51
|
Vidal P, Jiménez-Barbero J, Espinosa JF. Conformational flexibility around the Gal-β-(1 → 3)-Glc linkage: Experimental evidence for the existence of the anti-ψ conformation in aqueous solution. Carbohydr Res 2016; 433:36-40. [PMID: 27434833 DOI: 10.1016/j.carres.2016.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
NOE-based analysis of the disaccharide β-Gal-(1 → 3)-β-Glc-OMe (1), especially a diagnostic Gal1-Glc4 NOE detected in a HSQC-NOESY spectrum, reveals the existence of the anti-ψ conformer in aqueous solution in addition to the major syn conformer. This result provides experimental proof of conformational flexibility around the aglyconic bond of β-(1 → 3) disaccharides, in contrast to previous studies that suggested that the flexibility around this linkage was restricted to the syn conformational region.
Collapse
Affiliation(s)
- Paloma Vidal
- Discovery Chemistry Research and Technologies, Centro de Investigación Lilly, Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | | | - Juan F Espinosa
- Discovery Chemistry Research and Technologies, Centro de Investigación Lilly, Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain.
| |
Collapse
|
52
|
Berglund J, Angles d'Ortoli T, Vilaplana F, Widmalm G, Bergenstråhle-Wohlert M, Lawoko M, Henriksson G, Lindström M, Wohlert J. A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:56-70. [PMID: 27385537 DOI: 10.1111/tpj.13259] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
The macromolecular conformation of the constituent polysaccharides in lignocellulosic biomass influences their supramolecular interactions, and therefore their function in plants and their performance in technical products. The flexibility of glycosidic linkages from the backbone of hemicelluloses was studied by evaluating the conformational freedom of the φ and ψ dihedral angles using molecular dynamic simulations, additionally selected molecules were correlated with experimental data by nuclear magnetic resonance spectroscopy. Three types of β-(1→4) glycosidic linkages involving the monosaccharides (Glcp, Xylp and Manp) present in the backbone of hemicelluloses were defined. Different di- and tetrasaccharides with combinations of such sugar monomers from hemicelluloses were simulated, and free energy maps of the φ - ψ space and hydrogen-bonding patterns were obtained. The glycosidic linkage between Glc-Glc or Glc-Man (C-type) was the stiffest with mainly one probable conformation; the linkage from Man-Man or Man-Glc (M-type) was similar but with an increased probability for an alternative conformation making it more flexible, and the linkage between two Xyl-units (X-type) was the most flexible with two almost equally populated conformations. Glycosidic linkages of the same type showed essentially the same conformational space in both disaccharides and in the central region of tetrasaccharides. Different probabilities of glycosidic linkage conformations in the backbone of hemicelluloses can be directly estimated from the free energy maps, which to a large degree affect the overall macromolecular conformations of these polymers. The information gained contributes to an increased understanding of the function of hemicelluloses both in the cell wall and in technical products.
Collapse
Affiliation(s)
- Jennie Berglund
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden
| | - Thibault Angles d'Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Francisco Vilaplana
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology KTH, AlbaNova University Centre, SE-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Malin Bergenstråhle-Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden
| | - Martin Lawoko
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden
| | - Gunnar Henriksson
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden
| | - Mikael Lindström
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fiber and Polymer Technology, School of Chemical Engineering, Royal Institute of Technology KTH, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
53
|
Ding P, Li X, Qing G, Sun T, Liang X. Disaccharide-driven transition of macroscopic properties: from molecular recognition to glycopeptide enrichment. Chem Commun (Camb) 2016; 51:16111-4. [PMID: 26394215 DOI: 10.1039/c5cc06279a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We reported a three-component smart polymer, which could discriminate disaccharide homologues and translate the recognition signals into distinct differences in the macroscopic properties (i.e. wettability and adhesion force) of materials. With these features, we further showed its application in glycopeptide enrichment.
Collapse
Affiliation(s)
- Peng Ding
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China. and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China. and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
54
|
Yang M, MacKerell AD. Conformational sampling of oligosaccharides using Hamiltonian replica exchange with two-dimensional dihedral biasing potentials and the weighted histogram analysis method (WHAM). J Chem Theory Comput 2016; 11:788-99. [PMID: 25705140 DOI: 10.1021/ct500993h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oligosaccharides and polysaccharides exert numerous functional roles in biology through their structural diversity and conformational properties. To investigate their conformational properties using computational methods, Hamiltonian replica exchange (H-REX) combined with two-dimensional grid-based correction maps as biasing potentials (bpCMAP) significantly improves the sampling efficiency about glycosidic linkages. In the current study, we extend the application of H-REX with bpCMAP to complex saccharides and establish systematic procedures for bpCMAP construction, determination of replica distribution, and data analysis. Our main findings are that (1) the bpCMAP for each type of glycosidic linkage can be constructed from the corresponding disaccharide using gas-phase umbrella sampling simulations, (2) the replica distribution can be conveniently determined following the exact definition of the average acceptance ratio based on the assigned distribution of biasing potentials, and (3) the extracted free energy surface (or potential of mean force (PMF)) can be improved using the weighted histogram analysis method (WHAM) allowing for the inclusion of data from the excited state replicas in the calculated probability distribution. The method is applied to a branched N-glycan found on the HIV gp120 protein, and a linear N-glycan. Considering the general importance of N-glycans and the wide appreciation of the sampling problem, the present method represents an efficient procedure for the conformational sampling of complex oligo- and polysaccharides under explicit solvent conditions. More generally, the use of WHAM is anticipated to be of general utility for the calculation of PMFs from H-REX simulations in a wide range of macromolecular systems.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
55
|
Rozada TDC, Pontes RM, Rittner R, Basso EA. Stereoelectronic effects of the glycosidic linkage on the conformational preference of d-sucrose. RSC Adv 2016. [DOI: 10.1039/c6ra24413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
d-Sucrose conformational analysis at DFT theory level applying NBO and NCI methodology.
Collapse
Affiliation(s)
| | | | - Roberto Rittner
- Instituto de Química
- Universidade Estadual de Campinas
- 13083-970 Campinas
- Brazil
| | - Ernani Abicht Basso
- Departamento de Química
- Universidade Estadual de Maringá
- 87020-900 Maringá
- Brazil
| |
Collapse
|
56
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
57
|
Abstract
Protein aggregation and loss of protein's biological functionality are manifestations of protein instability. Cosolvents, in particular trehalose, are widely accepted antidotes against such destabilization. Although numerous theories have been promulgated in the literature with regard to its mechanism of stabilization, the present scenario is still elusive in view of the discrepancies existing in them. To this end, we have revisited the conundrum and attempted to rationalize the mechanism by conducting thorough investigation of the effect of trehalose on the native, partially unfolded and denatured states of protein "Lysozyme" by means of molecular dynamic (MD) simulations under different temperature and concentration regimes. Two-dimensional contour plots along with principal component analysis suggest that trehalose molecules offer on-pathway stabilization unaltering the principal direction of protein's motion, although it slows down protein dynamics so that the protein gets trapped in the homogeneous ensemble of conformations closer to the native state. Free energy landscape reveals higher population of native compared to intermediate and denatured states. Delphi results and calculation of the preferential interaction parameter demonstrate that this relative stabilization of the native state can be ascribed to be the consequence of favourable interactions of trehalose with side chains of certain loci on the protein surface encompassing polar flexible residues. Stability of protein results from the observed difference in binding affinity of trehalose for native and denatured states of protein. Our findings are at variance with the common conception of relative destabilization of the denatured state. Rather, we provide evidence for relative stabilization of the native state. This stabilization is due to interplay of protein-trehalose, water-trehalose, water-water, protein-water and trehalose-trehalose interactions.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, 110016, India.
| | | |
Collapse
|
58
|
Jo S, Qi Y, Im W. Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology 2015; 26:19-29. [PMID: 26405106 DOI: 10.1093/glycob/cwv083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states.
Collapse
Affiliation(s)
- Sunhwan Jo
- Leadership Computing Center, Argonne National Laboratory, 9700 Cass Ave Bldg. 240, Argonne, IL 60439, USA
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
59
|
Angles d’Ortoli T, Sjöberg NA, Vasiljeva P, Lindman J, Widmalm G, Bergenstråhle-Wohlert M, Wohlert J. Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers. J Phys Chem B 2015; 119:9559-70. [DOI: 10.1021/acs.jpcb.5b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Thibault Angles d’Ortoli
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Nils A. Sjöberg
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Polina Vasiljeva
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jonas Lindman
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Malin Bergenstråhle-Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
60
|
Loerbroks C, Heimermann A, Thiel W. Solvents effects on the mechanism of cellulose hydrolysis: A QM/MM study. J Comput Chem 2015; 36:1114-23. [DOI: 10.1002/jcc.23898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/21/2015] [Accepted: 02/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Loerbroks
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Andreas Heimermann
- Theoretische Chemie, Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 52 67663 Kaiserslautern Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
61
|
Yan S, Yao L. DFT application in conformational determination of cellobiose. Carbohydr Res 2015; 404:117-23. [DOI: 10.1016/j.carres.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
|
62
|
Loerbroks C, Boulanger E, Thiel W. Solvent Influence on Cellulose 1,4-β-Glycosidic Bond Cleavage: A Molecular Dynamics and Metadynamics Study. Chemistry 2015; 21:5477-87. [DOI: 10.1002/chem.201405507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 12/15/2022]
|
63
|
Computerized Models of Carbohydrates. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
64
|
Bharadwaj VS, Schutt TC, Ashurst TC, Maupin CM. Elucidating the conformational energetics of glucose and cellobiose in ionic liquids. Phys Chem Chem Phys 2015; 17:10668-78. [DOI: 10.1039/c5cp00118h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The energetics driving the conformational preference of the ω dihedral of glucose and the φ–ψ dihedrals of cellobiose solvated in imidazolium acetate ionic liquids and water are elucidated and compared.
Collapse
Affiliation(s)
- Vivek S. Bharadwaj
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Timothy C. Schutt
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Timothy C. Ashurst
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - C. Mark Maupin
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
65
|
|
66
|
Viborg AH, Fredslund F, Katayama T, Nielsen SK, Svensson B, Kitaoka M, Lo Leggio L, Abou Hachem M. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium. Mol Microbiol 2014; 94:1024-1040. [PMID: 25287704 DOI: 10.1111/mmi.12815] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/20/2022]
Abstract
The Bifidobacterium genus harbours several health promoting members of the gut microbiota. Bifidobacteria display metabolic specialization by preferentially utilizing dietary or host-derived β-galactosides. This study investigates the biochemistry and structure of a glycoside hydrolase family 42 (GH42) β-galactosidase from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 (BlGal42A). BlGal42A displays a preference for undecorated β1-6 and β1-3 linked galactosides and populates a phylogenetic cluster with close bifidobacterial homologues implicated in the utilization of N-acetyl substituted β1-3 galactosides from human milk and mucin. A long loop containing an invariant tryptophan in GH42, proposed to bind substrate at subsite + 1, is identified here as specificity signature within this clade of bifidobacterial enzymes. Galactose binding at the subsite - 1 of the active site induced conformational changes resulting in an extra polar interaction and the ordering of a flexible loop that narrows the active site. The amino acid sequence of this loop provides an additional specificity signature within this GH42 clade. The phylogenetic relatedness of enzymes targeting β1-6 and β1-3 galactosides likely reflects structural differences between these substrates and β1-4 galactosides, containing an axial galactosidic bond. These data advance our molecular understanding of the evolution of sub-specificities that support metabolic specialization in the gut niche.
Collapse
Affiliation(s)
- Alexander Holm Viborg
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Morris MJ, Striegel AM. Influence of glycosidic linkage on the solution conformational entropy of gluco- and mannobioses. Carbohydr Res 2014; 398:31-5. [DOI: 10.1016/j.carres.2014.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
68
|
Kapaev RR, Egorova KS, Toukach PV. Carbohydrate Structure Generalization Scheme for Database-Driven Simulation of Experimental Observables, Such as NMR Chemical Shifts. J Chem Inf Model 2014; 54:2594-611. [DOI: 10.1021/ci500267u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roman R. Kapaev
- Higher
Chemical College of the Russian Academy of Sciences, Miusskaya
sq. 9, Moscow 125047, Russia
| | - Ksenia S. Egorova
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Philip V. Toukach
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
69
|
Bieler NS, Häuselmann R, Hünenberger PH. Local Elevation Umbrella Sampling Applied to the Calculation of Alchemical Free-Energy Changes via λ-Dynamics: The λ-LEUS Scheme. J Chem Theory Comput 2014; 10:3006-22. [DOI: 10.1021/ct5002686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Noah S. Bieler
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Rico Häuselmann
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
70
|
Bell NGA, Rigg G, Masters S, Bella J, Uhrín D. Detecting low-level flexibility using residual dipolar couplings: a study of the conformation of cellobiose. Phys Chem Chem Phys 2014; 15:18223-34. [PMID: 24064673 DOI: 10.1039/c3cp52987h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed novel NMR methods for the measurement of heteronuclear residual dipolar couplings (RDCs) in molecules with severely overlapping NMR resonances. These and other methods enabled us to obtain 31 RDCs for α-D-cellobiose and 24 RDCs for β-D-cellobiose. The interpretation of the data in the approximation of a rigid disaccharide structure, using RDCs and interglycosidic (3)J coupling constants, yielded conformation that is very close to that determined using X-ray crystallography. However, depending on which ring was used to calculate the order parameters, the dihedral angle ψH varied up to 30° or 40°, while the φH angle was always the same. This indicates residual flexibility of the glycosidic linkage between the two monosaccharide rings and was observed for both α- and β-D-cellobiose. The RDC analysis using rigid fragments rather than a complete molecule has thus shown that the glycosidic bond of cellobiose is not completely rigid and exhibits low-level flexibility. The sources of this flexibility are discussed and evidence presented to support a hypothesis that it is associated with the ψ more than the φ angle.
Collapse
Affiliation(s)
- Nicholle G A Bell
- EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | | | | | | | | |
Collapse
|
71
|
Wohlert J. Vapor Pressures and Heats of Sublimation of Crystalline β-Cellobiose from Classical Molecular Dynamics Simulations with Quantum Mechanical Corrections. J Phys Chem B 2014; 118:5365-73. [DOI: 10.1021/jp501839k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jakob Wohlert
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
72
|
Patel DS, Pendrill R, Mallajosyula SS, Widmalm G, MacKerell AD. Conformational properties of α- or β-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiments. J Phys Chem B 2014; 118:2851-71. [PMID: 24552401 PMCID: PMC3979472 DOI: 10.1021/jp412051v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton-proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2' hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6' atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored.
Collapse
Affiliation(s)
- Dhilon S Patel
- Department of Pharmaceutical Sciences, University of Maryland , 20 Penn Street HSF II, Baltimore, Maryland 21201, United States
| | | | | | | | | |
Collapse
|
73
|
Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae. FEBS Open Bio 2014; 4:200-12. [PMID: 24649402 PMCID: PMC3953731 DOI: 10.1016/j.fob.2014.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 11/21/2022] Open
Abstract
Isomaltases (Imap) preferably cleave α-(1,6) bonds, yet show clear substrate ambiguity. With only 3 different aa, Ima3p activities and thermostability diverge from Ima2p. The most distant protein, Ima5p, is extremely sensitive to temperature. Ima5p nevertheless displays most of the same catalytic properties as Ima1p and Ima2p. Ima5p challenges previous conclusions about specific aa needs for the active site.
The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6) disaccharides isomaltose and palatinose, with Michaëlis–Menten kinetics and inhibition at high substrates concentration. They were also able to hydrolyze trisaccharides bearing an α-(1,6) linkage, but also α-(1,2), α-(1,3) and α-(1,5) disaccharides including sucrose, highlighting their substrate ambiguity. While Ima1p and Ima2p presented almost identical characteristics, our results nevertheless showed many singularities within this protein family. In particular, Ima3p presented lower activities and thermostability than Ima2p despite only three different amino acids between the sequences of these two isoforms. The Ima3p_R279Q variant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240 significantly increased the stability of Ima3p and supported the role of prolines in thermostability. The most distant protein, Ima5p, presented the lowest optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specific amino acids for determining the specificity for α-(1,6) substrates. We finally found a mixed inhibition by maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitive at very low isomaltose concentrations and uncompetitive as the substrate concentration increased. Altogether, this work illustrates that a gene family encoding proteins with strong sequence similarities can lead to enzyme with notable differences in biochemical and enzymological properties.
Collapse
|
74
|
DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent, COSMO. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
75
|
Pendrill R, Säwén E, Widmalm G. Conformation and dynamics at a flexible glycosidic linkage revealed by NMR spectroscopy and molecular dynamics simulations: analysis of β-L-Fucp-(1→6)-α-D-Glcp-OMe in water solution. J Phys Chem B 2013; 117:14709-22. [PMID: 24175957 DOI: 10.1021/jp409985h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intrinsic flexibility of carbohydrates facilitates different 3D structures in response to altered environments. At glycosidic (1→6)-linkages, three torsion angles are variable, and herein the conformation and dynamics of β-L-Fucp-(1→6)-α-D-Glcp-OMe are investigated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. The disaccharide shows evidence of conformational averaging for the ψ and ω torsion angles, best explained by a four-state conformational distribution. Notably, there is a significant population of conformations having ψ = 85° (clinal) in addition to those having ψ = 180° (antiperiplanar). Moderate differences in (13)C R1 relaxation rates are found to be best explained by axially symmetric tumbling in combination with minor differences in librational motion for the two residues, whereas the isomerization motions are occurring too slowly to be contributing significantly to the observed relaxation rates. The MD simulation was found to give a reasonably good agreement with experiment, especially with respect to diffusive properties, among which the rotational anisotropy, D∥/D⊥, is found to be 2.35. The force field employed showed too narrow ω torsion angles in the gauche-trans and gauche-gauche states as well as overestimating the population of the gauche-trans conformer. This information can subsequently be used in directing parameter developments and emphasizes the need for refinement of force fields for (1→6)-linked carbohydrates.
Collapse
Affiliation(s)
- Robert Pendrill
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
76
|
Artner D, Oblak A, Ittig S, Garate JA, Horvat S, Arrieumerlou C, Hofinger A, Oostenbrink C, Jerala R, Kosma P, Zamyatina A. Conformationally constrained lipid A mimetics for exploration of structural basis of TLR4/MD-2 activation by lipopolysaccharide. ACS Chem Biol 2013; 8:2423-32. [PMID: 23952219 PMCID: PMC3833292 DOI: 10.1021/cb4003199] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recognition of the lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, by the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD-2) complex is essential for the control of bacterial infection. A pro-inflammatory signaling cascade is initiated upon binding of membrane-associated portion of LPS, a glycophospholipid Lipid A, by a coreceptor protein MD-2, which results in a protective host innate immune response. However, activation of TLR4 signaling by LPS may lead to the dysregulated immune response resulting in a variety of inflammatory conditions including sepsis syndrome. Understanding of structural requirements for Lipid A endotoxicity would ensure the development of effective anti-inflammatory medications. Herein, we report on design, synthesis, and biological activities of a series of conformationally confined Lipid A mimetics based on β,α-trehalose-type scaffold. Replacement of the flexible three-bond β(1→6) linkage in diglucosamine backbone of Lipid A by a two-bond β,α(1↔1) glycosidic linkage afforded novel potent TLR4 antagonists. Synthetic tetraacylated bisphosphorylated Lipid A mimetics based on a β-GlcN(1↔1)α-GlcN scaffold selectively block the LPS binding site on both human and murine MD-2 and completely abolish lipopolysaccharide-induced pro-inflammatory signaling, thereby serving as antisepsis drug candidates. In contrast to their natural counterpart lipid IVa, conformationally constrained Lipid A mimetics do not activate mouse TLR4. The structural basis for high antagonistic activity of novel Lipid A mimetics was confirmed by molecular dynamics simulation. Our findings suggest that besides the chemical structure, also the three-dimensional arrangement of the diglucosamine backbone of MD-2-bound Lipid A determines endotoxic effects on TLR4.
Collapse
Affiliation(s)
- Daniel Artner
- Department
of Chemistry, University of Natural Resources and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Alja Oblak
- Department
of Biotechnology, National Institute of Chemistry, University of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Simon Ittig
- Biozentrum University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Jose Antonio Garate
- Institute
of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Simon Horvat
- Department
of Biotechnology, National Institute of Chemistry, University of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Cécile Arrieumerlou
- Biozentrum University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andreas Hofinger
- Department
of Chemistry, University of Natural Resources and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute
of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Roman Jerala
- Department
of Biotechnology, National Institute of Chemistry, University of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Alla Zamyatina
- Department
of Chemistry, University of Natural Resources and Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| |
Collapse
|
77
|
Mercadante D, Melton LD, Jameson GB, Williams MAK, De Simone A. Substrate dynamics in enzyme action: rotations of monosaccharide subunits in the binding groove are essential for pectin methylesterase processivity. Biophys J 2013; 104:1731-9. [PMID: 23601320 DOI: 10.1016/j.bpj.2013.02.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 01/31/2023] Open
Abstract
The dynamical behavior of biomacromolecules is a fundamental property regulating a large number of biological processes. Protein dynamics have been widely shown to play a role in enzyme catalysis; however, the interplay between substrate dynamics and enzymatic activity is less understood. We report insights into the role of dynamics of substrates in the enzymatic activity of PME from Erwinia chrysanthemi, a processive enzyme that catalyzes the hydrolysis of methylester groups from the galacturonic acid residues of homogalacturonan chains, the major component of pectin. Extensive molecular dynamics simulations of this PME in complex with decameric homogalacturonan chains possessing different degrees and patterns of methylesterification show how the carbohydrate substitution pattern governs the dynamics of the substrate in the enzyme's binding cleft, such that substrate dynamics represent a key prerequisite for the PME biological activity. The analyses reveal that correlated rotations around glycosidic bonds of monosaccharide subunits at and immediately adjacent to the active site are a necessary step to ensure substrate processing. Moreover, only substrates with the optimal methylesterification pattern attain the correct dynamical behavior to facilitate processive catalysis. This investigation is one of the few reported examples of a process where the dynamics of a substrate are vitally important.
Collapse
|
78
|
Mishra SK, Kara M, Zacharias M, Koca J. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation. Glycobiology 2013; 24:70-84. [PMID: 24134878 DOI: 10.1093/glycob/cwt093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.
Collapse
Affiliation(s)
- Sushil Kumar Mishra
- Central European Institute of Technology, Masaryk University, Kamenice 5, 61137 Brno, Czech Republic
| | | | | | | |
Collapse
|
79
|
Vilén EM, Sandström C. NMR study on the interaction of trehalose with lactose and its effect on the hydrogen bond interaction in lactose. Molecules 2013; 18:9735-54. [PMID: 23948714 PMCID: PMC6270309 DOI: 10.3390/molecules18089735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Trehalose, a well-known stress-protector of biomolecules, has been investigated for its effect on the mobility, hydration and hydrogen bond interaction of lactose using diffusion-ordered NMR spectroscopy and NMR of hydroxy protons. In ternary mixtures of trehalose, lactose and water, the two sugars have the same rate of diffusion. The chemical shifts, temperature coefficients, vicinal coupling constants and ROE of the hydroxy protons in trehalose, lactose and sucrose were measured for the disaccharides alone in water/acetone-d6 solutions as well as in mixtures. The data indicated that addition of trehalose did not change significantly the strength of the hydrogen bond interaction between GlcOH3 and GalO5' in lactose. Small upfield shifts were however measured for all hydroxy protons when the sugar concentration was increased. The chemical shift of the GlcOH3 signal in lactose showed less change, attributed to the spatial proximity to GalO5'. Chemical exchange between hydroxy protons of lactose and trehalose was observed in the ROESY NMR spectra. Similar effects were observed with sucrose indicating no specific effect of trehalose at the concentrations investigated (73 to 763 mg/mL) and suggesting that it is the concentration of hydroxy groups more than the type of sugars which is guiding intermolecular interactions.
Collapse
Affiliation(s)
- Eric Morssing Vilén
- Department of Chemistry, Swedish University of Agricultural Sciences, Biocenter P.O. Box 7015, Uppsala SE-75007, Sweden.
| | | |
Collapse
|
80
|
Squeglia F, Romano M, Ruggiero A, Vitagliano L, De Simone A, Berisio R. Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys J 2013; 104:2530-9. [PMID: 23746526 PMCID: PMC3672874 DOI: 10.1016/j.bpj.2013.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Resuscitation of Mtb is crucial to the etiology of Tuberculosis, because latent tuberculosis is estimated to affect one-third of the world population. The resuscitation-promoting factor RpfB is mainly responsible for Mtb resuscitation from dormancy. Given the impact of latent Tuberculosis, RpfB represents an interesting target for tuberculosis drug discovery. However, no molecular models of substrate binding and catalysis are hitherto available for this enzyme. Here, we identified key interactions involved in substrate binding to RpfB by combining x-ray diffraction studies and computational approaches. The crystal structure of RpfB catalytic domain in complex with N,N',N"-triacetyl-chitotriose, as described here, provides the first, to our knowledge, atomic representation of ligand recognition by RpfB and demonstrates that the strongest interactions are established by the N-acetylglucosamine moiety in the central region of the enzyme binding cleft. Molecular dynamics analyses provided information on the dynamic behavior of protein-substrate interactions and on the role played by the solvent in RpfB function. These data combined with sequence conservation analysis suggest that Glu-292 is the sole residue crucial for catalysis, implying that RpfB acts via the formation of an oxocarbenium ion rather than a covalent intermediate. Present data represent a solid base for the design of effective drug inhibitors of RpfB. Moreover, homology models were generated for the catalytic domains of all members of the Mtb Rpf family (RpfA-E). The analysis of these models unveiled analogies and differences among the different members of the Rpf protein family.
Collapse
Key Words
- mtb, mycobacterium tuberculosis
- rpfb, resuscitation promoting factor b
- pdb, protein data bank
- rpfbc, catalytic domain of rpfb
- nag3, n,n',n"-triacetyl-chitotriose
- nag6, hexa-n- acetylchitohexaose
- md, molecular dynamics
- rmsf, root mean-square fluctuation
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Department of Chemistry, University of Naples Federico II, Napoli, Italy
| | - Maria Romano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Seconda Università di Napoli, Caserta, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, United Kingdom
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| |
Collapse
|
81
|
Wang D, Ámundadóttir ML, van Gunsteren WF, Hünenberger PH. Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:521-37. [DOI: 10.1007/s00249-013-0901-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
|
82
|
Meier K, van Gunsteren WF. On the use of advanced modelling techniques to investigate the conformational discrepancy between two X-ray structures of the AppA BLUF domain. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.743659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
83
|
Affiliation(s)
- Riccardo Baron
- Department of Medicinal Chemistry, College of Pharmacy, and The Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112-5820;
| | - J. Andrew McCammon
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California 92093-0365;
| |
Collapse
|
84
|
Jo S, Lee HS, Skolnick J, Im W. Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling. PLoS Comput Biol 2013; 9:e1002946. [PMID: 23516343 PMCID: PMC3597548 DOI: 10.1371/journal.pcbi.1002946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. An N-glycan is a carbohydrate chain covalently linked to the side chain of asparagine. Due to the flexibility of carbohydrate chains, it is believed that the N-glycan chains would not have a well-defined structure. However, our survey of N-glycan structures in the PDB shows that the N-glycan structures found on the surfaces of homologous glycoproteins are significantly conserved. This suggests that the interaction between the carbohydrate and the protein structure around the glycan chain plays an important role in determining the N-glycan structure. While the global N-glycan structures found on the surfaces of non-homologous glycoproteins are not conserved, the conformations of the carbohydrate residues that are closer to the protein appear to be more conserved. Our analysis highlights the applicability of template-based approaches used in protein structure prediction to structure prediction and modeling of N-glycans of glycoproteins.
Collapse
Affiliation(s)
- Sunhwan Jo
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
| | - Hui Sun Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
85
|
Abstract
Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.
Collapse
|
86
|
Wehle M, Vilotijevic I, Lipowsky R, Seeberger PH, Varon Silva D, Santer M. Mechanical Compressibility of the Glycosylphosphatidylinositol (GPI) Anchor Backbone Governed by Independent Glycosidic Linkages. J Am Chem Soc 2012; 134:18964-72. [DOI: 10.1021/ja302803r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marko Wehle
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Ivan Vilotijevic
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Department of Chemistry and
Biochemistry, Free University of Berlin, Arnimallee 22, 14195 Berlin, Germany
| | | | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
87
|
Bestaoui-Berrekhchi-Berrahma N, Derreumaux P, Sekkal-Rahal M, Springborg M, Sayede A, Yousfi N, Kadoun AED. Density functional conformational study of 2-O-sulfated 3,6 anhydro-α-D-galactose and of neo-κ- and ι-carrabiose molecules in gas phase and water. J Mol Model 2012; 19:893-904. [PMID: 23086461 DOI: 10.1007/s00894-012-1621-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
We examined the conformational preferences of the 2-O-sulfated-3,6-α-D-anhydrogalactose (compound I) and two 1,3 linked disaccharides constituting-κ or ι-carrageenans using density functional and ab initio methods in gas phase and aqueous solution. Systematic modifications of two torsion angles leading to 324 and 144 starting geometries for the compound I and each disaccharide were used to generate adiabatic maps using B3LYP/6-31G(d). The lower energy conformers were then fully optimized using B3LYP, B3PW91 and MP2 with several basis sets. Overall, we discuss the impact of full relaxation on the energy and structure of the dominant conformations, present the performance comparison with previous molecular mechanics calculations if available, and determine whether our results are impacted, when polarization and diffuse functions are added to the 6-31G(d) basis set, or when the MP2 level of theory is used.
Collapse
|
88
|
Conformational analysis of an extracellular polysaccharide produced by Sphaerotilus natans. Carbohydr Res 2012; 360:102-8. [DOI: 10.1016/j.carres.2012.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 11/20/2022]
|
89
|
Re S, Nishima W, Miyashita N, Sugita Y. Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev 2012; 4:179-187. [PMID: 28510079 DOI: 10.1007/s12551-012-0090-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 01/09/2023] Open
Abstract
Protein-glycan recognition regulates a wide range of biological and pathogenic processes. Conformational diversity of glycans in solution is apparently incompatible with specific binding to their receptor proteins. One possibility is that among the different conformational states of a glycan, only one conformer is utilized for specific binding to a protein. However, the labile nature of glycans makes characterizing their conformational states a challenging issue. All-atom molecular dynamics (MD) simulations provide the atomic details of glycan structures in solution, but fairly extensive sampling is required for simulating the transitions between rotameric states. This difficulty limits application of conventional MD simulations to small fragments like di- and tri-saccharides. Replica-exchange molecular dynamics (REMD) simulation, with extensive sampling of structures in solution, provides a valuable way to identify a family of glycan conformers. This article reviews recent REMD simulations of glycans carried out by us or other research groups and provides new insights into the conformational equilibria of N-glycans and their alteration by chemical modification. We also emphasize the importance of statistical averaging over the multiple conformers of glycans for comparing simulation results with experimental observables. The results support the concept of "conformer selection" in protein-glycan recognition.
Collapse
Affiliation(s)
- Suyong Re
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Wataru Nishima
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoyuki Miyashita
- RIKEN Quantitative Biology Center, IMDA 6F, 1-6-5 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuji Sugita
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,RIKEN Quantitative Biology Center, IMDA 6F, 1-6-5 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
90
|
Winther LR, Qvist J, Halle B. Hydration and Mobility of Trehalose in Aqueous Solution. J Phys Chem B 2012; 116:9196-207. [DOI: 10.1021/jp304982c] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Louise Revsbech Winther
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Johan Qvist
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Bertil Halle
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
91
|
Whitfield DM. Plausible transition states for glycosylation reactions. Carbohydr Res 2012; 356:180-90. [DOI: 10.1016/j.carres.2012.03.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
|
92
|
Horta BAC, Lin Z, Huang W, Riniker S, van Gunsteren WF, Hünenberger PH. Reoptimized interaction parameters for the peptide-backbone model compound N-methylacetamide in the GROMOS force field: Influence on the folding properties of two beta-peptides in methanol. J Comput Chem 2012; 33:1907-17. [DOI: 10.1002/jcc.23021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/10/2012] [Accepted: 04/19/2012] [Indexed: 11/09/2022]
|
93
|
Nishima W, Miyashita N, Yamaguchi Y, Sugita Y, Re S. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution. J Phys Chem B 2012; 116:8504-12. [PMID: 22530754 DOI: 10.1021/jp212550z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of bisecting GlcNAc and core fucosylation in N-glycans is essential for fine functional regulation of glycoproteins. In this paper, the effect of these modifications on the conformational properties of N-glycans is examined at the atomic level by performing replica-exchange molecular dynamics (REMD) simulations. We simulate four biantennary complex-type N-glycans, namely, unmodified, two single-substituted with either bisecting GlcNAc or core fucose, and disubstituted forms. By using REMD as an enhanced sampling technique, five distinct conformers in solution, each of which is characterized by its local orientation of the Manα1-6Man glycosidic linkage, are observed for all four N-glycans. The chemical modifications significantly change their conformational equilibria. The number of major conformers is reduced from five to two and from five to four upon the introduction of bisecting GlcNAc and core fucosylation, respectively. The population change is attributed to specific inter-residue hydrogen bonds, including water-mediated ones. The experimental NMR data, including nuclear Overhauser enhancement and scalar J-coupling constants, are well reproduced taking the multiple conformers into account. Our structural model supports the concept of "conformer selection", which emphasizes the conformational flexibility of N-glycans in protein-glycan interactions.
Collapse
Affiliation(s)
- Wataru Nishima
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
94
|
|
95
|
Kuttel M, Ravenscroft N, Foschiatti M, Cescutti P, Rizzo R. Conformational properties of two exopolysaccharides produced by Inquilinus limosus, a cystic fibrosis lung pathogen. Carbohydr Res 2012; 350:40-8. [PMID: 22261278 DOI: 10.1016/j.carres.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/23/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
Abstract
Inquilinus limosus is a multi-resistant bacterium found in the respiratory tract of patients with cystic fibrosis. This bacterium produces two unique fully pyruvylated exopolysaccharides in similar quantities: an α-(1→2)-linked mannan and a β-(1→3)-linked glucan. We employed molecular modelling methods to probe the characteristic conformations and dynamics of these polysaccharides, with corroboration from potentiometric titrations and circular dichroism experiments. Our calculations reveal different structural motifs for the mannan and glucan polysaccharides: the glucan forms primarily right-handed helices with a wide range of extensions, while the mannan forms only left-handed helices. This finding is supported by our circular dichroism experiments. Our calculations also show that the (1→3)-β-d-Glcp linkage is more dynamically flexible than the (1→2)-α-d-Manp: the glucan characteristically forms a range of wide helices with large central cavities. In contrast, the mannan forms rigid regular 'bottlebrush' helices with a minimal central cavity. The widely different character of these two polymers suggests a possible differentiation of biological roles.
Collapse
Affiliation(s)
- Michelle Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, South Africa.
| | | | | | | | | |
Collapse
|
96
|
French AD. Combining computational chemistry and crystallography for a better understanding of the structure of cellulose. Adv Carbohydr Chem Biochem 2012; 67:19-93. [PMID: 22794182 DOI: 10.1016/b978-0-12-396527-1.00002-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
97
|
Polyansky AA, Zubac R, Zagrovic B. Estimation of conformational entropy in protein-ligand interactions: a computational perspective. Methods Mol Biol 2012; 819:327-53. [PMID: 22183546 DOI: 10.1007/978-1-61779-465-0_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conformational entropy is an important component of the change in free energy upon binding of a ligand to its target protein. As a consequence, development of computational techniques for reliable estimation of conformational entropies is currently receiving an increased level of attention in the context of computational drug design. Here, we review the most commonly used techniques for conformational entropy estimation from classical molecular dynamics simulations. Although by-and-large still not directly used in practical drug design, these techniques provide a golden standard for developing other, computationally less-demanding methods for such applications, in addition to furthering our understanding of protein-ligand interactions in general. In particular, we focus on the quasi-harmonic approximation and discuss different approaches that can be used to go beyond it, most notably, when it comes to treating anharmonic and/or correlated motions. In addition to reviewing basic theoretical formalisms, we provide a concrete set of steps required to successfully calculate conformational entropy from molecular dynamics simulations, as well as discuss a number of practical issues that may arise in such calculations.
Collapse
Affiliation(s)
- Anton A Polyansky
- Laboratory of Computational Biophysics, Department of Structural and Computational Biology, Max Perutz Laboratories, Vienna, Austria
| | | | | |
Collapse
|
98
|
Borgogna M, Bellich B, Cesàro A. Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea". Mar Drugs 2011; 9:2572-2604. [PMID: 22363241 PMCID: PMC3280570 DOI: 10.3390/md9122572] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/15/2022] Open
Abstract
This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.
Collapse
Affiliation(s)
| | | | - Attilio Cesàro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 1-I-34127 Trieste, Italy; (M.B.); (B.B.)
| |
Collapse
|
99
|
Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 2011; 7:3162-3180. [PMID: 22125473 PMCID: PMC3224046 DOI: 10.1021/ct200328p] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Sairam S. Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - E. Prabhu Raman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Elizabeth Hatcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Theresa J. Foster
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Francis W. Jamison
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| |
Collapse
|
100
|
Sanhueza CA, Dorta RL, Vázquez JT. Stereochemical Properties of Glucosyl Sulfoxides in Solution. J Org Chem 2011; 76:7769-80. [DOI: 10.1021/jo201130x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos A. Sanhueza
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Rosa L. Dorta
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Jesús T. Vázquez
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|