51
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023; 64:12448-12472. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
52
|
Yong Y, Wang S, Li L, Li R, Ahmad HN, Munawar N, Zhu J. A curcumin-crosslinked bilayer film of soy protein isolate and chitosan with enhanced antibacterial property for beef preservation and freshness monitoring. Int J Biol Macromol 2023; 247:125778. [PMID: 37437680 DOI: 10.1016/j.ijbiomac.2023.125778] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In this study, antibacterial and antioxidant bilayer films were prepared by using curcumin (Cur) crosslinked soy rotein isolate (SPI) and chitosan (CS). Molecular docking simulations and multispectral analysis revealed that hydrogen bonding and hydrophobic interactions were the primary driving forces that promoted the self-assembly of the bilayer films. The tensile strength, the UV-blocking properties and the hydrophobicity was greatly improved of the bilayer antimicrobial films. Moreover, water vapor permeability, thermal shrinkage and opacity were all reduced significantly. In addition, the composite films with curcumin demonstrated effective antioxidant activity and a slow release characteristic. Morphology observation of the bacteria by AFM revealed that the antibacterial bilayer film had a significant damaging effect on the cell structures of S. aureus and E. coli due to the dual antibacterial effect of curcumin and chitosan. SPI + Cur-CS antimicrobial bilayer film effectively inhibited the growth of bacteria and extended the shelf life of beef. According to the findings, SPI + Cur-CS antimicrobial bilayer film can be used as an active package material for beef preservation and freshness monitoring.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
53
|
Sul Y, Ezati P, Rhim JW. Preparation of chitosan/gelatin-based functional films integrated with carbon dots from banana peel for active packaging application. Int J Biol Macromol 2023; 246:125600. [PMID: 37390998 DOI: 10.1016/j.ijbiomac.2023.125600] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Carbon dots (CDs) were manufactured with banana peels using a hydrothermal method (200 °C for 6 h). The synthesized CDs were spherical particles with a size of 1-3 nm having carboxyl groups and amine groups on the surface. CDs have been impregnated into chitosan/gelatin films to synthesize multifunctional packaging films. The composite film showed a slight decrease in transparency but a significant increase in UV protection properties. The fabricated film displayed strong antioxidant efficacy showing >74 % DPPH and 99 % ABTS radical scavenging potential. The film also unveiled substantial antibacterial activity against the foodborne pathogenic bacteria, Listeria monocytogenes, fully eliminating the growth of these bacteria within 6 h of exposure. The chitosan/gelatin film containing CD was used for minced meat packaging, and the film delayed bacterial growth (< 1 Log CFU/g after 24 h) and maintained the meat color even after 24 h of storage at 20 °C. The CD-added chitosan/gelatin functional film has a high probability of application in active food packaging, especially for extending the shelf life of packaged meat and maintaining its aesthetic quality.
Collapse
Affiliation(s)
- Yoonjung Sul
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
54
|
Tavassoli M, Khezerlou A, Moghaddam TN, Firoozy S, Bakhshizadeh M, Sani MA, Hashemi M, Ehsani A, Lorenzo JM. Sumac (Rhus coriaria L.) anthocyanin loaded-pectin and chitosan nanofiber matrices for real-time monitoring of shrimp freshness. Int J Biol Macromol 2023; 242:125044. [PMID: 37224901 DOI: 10.1016/j.ijbiomac.2023.125044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Niknazar Moghaddam
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Milad Bakhshizadeh
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain.
| |
Collapse
|
55
|
Jiang X, Cheng J, Yang F, Hu Z, Zheng Z, Deng Y, Cao B, Xie Y. Visual Colorimetric Detection of Edible Oil Freshness for Peroxides Based on Nanocellulose. Foods 2023; 12:foods12091896. [PMID: 37174435 PMCID: PMC10178133 DOI: 10.3390/foods12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Traditional methods for evaluating the edibility of lipids involve the use of organic reagents and complex operations, which limit their routine use. In this study, nanocellulose was prepared from bamboo, and a colorimetric reading strategy based on nanocellulose composite hydrogels was explored to monitor the freshness of edible oils. The hydrogels acted as carriers for peroxide dyes that changed color according to the freshness of the oil, and color information was digitized using UV-vis and RGB analysis. The sensitivity and accuracy of the hydrogel were verified using H2O2, which showed a linear relationship between absorbance and H2O2 content in the range of 0-0.5 and 0.5-11 mmol/kg with R2 of 0.9769 and 0.9899, respectively, while the chromatic parameter showed an exponential relationship with R2 of 0.9626. Surprisingly, the freshness of all seven edible oil samples was correctly identified by the hydrogel, with linear correlation coefficients greater than 0.95 in the UV-vis method and exponential correlation coefficients greater than 0.92 in the RGB method. Additionally, a peroxide value color card was established, with an accuracy rate of 91.67%. This functional hydrogel is expected to be used as a household-type oil freshness indicator to meet the needs of general consumers.
Collapse
Affiliation(s)
- Xiongli Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Buyuan Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
56
|
Zhou Y, Jiao L, Wu J, Zhang Y, Zhu Q, Dong D. Non-destructive and in-situ detection of shrimp freshness using mid-infrared fiber-optic evanescent wave spectroscopy. Food Chem 2023; 422:136189. [PMID: 37116271 DOI: 10.1016/j.foodchem.2023.136189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
There is strong interest in non-destructive and rapid determination of food freshness in food research. In this study, mid-infrared (MIR) fiber-optic evanescent wave (FOEW) spectroscopy was applied to monitor shrimp freshness through the evaluation of protein, chitin, and calcite contents in conjunction with a Partial Least Squares Discriminant Analysis (PLS-DA) model. Shrimp shells were wiped with a micro fiber-optic probe to obtain a FOEW spectrum which quickly and nondestructively allowed evaluation of the shrimp freshness. Peaks for proteins, chitin, and calcite, which are closely related to shrimp freshness, were detected and quantified. Compared with the standard indicator for evaluating shrimp freshness (total volatile basic nitrogen), the PLS-DA model gave recognition rates for shrimp freshness using calibration and validation sets of the FOEW data of 87.27%, 90.28%, respectively. Our results show that FOEW spectroscopy is a feasible method for non-destructive and in-site detection of shrimp freshness.
Collapse
Affiliation(s)
- Yunhai Zhou
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Leizi Jiao
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianwei Wu
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yunhe Zhang
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qingzhen Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daming Dong
- National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
57
|
Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int J Biol Macromol 2023; 239:124248. [PMID: 37003387 DOI: 10.1016/j.ijbiomac.2023.124248] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Pectin is an abundant complex polysaccharide obtained from various plants. Safe, biodegradable, and edible pectin has been extensively utilized in the food industry as a gelling agent, thickener, and colloid stabilizer. Pectin can be extracted in a variety of ways, thus affecting its structure and properties. Pectin's excellent physicochemical properties make it suitable for many applications, including food packaging. Recently, pectin has been spotlighted as a promising biomaterial for manufacturing bio-based sustainable packaging films and coatings. Functional pectin-based composite films and coatings are useful for active food packaging applications. This review discusses pectin and its use in active food packaging applications. First, basic information and characteristics of pectin, such as the source, extraction method, and structural characteristics, were described. Then, various methods of pectin modification were discussed, and the following section briefly described pectin's physicochemical properties and applications in the food sector. Finally, the recent development of pectin-based food packaging films and coatings and their use in food packaging were comprehensively discussed.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Łukasz Łopusiewicz
- Center of Bioimmobilization and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
58
|
Guo Z, Wu S, Lin J, Zheng H, Lei H, Yu Q, Jiang W. Active film preparation using pectin and polyphenols of watermelon peel and its applications for super-chilled storage of chilled mutton. Food Chem 2023; 417:135838. [PMID: 36940513 DOI: 10.1016/j.foodchem.2023.135838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
We investigated the effect of active packaging films prepared by pectin (WMP) and polyphenols (WME) obtained from watermelon peel on the quality of chilled mutton during super-chilled storage. The addition of WME created new chemical and hydrogen bonds in film. Furthermore, an appropriate amount of WME (≤1.5%) was evenly distributed throughout the film matrix, improving barrier properties, mechanical properties, thermal stability, and light transmittance of the film. An assessment of the meat quality showed that the pH, L*, b*, thiobarbituric acid reactive substances (TBARs), total volatile basic nitrogen (TVB-N), and total bacterial count (TCA) of super-chilled + film group were significantly lower, whereas shear force and a* value were significantly higher (P < 0.05) than other groups. The WMP/WME film has dense microstructure and excellent mechanical properties after storage. Pectin and polyphenols obtained from watermelon peel have good potential as a novel packaging material for chilled mutton during super-chilled storage.
Collapse
Affiliation(s)
- Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China.
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Jie Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Hua Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Weifang Jiang
- Jiangfeng Industrial Wengyuan Co. LTD, Guangzhou 512600, China
| |
Collapse
|
59
|
Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
60
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
61
|
Kim YH, Kim HJ, Yoon KS, Rhim JW. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
62
|
Novel ammonia-responsive carboxymethyl cellulose/Co-MOF multifunctional films for real-time visual monitoring of seafood freshness. Int J Biol Macromol 2023; 230:123129. [PMID: 36610564 DOI: 10.1016/j.ijbiomac.2022.123129] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Nowadays, ammonia-responsive biopolymer-based intelligent active films are of great interest for their huge potential in maintaining and monitoring the freshness of seafood. However, it is still a challenge to create biopolymer-based intelligent active films with favorable color stability, antibacterial and visual freshness indication functions. Herein, cobalt-based metal-organic framework (Co-MOF) nanosheets with ammonia-sensitive and antibacterial functions were successfully synthesized and then embedded into carboxymethyl cellulose (CMC) matrix to develop high performance and multifunctional CMC-based intelligent active films. The influence of Co-MOF addition on the structure, physical and functional characters of CMC film was comprehensively studied. The results showed that the Co-MOF nanofillers were homogeneously embedded within the CMC matrix, bringing about remarkable promotion on tensile strength (from 45.3 to 62.2 MPa), toughness (from 0.7 to 2.3 MJ/m3), water barrier and UV-blocking performance of CMC film. Notably, the obtained CMC/Co-MOF nanocomposite films also presented excellent long-term color stability, antibacterial activity (with the bacteriostatic efficiency of 99.6 % and 99.3 % against Escherichia coli and Staphylococcus aureus), and ammonia-sensitive discoloration performance. Finally, the CMC/Co-MOF nanocomposite films were successfully applied for real-time visual monitoring of shrimp freshness. The above results demonstrate that the CMC/Co-MOF nanocomposite films possess huge potential applications in intelligent active packaging.
Collapse
|
63
|
Dong Y, Rao Z, Liu Y, Zheng X, Tang K, Liu J. Soluble soybean polysaccharide/gelatin active edible films incorporated with curcumin for oil packaging. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
64
|
Yang Z, Tong F, Peng Z, Wang L, Zhu L, Jiang W, Xiong G, Zheng M, Zhou Y, Liu Y. Development of colorimetric/Fluorescent two-channel intelligent response labels to monitor shrimp freshness. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Liang Y, Zhao Y, Sun H, Dan J, Kang Y, Zhang Q, Su Z, Ni Y, Shi S, Wang J, Zhang W. Natural melanin nanoparticle-based photothermal film for edible antibacterial food packaging. Food Chem 2023; 401:134117. [DOI: 10.1016/j.foodchem.2022.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
66
|
Ezati P, Khan A, Rhim JW, Kim JT, Molaei R. pH-Responsive strips integrated with resazurin and carbon dots for monitoring shrimp freshness. Colloids Surf B Biointerfaces 2023; 221:113013. [PMID: 36401960 DOI: 10.1016/j.colsurfb.2022.113013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Carbon dots (CDs) were synthesized via a one-step hydrothermal approach using tangerine peel (Tan) and resazurin (Res) to fabricate biocompatible indicators for food freshness. The CDs' pH-responsive mechanism, morphology, zeta potential, XPS, and optical and fluorescence analysis were investigated. The as-prepared tangerine peel/resazurin carbon dots (Tan/Res CDs) exhibited pH-responsive emission that changed from yellow to orange as the pH value increased. The Tan/Res CDs showed the sensing ability of ammonia with a detection limit of 0.84 μM by proportionally losing fluorescence intensity as the concentration increased from 1 to 100 μM. The CDs were coated onto paper strips to impart biogenic amine (BAs) detection for pH-responsive intelligent monitoring of packaged foods. The Tan/Res CDs paper-based indicator exhibited an impressive color change from yellow to brown during the detection of ammonia vapor. The indicator also showed the ability to detect BAs through a color change, demonstrating the ability to monitor the freshness of shrimp in situ. Additionally, the efficacy of the Tan/Res CDs indicator is validated by total volatile basic nitrogen (TVB-N), providing customers and suppliers with a simple, inexpensive, and portable tool to monitor the freshness of seafood in real-time.
Collapse
Affiliation(s)
- Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
67
|
Xiao Y, Xu H, Zhou Q, Li W, Gao J, Liao X, Yu Z, Zheng M, Zhou Y, Sui X, Liu Y. Influence mechanism of wheat bran cellulose and cellulose nanocrystals on the storage stability of soy protein isolate films: Conformation modification and molecular interaction perspective. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
68
|
Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
69
|
Kanha N, Osiriphun S, Rakariyatham K, Klangpetch W, Laokuldilok T. On-package indicator films based on natural pigments and polysaccharides for monitoring food quality: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6804-6823. [PMID: 35716018 DOI: 10.1002/jsfa.12076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Deterioration of food quality and freshness is mainly due to microbial growth and enzyme activity. Chilled fresh food, especially meat and seafood, as well as pasteurized products, rapidly lose quality and freshness during packing, distribution and storage. Real-time food quality monitoring using on-package indicator films can help consumers make informed purchasing decisions. Interest in the use of intelligent packaging systems for monitoring safety and food quality has increased in recent years. Polysaccharide-based films can be developed into on-package indicator films due to their excellent film-forming properties and biodegradability. Another important component is the use of colorants with visible color changes at various pH levels. Currently, natural pigments are receiving increased attention because of their safety and environmental friendliness. This review highlights the recent findings regarding the role of natural pigments, the effects of incorporating natural pigments and polysaccharides on properties of indicator film, current application and limitations of on-package indicator films based on polysaccharides in some foods, problems and improvement of physical properties and color conversion of indicator film containing natural pigments, and development of polysaccharide-based pH-responsive films. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nattapong Kanha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sukhuntha Osiriphun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyasiri Rakariyatham
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
70
|
Azman N, Khairul WM, Sarbon N. A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
71
|
pH-responsive Pickering emulsions-pectin hydrogel beads for loading of resveratrol: Preparation, characterization, and evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
72
|
Reduction-triggered polycyclodextrin supramolecular nanocage induces immunogenic cell death for improved chemotherapy. Carbohydr Polym 2022; 301:120365. [DOI: 10.1016/j.carbpol.2022.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
73
|
Ezati P, Rhim JW. Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion. Colloids Surf B Biointerfaces 2022; 219:112804. [PMID: 36084511 DOI: 10.1016/j.colsurfb.2022.112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Carbon quantum dots (CQDs) were synthesized using glucose as a carbon source through a hydrothermal method. CQDs showed negligible cytotoxicity to L929 cells even after prolonged exposure of 72 h. The addition of CQD did not affect the pectin film's mechanical properties, water contact angle, and thermal stability. However, the CQD-added composite film generates reactive oxygen species (ROS), providing high antibacterial activity against pathogenic bacteria (L. monocytogenes and E. coli) and antifungal activity against mold (Aspergillus flavus), where a 100% eradication of bacteria and fungi population was observed. Also, the addition of CQD strengthens the antioxidant activity of the composite films by 95%. Further, the CQD-added pectin film converted ultraviolet rays into blue light, which improved the film's UV protection properties. Therefore, the pectin/CQD film has a high potential for a light conversion active packaging film that may prevent the deterioration of high-fat foods.
Collapse
Affiliation(s)
- Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
74
|
Jamróz E, Janik M, Marangoni L, Vieira RP, Tkaczewska J, Kawecka A, Szuwarzyński M, Mazur T, Jasińska JM, Krzyściak P, Juszczak L. Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers (Basel) 2022; 14:4283. [PMID: 36297858 PMCID: PMC9612216 DOI: 10.3390/polym14204283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Double-layered active films based on furcellaran (1st layer-FUR), chitosan, and gelatin hydrolysates (2nd layer-CHIT+HGEL) were successfully prepared. Bioactive ingredients were added to the 1st film layer: AgNPs, which were synthesized in situ with yerba mate extract; montmorillonite clay (MMT); and different loads of ethanolic curcumin (CUR) extract enriched with rosemary essential oil (REO). SEM images confirmed the presence of AgNPs with a size distribution of 94.96 ± 3.33 nm throughout the films, and AFM and SEM photos indicated that the higher substance concentrations had rougher and more porous film microstructures. However, the water vapor transmission rate was reduced only at the lowest load of this ingredient. Despite the tensile strength of the films having decreased, the incorporation of the compounds showed a tendency towards reducing the modulus of elasticity, resulting in a lower stiffness of the composites. The addition of CUR and AgNPs improved the UV light barrier properties of the materials. The presented films showed quick reactions to changes in the pH value (from orange to red along with an increase in pH from 2 to 10), which indicates their potential use as indicators for monitoring the freshness of food products. Composite No. 2 showed the highest antimicrobial potential, while none of the presented films showed an antifungal effect. Finally, the antioxidant activities of the films increased dramatically at higher AgNP and CUR loads, suggesting an outstanding potential for active food packaging applications.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Luís Marangoni
- Packaging Technology Center, Institute of Food Technology, Campinas 13083-862, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-862, Brazil
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Agnieszka Kawecka
- Department of Product Packaging, Cracow University of Economics, ul. Rakowicka 27, PL-31-510 Kraków, Poland
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Tomasz Mazur
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, PL-31-121 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, ul. Armii Krajowej 13/15, PL-42-200 Częstochowa, Poland
| |
Collapse
|
75
|
Gao L, Liu P, Liu L, Li S, Zhao Y, Xie J, Xu H. κ-carrageenan-based pH-sensing films incorporated with anthocyanins or/and betacyanins extracted from purple sweet potatoes and peels of dragon fruits. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Jamróz E, Cabaj A, Tkaczewska J, Kawecka A, Krzyściak P, Szuwarzyński M, Mazur T, Juszczak L. Incorporation of Curcumin Extract with Lemongrass Essential Oil into the Middle Layer of Triple-Layered Films Based on Furcellaran/Chitosan/Gelatin Hydrolysates - In Vitro and In Vivo Studies on Active and Intelligent Properties. Food Chem 2022; 402:134476. [DOI: 10.1016/j.foodchem.2022.134476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
|
77
|
Liu Y, Liu M, Zhang L, Cao W, Wang H, Chen G, Wang S. Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
78
|
Dai T, Qin Z, Wang S, Wang L, Yao J, Zhu G, Guo B, Militky J, Venkataraman M, Zhang M. A novel nanofibrous film with antibacterial, antioxidant, and thermoregulatory functions fabricated by coaxial electrospinning. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianliang Dai
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| | - Zhuofan Qin
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| | - Shuoshuo Wang
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| | - Lina Wang
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| | - Juming Yao
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| | - Guocheng Zhu
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| | - Baochun Guo
- Department of Polymer Materials and Engineering South China University of Technology Guangzhou China
| | - Jiri Militky
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Ming Zhang
- Zhejiang‐Czech Joint Laboratory of Advanced Fiber Materials Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
79
|
Development of polylactic acid based functional films reinforced with ginger essential oil and curcumin for food packaging applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
80
|
Liu B, Yang H, Zhu C, Xiao J, Cao H, Simal-Gandara J, Li Y, Fan D, Deng J. A comprehensive review of food gels: formation mechanisms, functions, applications, and challenges. Crit Rev Food Sci Nutr 2022; 64:760-782. [PMID: 35959724 DOI: 10.1080/10408398.2022.2108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gels refer to the soft and flexible macromolecular polymeric materials retaining a large amount of water or biofluids in their three-dimensional network structure. Gels have attracted increasing interest in the food discipline, especially proteins and polysaccharides, due to their good biocompatibility, biodegradability, nutritional properties, and edibility. With the advancement of living standards, people's demand for nutritious, safe, reliable, and functionally diverse food and even personalized food has increased. As a result, gels exhibiting unique advantages in food application will be of great significance. However, a comprehensive review of functional hydrogels as food gels is still lacking. Here, we comprehensively review the gel-forming mechanisms of food gels and systematically classify them. Moreover, the potential of hydrogels as functional foods in different types of food areas is summarized, with a special focus on their applications in food packaging, satiating gels, nutrient delivery systems, food coloring adsorption, and food safety monitoring. Additionally, the key scientific issues for future food gel research, with specific reference to future novel food designs, mechanisms between food components and matrices, food gel-human interactions, and food gel safety, are discussed. Finally, the future directions of hydrogels for food science and technology are summarized.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| |
Collapse
|
81
|
Wang Q, Jiang Y, Chen W, Julian McClements D, Ma C, Liu X, Liu F. Development of pH-Responsive Active Packaging Materials Based on Purple Corncob and Its Application in Meat Freshness Monitoring. Food Res Int 2022; 161:111832. [DOI: 10.1016/j.foodres.2022.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
82
|
Nguyen TTT, Le TQ, Nguyen TTA, Nguyen LTM, Nguyen DTC, Tran TV. Characterizations and antibacterial activities of passion fruit peel pectin/chitosan composite films incorporated Piper betle L. leaf extract for preservation of purple eggplants. Heliyon 2022; 8:e10096. [PMID: 36016528 PMCID: PMC9396553 DOI: 10.1016/j.heliyon.2022.e10096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to synthesize biodegradable films based on crosslinked passion fruit peel pectin/chitosan (P/CH) films incorporated with a bioactive extract from Piper betle L. leaf, and investigate their morphological, mechanical, water vapor permeability, optical, and antibacterial properties. The thickness and water vapor permeability of P/CH blend films were proportional to the increasing concentration of Piper betle extract (PB). The tensile strength of P/CH/PB films was significantly reduced at 42.89% compared to the P/CH films. The morphological characterization affirmed that resultant blend films showed a well-organized homogeneous structure with no cracks. Moreover, the antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Klebsiella pneumoniae increased with the increased concentration of PB in the obtained films. Our results demonstrated that P/CH/PB blend films could be potentially used for food packaging applications.
Collapse
Affiliation(s)
- Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tu Quoc Le
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tuyet Thi Anh Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Lan Thi My Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| |
Collapse
|
83
|
Development of PVA/Chitosan-g-Poly (N-vinyl imidazole)/TiO2/curcumin nanofibers as high-performance wound dressing. Carbohydr Polym 2022; 296:119956. [DOI: 10.1016/j.carbpol.2022.119956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
|
84
|
Guo Z, Zuo H, Ling H, Yu Q, Gou Q, Yang L. A novel colorimetric indicator film based on watermelon peel pectin and anthocyanins from purple cabbage for monitoring mutton freshness. Food Chem 2022; 383:131915. [PMID: 35241304 DOI: 10.1016/j.foodchem.2021.131915] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Novel films based on watermelon peel pectin (WMP) incorporated with purple cabbage extract (PCE) were developed for monitoring the freshness of mutton. The FTIR result showed that WMP and PCE interacted through hydrogen bonds. Low PCE content (≤1.5%) could be well dispersed in the film matrix, resulting in an enhancement in light transmittance, mechanical properties, barrier properties, and thermal stability. Excessive addition of PCE destroyed the compact structure of the film and decreased the comprehensive properties. The antioxidant and antimicrobial activity of WMP/PCE films were proportional to the amount of incorporated PCE. Moreover, the color of the film deepened as the PCE content increased. The film had excellent color stability and pH response properties. The WMP/PCE1.5 film color varied from mauve to baby blue according to the quality of mutton (fresh to spoiled). Our results suggested that the WMP/PCE film might have great potential for monitoring the freshness of mutton.
Collapse
Affiliation(s)
- Zonglin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Huixin Zuo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Han Ling
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qiaomin Gou
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lihua Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
85
|
Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness. Int J Biol Macromol 2022; 218:900-908. [PMID: 35907457 DOI: 10.1016/j.ijbiomac.2022.07.194] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
Abstract
We aimed to prepare a new pH-sensing film based on the immobilization of purple cabbage anthocyanins (PCA) into Polyvinyl alcohol (PVA) reinforced by cellulose nanocrystals (CNC). FT-IR, XRD and TGA were used to assess the intermolecular interactions and thermo-stability of films. The addition of CNC and PCA resulted in an enhancement in UV-vis barrier, mechanical properties and moisture resistance. Inclusion of PCA imparted intelligent properties to the films. PCA-loaded films displayed strong visually detectable colorimetric responses to pH (2-13) and volatile ammonia. When applied to monitor shrimp freshness at 4 °C, PVA/CNC films containing 0.6 % PCA exhibited conspicuous color fluctuations from purple to gray blue upon deterioration. As a result, PVA/CNC-PCA colorimetric films were considered as intelligent packaging labels with significant mechanical, water vapor barrier properties and pH-sensing qualities for visual quality evaluation of fresh seafood products.
Collapse
|
86
|
Intelligent pH-Sensitive Indicator Based on Chitosan@PVP Containing Extracted Anthocyanin and Reinforced with Sulfur Nanoparticles: Structure, Characteristic and Application in Food Packaging. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
87
|
Wang Y, Zhou Z, Han Y. Levan-chitosan blend films: Preparation, structural, physical properties and application in pork packaging. Int J Biol Macromol 2022; 217:624-632. [PMID: 35835307 DOI: 10.1016/j.ijbiomac.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Conventional fossil fuel-based packaging materials often brings of food safety and serious environmental pollution. It is significant to develop an environmentally-friendly packaging material. In this work, a levan-chitosan (LE/CS) blend film was fabricated via the solution casting method. The films were evaluated by Fourier transform infrared spectroscopy and X-ray diffraction, indicating the formation of hydrogen bonds between chitosan and levan. The mechanical properties of LE/CS films demonstrated a mechanical strength higher than CS films, and the best tensile strength appeared at a ratio of LE/CS (1:1) up to 18.78 ± 0.73 MPa. The addition of levan caused a significant increase in absorption of UV light with a reduction in swelling water of the blend films from 29.13 ± 0.53 % of chitosan film to 2.07 ± 0.27 % of LE/CS (1:1) film. A higher contact angle and lower WVP were observed for LE/CS blend films. LE/CS blend films were then used as packaging material for fresh pork and were well maintained the qualities. The study suggested that the new blend film might have a good prospect as a food packaging material.
Collapse
Affiliation(s)
- Yuehui Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
88
|
Khalil RK, Abdelrahim DS, Sharaby MR. Novel active edible food packaging films based entirely on citrus peel wastes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
89
|
Zelikina D, Chebotarev S, Komarova A, Balakina E, Antipova A, Martirosova E, Anokhina M, Palmina N, Bogdanova N, Lysakova E, Borisova M, Semenova M. Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
90
|
Zhang W, Cao J, Jiang W. Effect of different cation in situ cross-linking on the properties of pectin-thymol active film. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
91
|
Liu D, Zhang C, Pu Y, Chen S, Liu L, Cui Z, Zhong Y. Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods 2022; 11:foods11131884. [PMID: 35804701 PMCID: PMC9265506 DOI: 10.3390/foods11131884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, due to the enhancement in consumer awareness of food safety, considerable attention has been paid to intelligent packaging that displays the quality status of food through color changes. Natural food colorants show useful functionalities (antibacterial and antioxidant activities) and obvious color changes due to their structural changes in different acid and alkali environments, which could be applied to detect these acid and alkali environments, especially in the preparation of intelligent packaging. This review introduces the latest research on the progress of pH-responsive freshness indicators based on natural food colorants and biodegradable polymers for monitoring packaged food quality. Additionally, the current methods of detecting food freshness, the preparation methods for pH-responsive freshness indicators, and their applications for detecting the freshness of perishable food are highlighted. Subsequently, this review addresses the challenges and prospects of pH-responsive freshness indicators in food packaging, to assist in promoting their commercial application.
Collapse
|
92
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
93
|
Hu D, Liu X, Qin Y, Yan J, Yang Q. A novel intelligent film with high stability based on chitosan/sodium alginate and coffee peel anthocyanin for monitoring minced beef freshness. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongsheng Hu
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Xiaogang Liu
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Yuyue Qin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Jiatong Yan
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Qiliang Yang
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| |
Collapse
|
94
|
Zhao L, Tong Q, Liu Y, Geng Z, Yin L, Xu W, Rehman A. Fabrication and characterization of octenyl succinic anhydride modified pullulan micelles for encapsulating curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2874-2884. [PMID: 34755344 DOI: 10.1002/jsfa.11628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Curcumin has become increasingly popular in functional foods and beverages field as a result of its high biological activity. Nevertheless, the application of curcumin is usually limited by its poor water solubility, low absorption, rapid metabolism and instability. Accordingly, the development of an appropriate wall material is crucial for its effective use. In the present study, curcumin-octenyl succinic anhydride modified pullulan (Cur-OSAP) micelles were successfully prepared by an anti-solvent co-precipitation method. RESULTS Octenyl succinic anhydride modified pullulan (OSAP) micelles exhibited the highest encapsulation efficiency (57.31%) and loading capacity (5.73%) of curcumin when the mass ratio of OSAP to curcumin was 10:1 and the degree of substitution of OSAP was 0.0469, at which point Cur-OSAP micelles formed via hydrogen binding and hydrophobic interactions, as confirmed by Fourier transform infrared and fluorescence techniques. The transmission electron microscopy results showed that the Cur-OSAP micelles were roughly spherical in shape with diameters in the approximate range 30-60 nm. CONCLUSION The encapsulation of OSAP greatly improved photostability and sustained release properties of curcumin in Cur-OSAP micelles. These findings suggest that OSAP can be used as a carrier to encapsulate and protect hydrophobic food ingredients. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ziwei Geng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichen Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wentian Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
95
|
Teixeira SC, de Oliveira TV, Assis Silva RR, Ribeiro ARC, Stringheta PC, Rigolon TCB, Pinto MRMR, de Fátima Ferreira Soares N. Colorimetric indicators of açaí anthocyanin extract in the biodegradable polymer matrix to indicate fresh shrimp. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
96
|
Roy S, Ezati P, Rhim JW. Fabrication of Antioxidant and Antimicrobial Pullulan/Gelatin Films Integrated with Grape Seed Extract and Sulfur Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2316-2323. [PMID: 35468281 DOI: 10.1021/acsabm.2c00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biopolymer-based functional blend films were prepared using pullulan and gelatin with functional fillers of sulfur nanoparticles (SNPs) and grape seed extract (GSE). A mixture of pullulan/gelatin (1:1) produced a compatible but slightly translucent free-standing film. SNPs capped with enoki mushroom extract and GSE were added as functional fillers to improve the properties (physical and functional) of the pullulan/gelatin-based film. The addition of SNP and GSE significantly (p < 0.05) boosted the UV-light barrier, water vapor barrier, and oxygen barrier properties of the pullulan/gelatin films. The mechanical performance of the pullulan/gelatin-based films was slightly decreased (∼10%), whereas the addition of fillers did not significantly affect the hydrophobicity and thermal stability. The addition of SNP provided the antimicrobial function against foodborne pathogenic bacteria, L. monocytogenes and E. coli, while GSE provided a powerful antioxidant activity to the pullulan/gelatin-based film. Therefore, pullulan/gelatin-based composite films with better UV, water vapor, and oxygen barrier properties and enhanced antioxidant and antibacterial properties are expected to have high utility in active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
97
|
Gao R, Hu H, Shi T, Bao Y, Sun Q, Wang L, Ren Y, Jin W, Yuan L. Incorporation of gelatin and Fe 2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr Res Food Sci 2022; 5:677-686. [PMID: 35434649 PMCID: PMC9011025 DOI: 10.1016/j.crfs.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 10/26/2022] Open
Abstract
In this study, blueberry anthocyanins, gelatin and Fe2+ were incorporated into zein matrix via electrospinning method to prepare colorimetric indicator films for monitoring milk freshness. Gelatin and Fe2+ were incorporated into the film to improve visual discrimination of indicator films' color changes in milk with different freshness degrees and in solution with pH 3-7. Results of SEM, FT-IR and XRD showed that there were intermolecular hydrogen bonds among components, which associated with the larger color difference of indicator films. UV-vis spectral analysis showed that blueberry anthocyanin solutions containing both gelatin and Fe2+ displayed the highest intensity absorption peaks. The optimal ability to distinguish the pH (3-7) of solutions was presented by the indicator film incorporating gelatin (1% (w/v)) and Fe2+ (0.07 mg/mL). Gelatin and Fe2+ increased the color-responsive sensitivity of the indicator film to pH. The film could be successfully used to detect the freshness of milk, whose color changes were visually perceivable: from purple black (fresh milk) to royal purple (spoiling milk) and then to violet red (spoiled milk). The color parameters (L*, a*, R, G and B) of the film revealed a high correlation with the pH/acidity of the milk during storage. The successful application of the indicator film embedding gelatin and Fe2+ for monitoring milk quality changes indicated that the addition of special substances could provide great potential for monitoring freshness and preparing intelligent packaging of food.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.,Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Huiling Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Lin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuhan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
98
|
Zou Y, Wang F, Li A, Wang J, Wang D, Chen J. Synthesis of curcumin‐loaded shellac nanoparticles via co‐precipitation in a rotating packed bed for food engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanzuo Zou
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Fen Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Angran Li
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Jie‐Xin Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Dan Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
99
|
|
100
|
Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr Polym 2022; 281:119080. [DOI: 10.1016/j.carbpol.2021.119080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
|