51
|
Effects of ultra-high pressure combined with cold plasma on structural, physicochemical, and digestive properties of proso millet starch. Int J Biol Macromol 2022; 212:146-154. [DOI: 10.1016/j.ijbiomac.2022.05.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022]
|
52
|
Guo C, Yuan X, Yan F, Xiang K, Wu Y, Zhang Q, Wang Z, He L, Fan P, Yang Z, Chen Z, Sun Y, Ma J. Nitrogen Application Rate Affects the Accumulation of Carbohydrates in Functional Leaves and Grains to Improve Grain Filling and Reduce the Occurrence of Chalkiness. FRONTIERS IN PLANT SCIENCE 2022; 13:921130. [PMID: 35812970 PMCID: PMC9270005 DOI: 10.3389/fpls.2022.921130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Chalkiness, which is highly affected by nitrogen (N) management during grain filling, is critical in determining rice appearance quality and consumer acceptability. We investigated the effects of N application rates 75 (N1), 150 (N2), and 225 (N3) kg ha-1 on the source-sink carbohydrate accumulation and grain filling characteristics of two indica hybrid rice cultivars with different chalkiness levels in 2019 and 2020. We further explored the relationship between grain filling and formation of chalkiness in superior and inferior grains. In this study, carbohydrates in the functional leaves and grains of the two varieties, and grain filling parameters, could explain 66.2%, 68.0%, 88.7%, and 91.6% of the total variation of total chalky grain rate and whole chalkiness degree, respectively. They were primarily concentrated in the inferior grains. As the N fertilizer application rate increased, the chalky grain rate and chalkiness degree of both the superior and inferior grains decreased significantly. This interfered with the increase in total chalky grain rate and chalkiness. Moreover, the carbohydrate content in the functional leaves increased significantly in N2 and N3 compared with that in N1. The transfer of soluble sugar from the leaves to the grains decreased the soluble sugar and increased total starch contents, accelerated the development of grain length and width, increased grain water content, and effectively alleviated the contradiction between source and sink. These changes promoted the carbohydrate partition in superior and inferior grains, improved their average filling rate in the middle and later stages, optimized the uniformity of inferior grain fillings, and finally led to the overall reduction in rice chalkiness.
Collapse
Affiliation(s)
- Changchun Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaojuan Yuan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Fengjun Yan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Kaihong Xiang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Yunxia Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiao Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhonglin Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Limei He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Ping Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhiyuan Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zongkui Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongjian Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Jun Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
53
|
Liu X, Tian Y, Chi W, Zhang H, Yu J, Chen G, Wu W, Jiang X, Wang S, Lin Z, Xuan W, Ye J, Wang B, Liu Y, Sun Z, Xu D, Wang C, Wan J. Alternative splicing of OsGS1;1 affects nitrogen-use efficiency, grain development, and amylose content in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1751-1762. [PMID: 35404523 DOI: 10.1111/tpj.15768] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Excessive nitrogen fertilizer application is harmful to the environment and reduces the quality of cereal crops. Maintaining crop yields under low nitrogen (LN) conditions and improving quality are important goals for cereal crop breeding. Although the effects of nitrogen assimilation on crop nitrogen-use efficiency (NUE) have been intensively studied, natural variations of the key assimilation genes underlying grain development and quality are largely unclear. Here, we identified an NUE-associated gene, OsGS1;1, encoding glutamine synthase, through genome-wide association analysis, followed by validation experiments and functional analysis. Fifteen single-nucleotide polymorphisms in the OsGS1;1 region led to alternative splicing that generated two functional transcripts: OsGS1;1a and OsGS1;1b. The elite haplotype of OsGS1;1 showed high OsGS1;1b activity, which improved NUE, affected grain development, and reduced amylose content. The results show that OsGS1;1, which is induced under LN conditions, affects grain formation by regulating sugar metabolism and may provide a new avenue for the breeding of high-yield and high-quality rice (Oryza sativa).
Collapse
Affiliation(s)
- Xiaolan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Jiangsu Plant Gene Engineering Research Centre, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanzhi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Yan Liu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Jiangsu Plant Gene Engineering Research Centre, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
54
|
Chen S, Qin L, Chen T, Yu Q, Chen Y, Xiao W, Ji X, Xie J. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int J Biol Macromol 2022; 207:81-89. [PMID: 35247426 DOI: 10.1016/j.ijbiomac.2022.02.170] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Starch is a copolymer with unique physicochemical characteristics, is known for its low cost, easy degradability, renewable and easy availability. However, natural starches have some undesirable properties such as poor solubility, poor functional properties, lower resistant starch content with reduced retrogradation, and poor stability under various temperatures, pH, which limit their application in food. Different modification methods are used to improve its performance and expand its application. Numerous studies have been conducted to investigate why the addition of small amounts of polysaccharides affects the properties of starch pastes and gels. The application of polysaccharide-modified starch can be seen in the pasting, rheology, texture and in vitro digestive properties of starch gels. The main influencing factors include different starches, different specific polysaccharides, and different methods of preparation of composite pastes and gels. This paper reviews the changes in the properties of starch in terms of pasting, rheology, texture and in vitro digestion after modification with polysaccharides and the mechanism of polysaccharide action on starch.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
55
|
Xu Y, Guan X, Han Z, Zhou L, Zhang Y, Asad MAU, Wang Z, Jin R, Pan G, Cheng F. Combined Effect of Nitrogen Fertilizer Application and High Temperature on Grain Quality Properties of Cooked Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:874033. [PMID: 35519803 PMCID: PMC9062220 DOI: 10.3389/fpls.2022.874033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Ambient temperature and nitrogen (N) fertilizer are two of the most important factors that affect rice grain quality. However, less information has been available on the interactive effect of N fertilizer and ambient temperature on grain quality under stressful high temperature (HT). In this article, the effects of panicle N fertilizer, ambient temperature, and their interaction on starch composition, particle size distribution of starch granules, starch physicochemical properties, and storage protein accumulation in milled grains were investigated to clarify the potential role of panicle N fertilizer topdressing in regulating rice grain quality under stressful HT by using a two-factor experiment of three N levels in combination with two temperature regimes. Results showed that appropriate application of panicle N fertilizer could attenuate the adverse effect of HT during grain filling on milling quality and chalky occurrence to some extent, particularly for the effective alleviation of HT-induced decrease in milling quality. However, the topdressing of panicle N fertilizer tended to enhance starch gelatinization enthalpy (ΔH) and its setback viscosity in HT-ripening grains, with the simultaneous decrements in the number and surface area proportions of smaller starch granules under the higher N fertilizer in combination with HT exposure. The effects of higher nitrogen fertilizer and HT exposure on total protein content and gluten composition of grains were additively increased. Hence, the topdressing of panicle N fertilizer exacerbated HT-induced deterioration in cooking and eating quality, rather than alleviating the negative impact of HT exposure on the palatability of cooked rice.
Collapse
Affiliation(s)
- Yanqiu Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xianyue Guan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanyu Han
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lujian Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad A. U. Asad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhaowen Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rong Jin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Pan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fangmin Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
56
|
Zhou T, Chen L, Wang W, Xu Y, Zhang W, Zhang H, Liu L, Wang Z, Gu J, Yang J. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1832-1841. [PMID: 34460951 DOI: 10.1002/jsfa.11518] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Applying organic fertilizer coupled with chemical fertilizer has been widely adopted to improve crop productivity and quality and develop sustainable agriculture. However, little information is available about the effects of organic fertilizer on the grain quality of rice (Oryza sativa L.), especially nutritional quality and starch quality. In the present study, high yielding 'super' rice cultivars were grown in the field with three cultivation practices, including zero nitrogen application (0N), local high yielding practice with chemical fertilizer (T1) and T1 treatment with additional organic fertilizer (T2). RESULTS Application of organic fertilizer synergistically improved rice production, nitrogen use efficiency, milling and appearance quality, and nutritional quality, including the contents of glutelin, essential amino acids and microelements, and also increased amylopectin and the ratio of the short chain of amylopectin, leading to a reduction in relative crystallinity, and decreased prolamin content. Application of organic fertilizer also increased the viscosity and breakdown values, whereas it decreased the pasting temperature and gelatinization enthalpy, resulting in better cooking and eating quality. CONCLUSION Overall, application of organific fertilizer could synergistically improve nitrogen use efficiency and grain quality, including the structure and physicochemical properties of starch, contents of high value protein and amino acids, contents of microelements, and cooking and eating quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianyang Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Liang Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
57
|
Shi S, Zhou H, Zhang G, Xiao J, Cai M, Cao C, Jiang Y. Judge the taste quality of rice by screening the thickness of rice under nitrogen conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shijie Shi
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Hui Zhou
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Gaoyu Zhang
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Junchen Xiao
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Mingli Cai
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Cougui Cao
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
- Shuangshui Shuanglü Institute Huazhong Agricultural University Wuhan Hubei China
| | - Yang Jiang
- College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
- Shuangshui Shuanglü Institute Huazhong Agricultural University Wuhan Hubei China
| |
Collapse
|
58
|
Yang T, Yang H, Zeng Y, Wang H, Xiong R, Wu L, Zhang B. Differences in the functional properties and starch structures of early/late season rice between the early and late seasons. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
59
|
Yuan C, Wang S, Lu D. Fertilization time of slow-release fertilizer affects the physicochemical properties of starch from spring-sown waxy maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1012-1020. [PMID: 34312861 DOI: 10.1002/jsfa.11436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Slow-release fertilizer is widely used in cereal crop production because it is ecofriendly and laborsaving. Effects of different application stages (zero-, three-, and six-leaf stages, denoted as SN0, SN3, and SN6, respectively) of slow-release (N/P2 O5 /K2 O = 225/75/75 kg ha-1 ) fertilizer on physicochemical properties of starch from spring-sown waxy maize were investigated in 2018 and 2019. Application of traditional fertilizer (NCK, compound fertilizer; N/P2 O5 /K2 O = 75/75/75 kg ha-1 ) at sowing time and urea (N = 150 kg ha-1 ) at six-leaf stage was designated as the control. RESULTS In comparison to the NCK, SN0 reduced grain starch content by 4.9%. Meanwhile, SN3 and SN6 did not affect this parameter. Nevertheless, all treatments, particularly SN6, increased average starch granule size. The slow-release fertilizer reduced proportion of chains with degree of polymerization (DP) > 24. Relative to NCK, SN6 increased starch crystallinity in both years, whereas SN0 and SN3 increased it in 2018 but reduced it in 2019. SN0 reduced peak, trough, and final viscosities, whereas SN3 and SN6 produced similar starch viscosities to those produced by NCK. No fertilizer mode affected gelatinization parameters, but SN6 produced a low retrogradation percentage. In comparison to data for 2018, starch produced in 2019 showed a small granule size, and a high proportion of short amylopectin chains. These properties endowed starch with high viscosity and low retrogradation percentage. CONCLUSION In spring-sown waxy maize production, applying slow-release fertilizer at the six-leaf stage produced starch with high viscosity and low retrogradation tendency by enlarging granule size, increasing crystallinity, and reducing the proportion of long chains. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Siyang Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
60
|
Analysis of synthesis, accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohydr Polym 2021; 273:118570. [PMID: 34560981 DOI: 10.1016/j.carbpol.2021.118570] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Nitrogen fertilizer is a crucial factor affecting the growth and grain quality of Tartary buckwheat. This study was to investigate the synthesis, accumulation, and physicochemical properties of Tartary buckwheat starches under four nitrogen levels (0, 90, 180, 270 kg N ha-1). The results showed that activities of four key enzymes, starch contents all first increased and then decreased with increasing nitrogen levels, and peaked at 180 kg N ha-1. All the starches showed typical A-type, while higher nitrogen levels significantly increased the relative crystallinity. The viscosities significantly decreased, onset, peak, and conclusion first decreased and then increased, while pasting temperature and gelatinization enthalpy increased with increasing nitrogen levels. Nitrogen fertilizer and year had significant effects on the synthesis, accumulation and physicochemical properties of Tartary buckwheat starch, and the nitrogen level of 180 kg N ha-1 was more suitable for planting in the northern area of the Loess Plateau.
Collapse
|
61
|
Wang L, Xu Z, Zhang Y, Duan Y, Zhang Y, Wu Y, Yu X, Chen G, Xiong F. Agronomic Traits and Physicochemical Properties of Starch of Different Grain Positions in Wheat Spike Under Nitrogen Treatment. STARCH-STARKE 2021. [DOI: 10.1002/star.202100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leilei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Zhisheng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Nanjing Agricultural University Nanjing 210095 China
| | - Yong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Yuren Duan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Yumeng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Gang Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| |
Collapse
|
62
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
63
|
Nitrogen fertilization levels influence the physicochemical properties of floury rice varieties. Cereal Chem 2021. [DOI: 10.1002/cche.10478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
64
|
Wang X, Wang K, Yin T, Zhao Y, Liu W, Shen Y, Ding Y, Tang S. Nitrogen Fertilizer Regulated Grain Storage Protein Synthesis and Reduced Chalkiness of Rice Under Actual Field Warming. FRONTIERS IN PLANT SCIENCE 2021; 12:715436. [PMID: 34527011 PMCID: PMC8435852 DOI: 10.3389/fpls.2021.715436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/05/2021] [Indexed: 06/02/2023]
Abstract
Our previous study has shown that nitrogen plays an important role in dealing with significantly increased chalkiness caused by elevated temperature. However, the role of nitrogen metabolites has not been given sufficient attention, and its regulatory mechanism is not clear. This study investigated the effects of high temperature and nitrogen fertilizer on the synthesis of grain storage protein and further explored the quality mechanism under the actual scenario of field warming. Results showed that increased temperature and nitrogen fertilizer could affect the activities of nitrogen metabolism enzymes, namely, glutamate synthetase, glutamine synthetase, glutamic pyruvic transaminase, and glutamic oxaloacetic transaminase, and the expressions of storage protein synthesis factor genes, namely, GluA and GluB, and subfamily genes, namely, pro14, BiP1, and PDIL1, which co-induced the changes of storage protein synthesis in rice grains. Furthermore, the increased temperature changed the balance of grain storage substances which may lead to the significantly increased chalky rate (197.67%) and chalkiness (532.92%). Moreover, there was a significant negative correlation between prolamin content and chalkiness, indicating that nitrogen fertilizer might regulate the formation of chalkiness by affecting the synthesis of prolamin. Results suggested that nitrogen application could regulate the related core factors involved in nitrogen metabolism pathways, which, in turn, affects the changes in the storage protein components in the grain and further affects quality. Therefore, as a conventional cultivation measure, nitrogen application would have a certain value in future rice production in response to climate warming.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Kailu Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Tongyang Yin
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
65
|
Qian L, Yao Y, Li C, Xu F, Ying Y, Shao Z, Bao J. Pasting, gelatinization, and retrogradation characteristics related to structural properties of tea seed starches. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
66
|
Guan H, Diao X, Han J, Kong B, Liu D. Influence of Soy Protein Isolate Hydrolysates Obtained under High Hydrostatic Pressure on Pasting and Short-Term Retrogradation Behavior of Maize Starch. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Gao L, Bai W, Xia M, Wan C, Wang M, Wang P, Gao X, Gao J. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int J Biol Macromol 2021; 179:542-549. [PMID: 33716128 DOI: 10.1016/j.ijbiomac.2021.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
At present, the yield of common buckwheat, which is mainly grown in northern Shaanxi of China, is low and the grain quality is poor. Nitrogen is an important nutrient for the growth of common buckwheat, and appropriate nitrogen application can improve the grain quality. Nitrogen fertilizer could alter the starch granule morphology shapes and the granule size distribution. With increasing nitrogen levels, branch number, flower clusters number, grain number per plant, contents of protein and fat, size distribution of "C" granules, and percentages of light transmittance significantly increased, whereas amylose content and retrogradation decreased. All the samples displayed typical A-type X-ray diffraction patterns. Starch showed higher pasting temperature and gelatinization enthalpy but lower trough and final viscosities under high nitrogen levels. These results suggested N2 treatment was more suitable for common buckwheat growth, principal components and correlation analysis revealed that nitrogen fertilizer significantly affected the physicochemical properties of common buckwheat starches.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wenming Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meijuan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meng Wang
- Yu'lin Institute of Agricultural Sciences, Yulin, Shaanxi Province 719000, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
68
|
Iqbal A, Xie H, He L, Ahmad S, Hussain I, Raza H, Khan A, Wei S, Quan Z, Wu K, Ali I, Jiang L. Partial substitution of organic nitrogen with synthetic nitrogen enhances rice yield, grain starch metabolism and related genes expression under the dual cropping system. Saudi J Biol Sci 2020; 28:1283-1296. [PMID: 33613058 PMCID: PMC7878691 DOI: 10.1016/j.sjbs.2020.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/01/2023] Open
Abstract
Improving grain filling in the presernt farming systems is crucial where grain filling is a concern due to the extreme use of chemical fertilizers (CF). A field experiment was conducted at the experimental station of Guangxi University, China in 2019 to test the hypothesis that cattle manure (CM) and poultry manure (PM) combined with CF could improve rice grain filling rate, yield, biochemical and qualitative attributes. A total of six treatments, i.e., no fertilizer (T1), 100% CF (T2), 60% CM + 40% CF (T3), 30% CM + 70% CF (T4), 60% PM + 40% CF (T5), and 30% PM + 70% CF (T6) were used in this study. Results showed that the combined treatment T6increased starch metabolizing enzymes activity (SMEs), such as ADP-glucose phosphorylase (ADGPase) by 8 and 12%, soluble starch synthase (SSS) by 7 and 10%, granule bound starch synthesis (GBSS) by 7 and 9%, and starch branching enzyme (SBE) by 14 and 21% in the early and late seasons, respectively, compared with T2. Similarly, higher rice grain yield, grain filling rate, starch, and amylose content were also recorded in combined treatments. In terms of seasons, higher activity of SMEs , grain starch, and amylose content was noted in the late-season compared to the early season. The increment in these traits was mainly attributed to a lower temperature in the late season during the grain filling period. Furthermore, our results suggested that an increment in starch accumulation and grain filling rate were mainly associated with the enhanced sink capacity by regulating key enzyme activities involved in Suc-to-starch conversion. In-addition, RT-qPCR analysis showed higher expression levels of AGPS2b, SSS1, GBSS1, and GBSE11b genes, which resultantly increased the activities of SMEs during the grain filling period under combined treatments. Linear regression analysis revealed that the activity of ADGPase, SSS, GBSS, and SBE were highly positively correlated with starch and amylose accumulation. Thus, we concluded that a combination of 30% N from PM or CM with 70% N from CF is a promising option in terms of improving rice grain yield and quality. Our study provides a sustainable fertilizer management strategy to enhance rice grain yield and quality at the lowest environmental cost.
Collapse
Key Words
- AC, amylose content
- AGPase, ADP-glucose pyrophosphorylase
- Amylose content
- CF, chemical fertilizer
- CM, cattle manure
- DAA, days after anthesis
- DBE, starch debranching enzyme
- Enzyme
- GBBS, granule bound starch synthase
- Grain yield
- N, nitrogen
- PM, poultry manure
- Rice
- SBE, starch branching enzyme
- SS, sucrose synthase
- SSS, soluble starch synthase
- Starch synthesis
- Temperature
Collapse
Affiliation(s)
- Anas Iqbal
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Huimin Xie
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Liang He
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Shakeel Ahmad
- College of Agriculture, Guangxi University Nanning 530004, China
| | - Izhar Hussain
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong, China.,University of Haripur, Haripur, Khyber Pakhtunkhwa 22620, Pakistan
| | - Haneef Raza
- University of Haripur, Haripur, Khyber Pakhtunkhwa 22620, Pakistan
| | - Abdullah Khan
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Shangqin Wei
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Zhao Quan
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Ke Wu
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University Nanning 530004, China
| |
Collapse
|
69
|
Deng F, Li Q, Chen H, Zeng Y, Li B, Zhong X, Wang L, Ren W. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage. Carbohydr Polym 2020; 252:117212. [PMID: 33183644 DOI: 10.1016/j.carbpol.2020.117212] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Chalkiness is a major concern in rice production and its acceptance and is increased by shade stress. However, the relationship between rice chalkiness and the structural and thermal properties of starch is unclear. Here, we investigated the effect of shade stress on rice starch properties. The chalky grain rate and chalkiness degree significantly decreased with the amylose content, Mn, and ΔH and increased with surface area- and volume-weighted mean diameters, branching degree, ratio of 1022/995 cm-1, and molecular weight polydispersity. Shade stress significantly increased the volume- and surface area-weighted mean diameters and Mw and decreased the amylose content, A chain proportion of amylopectin, Mn, and regularity of starch. These effects led to an increase in the molecular weight polydispersity and branching degree and a decrease in the crystallinity degree and 1045/1022 cm-1 ratio, thereby reducing starch ΔH and uniformity. These factors contributed to increased chalkiness of rice under shade stress.
Collapse
Affiliation(s)
- Fei Deng
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiuping Li
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hong Chen
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuling Zeng
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Li
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaoyuan Zhong
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Wang
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wanjun Ren
- Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|