Nanocomposite Systems. MATERIALS 2020; 13:ma13132900. [PMID: 32605199 PMCID: PMC7372490 DOI: 10.3390/ma13132900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Biobased materials present a great interest due to their properties and biodegradability. Cellulose nanocrystals (CNC) nanofiller, in various amounts, was incorporated into a carboxymethyl cellulose (CMC)–glycerol (G) matrix in order to obtain nanocomposite systems with improved properties. The effect of the nanofiller on the structural features was investigated by Fourier transform infrared (FT-IR) spectroscopy, principal component analysis (PCA), two-dimensional correlation spectroscopy (2D-COS), and X-ray diffraction, while the sorption properties were evaluated by water vapor isotherms using the gravimetric method coupled with infrared spectroscopy. We observed the presence of the interactions taking place between the CMC-G and CNC involving the hydroxyl and carboxylate groups, which decreased the number of water sorption sites. Following this, the moisture content in the nanocomposite films decreased with the increase in the amount of CNC. Moreover, the bands associated to water molecules presented different wavenumber values separated for CMC-G and CNC components.
Collapse
|
69
|
Pacheco CM, Bustos A C, Reyes G. Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1775092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Claudia Marcela Pacheco
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío , Concepción , Chile
- Centro de Biomateriales y Nanotecnología (CBN), Universidad del Bío-Bío , Concepción , Chile
| | - Cecilia Bustos A
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío , Concepción , Chile
- Centro de Biomateriales y Nanotecnología (CBN), Universidad del Bío-Bío , Concepción , Chile
| | - Guillermo Reyes
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío , Concepción , Chile
- Centro de Biomateriales y Nanotecnología (CBN), Universidad del Bío-Bío , Concepción , Chile
| |
Collapse
|
70
|
Ezati P, Rhim JW, Moradi M, Tajik H, Molaei R. CMC and CNF-based alizarin incorporated reversible pH-responsive color indicator films. Carbohydr Polym 2020; 246:116614. [PMID: 32747254 DOI: 10.1016/j.carbpol.2020.116614] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 10/24/2022]
Abstract
Smart color-changing indicator films were prepared using two different types of cellulose (CMC and CNF) and pH-sensitive dye, alizarin. pH-responsive color indicator films were produced by ionization and deprotonation of hydroxyl groups of alizarin phenolic compounds. The X-ray diffraction pattern of the color indicator film showed a new weak diffraction peak at 2θ = 13°, indicating the semi-crystalline character of alizarin. The indicator film showed UV-vis light screening properties and radical scavenging activity with enhanced thermal stability. The indicator film showed a distinct color change of alizarin from yellow to purple in the pH range of 2-12. In addition, the color indicator film showed stable and reversible color changes even after repeated changes in environmental pH. The pH-responsive color indicator films are likely to be used as an acid or base gas sensor due to the rapid response and reversible color change to the pH change in the packaging environment.
Collapse
Affiliation(s)
- Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
71
|
Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. Int J Biol Macromol 2020; 160:409-417. [PMID: 32416305 DOI: 10.1016/j.ijbiomac.2020.05.066] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022]
Abstract
Bioactive packaging is an alternative new technology for preserving the quality and safety of food products with providing health benefits. In this way, the Lactobacillus plantarum, cellulose nanofiber (CNF) and inulin incorporated carboxymethyl cellulose (CMC) based probiotic nanocomposite film was prepared. The fabricated film samples were characterized by FTIR, FE-SEM, XRD and DSC analyses, that the obtained results indicated the good compatibility between CMC, CNF, and inulin. As a result, the CMC-based probiotic films containing CNF and inulin exhibited satisfactory water barrier and mechanical properties. Additionally, the viability of probiotic bacteria in the CMC-based films was significantly (p < 0.05) increased (36%) by addition of inulin as a prebiotic ingredient during storage time. Probiotic film sample showed antibacterial activity against nine pathogens and also extended the chicken fillet shelf life when wrapped on the meat. In conclusion, the application of CNF and inulin incorporated CMC-based probiotic nanocomposite film as a bioactive food packaging system opens up a new horizon for improving the shelf life of food products and providing the health benefits for consumers.
Collapse
|
72
|
Liu J, Chen P, Qin D, Jia S, Jia C, Li L, Bian H, Wei J, Shao Z. Nanocomposites membranes from cellulose nanofibers, SiO 2 and carboxymethyl cellulose with improved properties. Carbohydr Polym 2020; 233:115818. [PMID: 32059879 DOI: 10.1016/j.carbpol.2019.115818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 01/13/2023]
Abstract
The binary nanocomposites blended by carboxymethyl cellulose (CMC) and SiO2 nanoparticles were constructed to prepare the films with superior thermal stability and flame retardant properties. The incorporation of cellulose nanofibers(CNFs) and SiO2 nanoparticles were followed to prepare ternary nanocomposite films exhibiting excellent mechanical properties. The mechanism and chemical reaction of the thermal decomposition for the CMC/SiO2 composite membrane were proposed, which showed that the mass residuals were Na2CO3, SiO2 and Na2SiO3, Na2CO3 when the content of the SiO2 nanoparticles was lowered and higher than 9.6 %, respectively. Compared with the pure CMC, micro combustion calorimeter (MCC) showed that the total heat release (THR) and the peak heat release rate (PHRR) both decreased from 6.4 kJ/g to 5.8 kJ/g, 134 w/g to 27 w/g, respectively. Moreover, mechanical properties of CMC/CNFs/SiO2 membrane showed that the toughness and rigidity of the nanocomposites increased by 56.0 % and 63.0 % on the basis of CMC, respectively.
Collapse
Affiliation(s)
- Jianxin Liu
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Pan Chen
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Dujian Qin
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Jia
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Jia
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Lei Li
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hongli Bian
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jie Wei
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ziqiang Shao
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
73
|
Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 2020; 154:1050-1073. [PMID: 32201207 DOI: 10.1016/j.ijbiomac.2020.03.163] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/16/2023]
Abstract
Recently, environmental and ecological concerns are increasing due to the usage of petroleum-based products so the synthesis of ultra-fine chemicals and functional materials from natural resources is drawing a tremendous level of attention. Nanocellulose, a unique and promising natural material extracted from native cellulose, may prove to be most ecofriendly materials that are technically and economically feasible in modern times, minimizing the pollution generation. Nanocellulose has gained tremendous attention for its use in various applications, due to its excellent special surface chemistry, physical properties, and remarkable biological properties (biodegradability, biocompatibility, and non-toxicity). Various types of nanocellulose, viz. cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial nanocellulose (BNC), are deeply introduced and compared in this work in terms of sources, production, structures and properties. The metal and metal oxides especially zinc oxide nanoparticles (ZnO-NPs) are broadly used in various fields due to the diversity of functional properties such as antimicrobial and ultraviolet (UV) properties. Thus, the advancement of nanocellulose and zinc oxide nanoparticles (ZnO-NPs)-based composites materials are summarized in this article in terms of the preparation methods and remarkable properties with the help of recent knowledge and significant findings (especially from the past six years reports). The nanocellulose materials complement zinc oxide nanoparticles, where they impart their functional properties to the nanoparticle composites. As a result hybrid nanocomposite containing nanocellulose/zinc oxide composite has shown excellent mechanical, UV barrier, and antibacterial properties. The nanocellulose based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics. Thus the functional composite materials containing nanocellulose and zinc oxide will determine the potential biomedical application for nanocellulose.
Collapse
|
74
|
Kumar A, I Matari IA, Han SS. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Biofabrication 2020; 12:025029. [DOI: 10.1088/1758-5090/ab736e] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Miao X, Lin J, Bian F. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
76
|
Application of Cellulose Nanofibrils Isolated from an Agroindustrial Residue of Peach Palm in Cassava Starch Films. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09626-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
77
|
Ezati P, Rhim JW. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr Polym 2019; 230:115638. [PMID: 31887862 DOI: 10.1016/j.carbpol.2019.115638] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 11/17/2019] [Indexed: 11/16/2022]
Abstract
pH-responsive pectin-based functional films have been prepared by incorporating curcumin and sulfur nanoparticles (SNP). FTIR and SEM results indicated that curcumin and SNP were uniformly dispersed in the pectin to form a well-developed composite film. Addition of curcumin and SNP significantly influenced the surface color and UV-blocking properties of the composite films. The composite films showed a higher water contact angle and thermal stability compared with the neat pectin film, however, the mechanical and water vapor barrier properties did not change significantly. The composite film exhibited antibacterial activity against E. coli and L. monocytogenes, and strong antioxidant activity. When applied to shrimp packaging, the film showed a pH-responsive highly distinctive color change from yellow to orange as the quality of the shrimp changed.
Collapse
Affiliation(s)
- Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
78
|
Osorio-Ruiz A, Avena-Bustillos RJ, Chiou BS, Rodríguez-González F, Martinez-Ayala AL. Mechanical and Thermal Behavior of Canola Protein Isolate Films As Improved by Cellulose Nanocrystals. ACS OMEGA 2019; 4:19172-19176. [PMID: 31763540 PMCID: PMC6868583 DOI: 10.1021/acsomega.9b02460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The effects of cellulose nanocrystals (CNCs) (12, 24, and 36% w/w) on the microstructure and mechanical and thermal properties of canola protein isolate films were evaluated. The incorporation of cellulose nanocrystals led to homogeneous films, and new Fourier transform infrared peaks appeared at 1055 cm-1, indicating the presence and the interaction of CNCs with proteins and glycerol. The addition of CNCs also improved the thermal stability of the films, since higher temperatures were required for their thermal decomposition. In addition, CNC addition resulted in an increase in tensile strength and a decrease in elongation at break values due to strong interactions between the OH groups in proteins, glycerol, and CNCs.
Collapse
Affiliation(s)
- Alex Osorio-Ruiz
- Instituto
Politécnico Nacional, CEPROBI-IPN, Km 6 Carretera Yautepec-Jojutla, Calle Ceprobi
8, Col. San Isidro, Yautepec, Morelos 62731, México
| | - Roberto J. Avena-Bustillos
- Healthy Processed Foods Research, Western Regional
Research Center,
Agricultural Research Service and Bioproducts Research Unit, Western Regional
Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Bor-Sen Chiou
- Healthy Processed Foods Research, Western Regional
Research Center,
Agricultural Research Service and Bioproducts Research Unit, Western Regional
Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Francisco Rodríguez-González
- Instituto
Politécnico Nacional, CEPROBI-IPN, Km 6 Carretera Yautepec-Jojutla, Calle Ceprobi
8, Col. San Isidro, Yautepec, Morelos 62731, México
| | - Alma-Leticia Martinez-Ayala
- Instituto
Politécnico Nacional, CEPROBI-IPN, Km 6 Carretera Yautepec-Jojutla, Calle Ceprobi
8, Col. San Isidro, Yautepec, Morelos 62731, México
| |
Collapse
|
79
|
Oun AA, Rhim JW. Preparation of multifunctional carboxymethyl cellulose-based films incorporated with chitin nanocrystal and grapefruit seed extract. Int J Biol Macromol 2019; 152:1038-1046. [PMID: 31751738 DOI: 10.1016/j.ijbiomac.2019.10.191] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
Chitin nanocrystals (ChNC) were isolated from shrimp shells powder using acid hydrolysis and ammonium persulfate methods. Multifunctional carboxymethyl cellulose (CMC) composite films were prepared by adding ChNC and grapefruit seed extract (GSE), and their effects on the optical, mechanical, water vapor barrier, and antibacterial properties of CMC film were investigated. The isolated ChNC had a needle-like structure with a length of 340-370 nm and a diameter of 18-20 nm depending on the isolation method. The CMC films prepared with ChNC and GSE were transparent with high UV barrier properties. The addition of GSE reduced the strength (TS) and stiffness (EM) of CMC films by 10.4% and 30.3%, respectively, while the flexibility (EB) increased by 17.7%. However, when the ChNC was added, the TS and EM of CMC film increased by 19.7% and 58.7%, respectively, and the EB remained the same. The addition of ChNC reduced the water vapor permeability (WVP) of the CMC film by 27%. CMC films containing GSE also showed strong antibacterial activity against foodborne pathogenic bacteria, E. coli and L. monocytogenes.
Collapse
Affiliation(s)
- Ahmed A Oun
- Food Engineering and Packaging Department, Food Technology Research Institute, Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
80
|
Kumar A, Matari IAI, Choi H, Kim A, Suk YJ, Kim JY, Han SS. Development of halloysite nanotube/carboxylated-cellulose nanocrystal-reinforced and ionically-crosslinked polysaccharide hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109983. [DOI: 10.1016/j.msec.2019.109983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
|
81
|
Franco TS, Potulski DC, Viana LC, Forville E, de Andrade AS, de Muniz GIB. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr Polym 2019; 218:8-19. [DOI: 10.1016/j.carbpol.2019.04.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
|
82
|
Toro-Trochez JL, Carrillo-Pedraza ES, Bustos-Martínez D, García-Mateos FJ, Ruiz-Rosas RR, Rodríguez-Mirasol J, Cordero T. Thermogravimetric characterization and pyrolysis of soybean hulls. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
83
|
Ahmadi R, Ghanbarzadeh B, Ayaseh A, Kafil HS, Özyurt H, Katourani A, Ostadrahimi A. The antimicrobial bio-nanocomposite containing non-hydrolyzed cellulose nanofiber (CNF) and Miswak (Salvadora persica L.) extract. Carbohydr Polym 2019; 214:15-25. [DOI: 10.1016/j.carbpol.2019.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 01/10/2023]
|
84
|
Oun AA, Shankar S, Rhim JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 2019; 60:435-460. [PMID: 31131614 DOI: 10.1080/10408398.2018.1536966] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nanocellulose materials are derived from cellulose, the most abundant biopolymer on the earth. Nanocellulose have been extensively used in the field of food packaging materials, wastewater treatment, drug delivery, tissue engineering, hydrogels, aerogels, sensors, pharmaceuticals, and electronic sectors due to their unique chemical structure and excellent mechanical properties. On the other hand, metal and metal oxide nanoparticles (NP) such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP have a variety of functional properties such as UV-barrier, antimicrobial, and magnetic properties. Recently, nanocelluloses materials have been used as a green template for producing metal or metal oxide nanoparticles. As a result, multifunctional nanocellulose/metal or metal oxide hybrid nanomaterials with high antibacterial properties, ultraviolet barrier properties, and mechanical properties were prepared. This review emphasized recent information on the synthesis, properties, and potential applications of multifunctional nanocellulose-based hybrid nanomaterials with metal or metal oxides such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP. The nanocellulose-based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics.
Collapse
Affiliation(s)
- Ahmed A Oun
- Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Shiv Shankar
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
85
|
Jamróz E, Kulawik P, Kopel P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers (Basel) 2019; 11:E675. [PMID: 31013855 PMCID: PMC6523406 DOI: 10.3390/polym11040675] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
86
|
Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M. Optimized fabrication of newly cholesterol biosensor based on nanocellulose. Int J Biol Macromol 2019; 126:1213-1222. [DOI: 10.1016/j.ijbiomac.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 01/05/2023]
|
87
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
88
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
89
|
LAURETH JCU, MORAES AJD, FRANÇA DLBD, FLAUZINO NETO WP, BRAGA GC. Physiology and quality of 'Tahiti' acid lime coated with nanocellulose-based nanocomposites. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.21717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
90
|
|
91
|
El Achaby M, El Miri N, Hannache H, Gmouh S, Ben youcef H, Aboulkas A. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int J Biol Macromol 2018; 117:592-600. [DOI: 10.1016/j.ijbiomac.2018.05.201] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/20/2023]
|
92
|
Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Wu QX, Guan YX, Yao SJ. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
94
|
Chakrabarty A, Teramoto Y. Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them. Polymers (Basel) 2018; 10:E517. [PMID: 30966551 PMCID: PMC6415375 DOI: 10.3390/polym10050517] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the research on nanocellulose composites with polymers has made significant contributions to the development of functional and sustainable materials. This review outlines the chemistry of the interaction between the nanocellulose and the polymer matrix, along with the extent of the reinforcement in their nanocomposites. In order to fabricate well-defined nanocomposites, the type of nanomaterial and the selection of the polymer matrix are always crucial from the viewpoint of polymer⁻filler compatibility for the desired reinforcement and specific application. In this review, recent articles on polymer/nanocellulose composites were taken into account to provide a clear understanding on how to use the surface functionalities of nanocellulose and to choose the polymer matrix in order to produce the nanocomposite. Here, we considered cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) as the nanocellulosic materials. A brief discussion on their synthesis and properties was also incorporated. This review, overall, is a guide to help in designing polymer/nanocellulose composites through the utilization of nanocellulose properties and the selection of functional polymers, paving the way to specific polymer⁻filler interaction.
Collapse
Affiliation(s)
- Arindam Chakrabarty
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Yoshikuni Teramoto
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
95
|
Effects of chitosan quaternary ammonium salt on the physicochemical properties of sodium carboxymethyl cellulose-based films. Carbohydr Polym 2018; 184:37-46. [DOI: 10.1016/j.carbpol.2017.12.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023]
|
96
|
Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym 2018; 184:164-170. [DOI: 10.1016/j.carbpol.2017.12.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
97
|
Dagnino EP, Felissia FE, Chamorro E, Area MC. Studies on lignin extraction from rice husk by a soda-ethanol treatment: Kinetics, separation, and characterization of products. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
98
|
Shahrousvand M, Tabar FA, Shahrousvand E, Babaei A, Hasani-Sadrabadi MM, Sadeghi GMM, Jafari H, Salimi A. High aspect ratio phospho-calcified rock candy-like cellulose nanowhiskers of wastepaper applicable in osteogenic differentiation of hMSCs. Carbohydr Polym 2017; 175:293-302. [DOI: 10.1016/j.carbpol.2017.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
99
|
Effect of oxidized chitin nanocrystals isolated by ammonium persulfate method on the properties of carboxymethyl cellulose-based films. Carbohydr Polym 2017; 175:712-720. [DOI: 10.1016/j.carbpol.2017.08.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
|
100
|
Shankar S, Rhim JW. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|