51
|
Li R, Qin X, Liu S, Zhang X, Zeng X, Guo H, Wang T, Zhang Y, Zhang J, Zhang J, Wang J. [HNMP]HSO4 catalyzed synthesis of selenized polysaccharide and its immunomodulatory effect on RAW264.7 cells via MAPKs pathway. Int J Biol Macromol 2020; 160:1066-1077. [DOI: 10.1016/j.ijbiomac.2020.05.261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
52
|
Geraniol protects against cyclophosphamide-induced hepatotoxicity in rats: Possible role of MAPK and PPAR-γ signaling pathways. Food Chem Toxicol 2020; 139:111251. [DOI: 10.1016/j.fct.2020.111251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
|
53
|
Li MZ, Huang XJ, Hu JL, Cui SW, Xie MY, Nie SP. The protective effects against cyclophosphamide (CTX)-induced immunosuppression of three glucomannans. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Huang L, Shen M, Wu T, Yu Y, Yu Q, Chen Y, Xie J. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. Int J Biol Macromol 2020; 152:766-774. [PMID: 32119945 DOI: 10.1016/j.ijbiomac.2020.02.318] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
In this study, the immune responses of Mesona chinensis Benth polysaccharides (MP) in vitro and in vivo were investigated. Results showed that MP presented immunomodulatory activities on macrophages and T lymphocytes in vitro. Compared with the cyclophosphamide (Cy)-induced immunosuppressive mice, the body weights, spleen indexes (3.45 to 4.91) and thymus indexes (0.78 to 1.04) of the mice treated with MP were increased, and the peripheral blood levels were recovered. MP treatment also increased superoxide dismutase, glutathione peroxidase and catalase activities, and reduced malondialdehyde levels to enhance the total antioxidant capacity of Cy-treated mice. In addition, MP significantly elevated IL-2, NO, and IFN-γ secretions of splenic lymphocytes and spleen, while MP mainly exerts an immune effect by regulating T lymphocytes. Furthermore, MP possessed the immunomodulatory activity by up-regulating the phosphorylation levels of proteins factors (c-Jun N-terminal kinase, extracellular regulated protein kinase and p38 kinase) in mitogen activated protein kinases signaling pathways. This study suggested that MP may be explored as a natural immune stimulant for functional food and nutraceutical industries.
Collapse
Affiliation(s)
- Lixin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ting Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
55
|
Wang C, Shen Z, Li L, Li Y, Zhao H, Jiang X. Immunomodulatory activity of R-phycoerythrin from Porphyra haitanensis via TLR4/NF-κB-dependent immunocyte differentiation. Food Funct 2020; 11:2173-2185. [DOI: 10.1039/c9fo02444a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The immunomodulatory effects of R-phycoerythrin (R-PE) from Porphyra haitanensis were investigated by a hydrocortisone (HC)-induced immunosuppressive model in the present research.
Collapse
Affiliation(s)
- Chun Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- PR China
| | - Zhaopeng Shen
- College of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- PR China
- Qingdao Marine Biomedical Research Institute
| | - Liyan Li
- Medical School
- Huanghe Scinece & Technology University
- Zhengzhou
- PR China
| | - Yinping Li
- College of Marine Science and Biological Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Hongtao Zhao
- State Key Laboratory of Bioactive Seaweed Substances
- Qingdao Brightmoon Seaweed Group Co Ltd
- Qingdao 266400
- PR China
| | - Xiaolu Jiang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- PR China
- Qingdao Marine Biomedical Research Institute
| |
Collapse
|
56
|
Zhou N, Long H, Wang C, Yu L, Zhao M, Liu X. Research progress on the biological activities of selenium polysaccharides. Food Funct 2020; 11:4834-4852. [DOI: 10.1039/c9fo02026h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenium polysaccharides, an important organic selenium product, possess better antioxidant, antitumour, immune regulation, hypoglycaemic, and heavy metal removal activities than that of either polysaccharides or inorganic selenium.
Collapse
Affiliation(s)
- Ning Zhou
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| | - Hairong Long
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
- Guangxi Botanical Garden of Medicinal Plants
| | - Chenghua Wang
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| | - Lian Yu
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| | - Mouming Zhao
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
- Department of Food Science and Technology
| | - Xiaoling Liu
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning
- China
| |
Collapse
|
57
|
Bai RB, Zhang YJ, Fan JM, Jia XS, Li D, Wang YP, Zhou J, Yan Q, Hu FD. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct 2020; 11:3306-3315. [DOI: 10.1039/c9fo02969a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oligosaccharides are the main components of C. pilosula and show excellent immunomodulatory activities.
Collapse
Affiliation(s)
- Rui-Bin Bai
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Ya-Jie Zhang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing-Min Fan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xu-Seng Jia
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Dai Li
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Yan-Ping Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Qiao Yan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Fang-Di Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
58
|
Meng M, Wang H, Li Z, Guo M, Hou L. Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/NF-κB signalling in BALB/c mice. Food Funct 2019; 10:3262-3271. [PMID: 31089650 DOI: 10.1039/c9fo00482c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polysaccharides are closely associated with immune regulation. In this study, the aim was to investigate the effect of polysaccharides from Cordyceps gunnii mycelia (PPS) in cyclophosphamide (CTX)-induced immunodeficient mice. Compared with the CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice with orally administered PPS were significantly increased, body weight loss was alleviated, and the natural killer (NK) cytotoxicity and proliferative activities of the lymphocytes were elevated. The recovery of peripheral white blood cells, red blood cells, hemoglobins and platelets was accelerated. Furthermore, the results from ELISA showed that PPS could up-regulate the serum levels of IL-2, IL-12, IFN-γ and IgG, and reduce the level of TGF-β. Histopathological analysis of the spleen revealed the protective effect of PPS against CTX-induced immunosuppression. Western blotting results showed that PPS possessed immunomodulatory activity via TLR4/TRAF6/NF-κB signalling pathways. Finally, the intestinal absorption of PPS was poor, as detected in the Caco-2 transwell system. Taken together, these findings suggest that PPS plays a crucial role in protection against immunosuppression in cyclophosphamide-treated mice and could be a potential candidate for use in immune therapy regimens.
Collapse
Affiliation(s)
- Meng Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China.
| | | | | | | | | |
Collapse
|
59
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
60
|
Immunoenhancement effects of pentadecapeptide derived from Cyclina sinensis on immune-deficient mice induced by Cyclophosphamide. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
61
|
Wen Y, Peng D, Li C, Hu X, Bi S, Song L, Peng B, Zhu J, Chen Y, Yu R. A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. Int J Biol Macromol 2019; 137:8-19. [DOI: 10.1016/j.ijbiomac.2019.06.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
|
62
|
Meng M, Guo M, Feng C, Wang R, Cheng D, Wang C. Water-soluble polysaccharides from Grifola Frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal transduction pathways. Food Funct 2019; 10:4998-5007. [PMID: 31355400 DOI: 10.1039/c8fo02062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Grifola Frondosa, the king of mushrooms, is one of the most valued traditional medicines and has been used as a health food for a long time in China, Japan, and other Asian countries. The present study was designed to evaluate the immune-modulating effects of water-soluble polysaccharides from the Grifola Frondosa fruiting body (GFP) by using mouse peritoneal macrophage and cytoxan (CTX) induced immunosuppression models. Compared with CTX-induced immunosuppressive mice, the spleen and thymus indexes in mice with GFP orally administrated were significantly increased, body weight loss was alleviated, and the natural killer (NK) cytotoxicity and the proliferative activities of lymphocytes were elevated. Furthermore, levels of interleukin-2 (IL-2), interferon-6 (IL-6) and tumor necrosis factor-α (TNF-α) were notably reduced by CTX, while GFP abolished these effects. GFP also effectively increased total antioxidant capacity and superoxidase dismutase, catalase and glutathione peroxidase activities, and inhibited an increase in the malondialdehyde level. Histopathological analysis of spleens revealed the protective effect of GFP against CTX-induced immunosuppression. Western blotting results showed that GFP possessed immunomodulatory activity by up-regulating transcription factors (p-JAK2/JAK2, p-STAT3/STAT3 and SOCS3) in JAK2/STAT3/SOCS signaling pathways. This study suggested that GFP may provide an alternative strategy for lessening chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | | | |
Collapse
|
63
|
Protective effects of Ulva pertusa polysaccharide and polysaccharide‑iron (III) complex on cyclophosphamide induced immunosuppression in mice. Int J Biol Macromol 2019; 133:911-919. [DOI: 10.1016/j.ijbiomac.2019.04.101] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023]
|
64
|
Wei W, Pang S, Fu X, Tan S, Wang Q, Wang S, Sun D. The role of PERK and IRE1 signaling pathways in excessive fluoride mediated impairment of lymphocytes in rats' spleen in vivo and in vitro. CHEMOSPHERE 2019; 223:1-11. [PMID: 30763911 DOI: 10.1016/j.chemosphere.2019.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Fluoride is capable of inducing immunotoxicity, but its molecular mechanisms remain elusive. This study aimed to explore the roles of Protein kinase receptor-like ER kinase (PERK) and inositol requiring enzyme 1 (IRE1) signaling pathways in excessive fluoride-induced immunotoxicity, focusing on the regulatory roles of these two pathways in cell division and apoptosis. Firstly, we assessed the changes in cell division and apoptosis in rats exposed to 0, 50, or 100 mg/L fluoride, and detected the expression of PERK and IRE1 signaling-related proteins in spleen. Additionally, to validate the role of these two pathways, we evaluated the changes in cell division and apoptosis of primary lymphocytes from rat's spleen to 4 mM fluoride after knockdown of PERK and IRE1 in vitro. In vivo results confirmed that fluoride inhibited cell division, promoted the apoptosis and resulted in histological and ultrastructural abnormalities of rat spleen. In addition, fluoride induced activation of the PERK and IRE1 signalings and the associated apoptosis. Moreover, the in vitro results further verified the findings in vivo that fluoride activated these two signalings in B lymphocytes. Importantly, after knockdown of PERK and IRE1 in lymphocytes, the cell division ability was restored, and apoptosis decreased in fluoride-treated lymphocytes; the results correlated well with the expression of PERK and IRE1 signaling-related proteins, thus confirming the pivotal role of these pathways in immunosuppression by excessive fluoride. This study indicates that the mechanisms underlying the deleterious effects of fluoride on immune system are related to activation of the PERK and IRE1 signaling pathways.
Collapse
Affiliation(s)
- Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shujuan Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyan Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiwen Tan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qian Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shize Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
65
|
Wang H, Xu L, Yu M, Wang Y, Jiang T, Yang S, Lv Z. Glycosaminoglycan from Apostichopus japonicus induces immunomodulatory activity in cyclophosphamide-treated mice and in macrophages. Int J Biol Macromol 2019; 130:229-237. [PMID: 30797007 DOI: 10.1016/j.ijbiomac.2019.02.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
This study was designed to systematically elucidate the immunomodulation effect of glycosaminoglycan from Apostichopus japonicus (AHG) in cyclophosphamide (CY)-induced immunosuppression model and potential mechanism responsible for the activation of macrophages. The results showed that the treatment with AHG could increase natural killer (NK) cell cytotoxicity, carbon clearance and marker enzymes activities in CY-induced immunosuppression mice, indicating that the innate immunity experienced recovery to some extent. Moreover, CY-induced reductions in thymus and spleen indices, serum levels of cytokines, immunoglobulins and hemolysin, as well as the ratio of spleen lymphocyte subsets were recovered by AHG, suggesting that AHG could improve the adaptive immunity through cellular immunity and humoral immunity. Delightedly, it was found that AHG at 10 mg/kg body weight could restore the CY-induced immunosuppression in mice to normal level on both innate and adaptive immunity. Furthermore, AHG also promoted both the expression of NO, TNF-α, IL-6, IL-1β, IL-18 and MCP-1 protein and related mRNA in macrophages. It was revealed that AHG activated macrophages through the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-B (NF-κB). In conclusion, AHG exerts remarkable immunomodulatory activities in both innate and adaptive immune system. These findings should have great value for further study on the immunopotentiating mechanisms of this biomacromolecule.
Collapse
Affiliation(s)
- Han Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Lei Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Yuanhong Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China.
| | - Tingfu Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| |
Collapse
|
66
|
Qi Z, Chen L, Li Z, Shao Z, Qi Y, Gao K, Liu S, Sun Y, Li P, Liu J. Immunomodulatory Effects of (24R)-Pseudo-Ginsenoside HQ and (24S)-Pseudo-Ginsenoside HQ on Cyclophosphamide-Induced Immunosuppression and Their Anti-Tumor Effects Study. Int J Mol Sci 2019; 20:E836. [PMID: 30769948 PMCID: PMC6413033 DOI: 10.3390/ijms20040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
(24R)-pseudo-ginsenoside HQ (R-PHQ) and (24S)-pseudo-ginsenoside HQ (S-PHQ) are the main metabolites of (20S)-ginsenoside Rh₂ (Rh₂) in vivo. In this study, we found that Rh₂, R-PHQ, and S-PHQ upregulated the innate and adaptive immune response in cyclophosphamide (CTX) induced-immunocompromised mice as evidenced by the number of leukocytes, cellular immunity, and phagocytosis of macrophages. Spleen T-lymphocyte subpopulations and the serum cytokines level were also balanced in these immunosuppressed mice. Furthermore, co-administration with R-PHQ or S-PHQ did not compromise the antitumor activity of CTX in the hepatoma H22-bearing mice. Treatment with R-PHQ and S-PHQ clearly induced the apoptosis of tumor cells, significantly increased the expression of Bax, and remarkably inhibited the expression of Bcl-2 and vascular endothelial growth factor (VEGF) in H22 tumor tissues. The anti-tumor activity of R-PHQ and S-PHQ could be related to the promotion of tumor apoptosis and inhibition of angiogenesis and may involve the caspase and VEGF signaling pathways. This study provides a theoretical basis for further study on R-PHQ and S-PHQ.
Collapse
Affiliation(s)
- Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Lixue Chen
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Zijun Shao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yuli Qi
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Kun Gao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Songxin Liu
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yinshi Sun
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
67
|
Zhang QY, Wang FX, Jia KK, Kong LD. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front Pharmacol 2018; 9:1253. [PMID: 30459615 PMCID: PMC6232953 DOI: 10.3389/fphar.2018.01253] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy are the common cancer treatments. However, the development of adverse effects resulting from chemotherapy and radiotherapy hinders the clinical use, and negatively reduces the quality of life in cancer patients. Natural products including crude extracts, bioactive components-enriched fractions and pure compounds prepared from herbs as well as herbal formulas have been proved to prevent and treat cancer. Of significant interest, some natural products can reduce chemotherapy and radiotherapy-induced oral mucositis, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, hematopoietic system injury, cardiotoxicity, and neurotoxicity. This review focuses in detail on the effectiveness of these natural products, and describes the possible mechanisms of the actions in reducing chemotherapy and radiotherapy-induced side effects. Recent advances in the efficacy of natural dietary supplements to counteract these side effects are highlighted. In addition, we draw particular attention to gut microbiotan in the context of prebiotic potential of natural products for the protection against cancer therapy-induced toxicities. We conclude that some natural products are potential therapeutic perspective for the prevention and treatment of chemotherapy and radiotherapy-induced side effects. Further studies are required to validate the efficacy of natural products in cancer patients, and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei-Xuan Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
68
|
Li Q, Chen G, Wang W, Zhang W, Ding Y, Zhao T, Li F, Mao G, Feng W, Wang Q, Yang L, Wu X. A novel Se-polysaccharide from Se-enriched G. frondosa protects against immunosuppression and low Se status in Se-deficient mice. Int J Biol Macromol 2018; 117:878-889. [DOI: 10.1016/j.ijbiomac.2018.05.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|