51
|
Treberg JR, Munro D, Jastroch M, Quijada-Rodriguez AR, Kutschke M, Wiens L. Comparing Electron Leak in Vertebrate Muscle Mitochondria. Integr Comp Biol 2018; 58:495-505. [DOI: 10.1093/icb/icy095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jason R Treberg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
- Department of Food and Human Nutritional Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
- Centre on Aging, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
| | - Daniel Munro
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm SE-106 91, Sweden
| | - Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
| | - Maria Kutschke
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Lilian Wiens
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
52
|
Zhang Q, Han X, Hao X, Ma L, Li S, Wang Y, Du W. A simulated heat wave shortens the telomere length and lifespan of a desert lizard. J Therm Biol 2018; 72:94-100. [PMID: 29496020 DOI: 10.1016/j.jtherbio.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 11/24/2022]
Abstract
Understanding how organisms respond to warming contributes important information to the conservation of biodiversity that is threatened by climate warming. Here, we conducted experiments on a desert agama (Phrynocephalus przewalskii) to test the hypothesis that climate warming (an increase in both mean temperature and heat waves) would induce oxidative stress, shortening telomere length, and thereby decreasing survival. Our results demonstrated that one week of exposure to a simulated heat wave significantly shortened telomere length, and decreased the overwinter survival of lizards, but mean temperature increase did not affect the survival of lizards. However, the antioxidant capacity (anti-oxidative enzyme) was not affected by the warming treatments. Therefore, heat waves might have negative impacts on the desert agama, with shortened telomeres likely causing the lifespan of lizards to decrease under climate warming.
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingzhi Han
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuran Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
53
|
O'Brien KM, Rix AS, Egginton S, Farrell AP, Crockett EL, Schlauch K, Woolsey R, Hoffman M, Merriman S. Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes. J Exp Biol 2018; 221:jeb177816. [PMID: 29895681 PMCID: PMC6104818 DOI: 10.1242/jeb.177816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Anna S Rix
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | - Karen Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Rebekah Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Megan Hoffman
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Sean Merriman
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
54
|
Polymeropoulos ET, Oelkrug R, Jastroch M. Editorial: The Evolution of Endothermy-From Patterns to Mechanisms. Front Physiol 2018; 9:891. [PMID: 30050460 PMCID: PMC6052769 DOI: 10.3389/fphys.2018.00891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Rebecca Oelkrug
- Department of Internal Medicine I, Group of Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum, Munich, Germany.,The Arrhenius Laboratories F3, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
55
|
Liu D, Yu H, Gao L, Li A, Deng H, Zhang Z, Tao S, Liu Z, Yang Q, Pang Q. The inhibition of GSK-3β promotes the production of reactive oxygen species via β-catenin/C/EBPα signaling in the spleen of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2018; 76:110-120. [PMID: 29477497 DOI: 10.1016/j.fsi.2018.02.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
In this study, the mechanism that the inhibition of glycogen synthase kinase-3β (GSK-3β) promotes the production of reactive oxygen species (ROS) via β-catenin/CCAAT/enhancer binding protein α (C/EBPα) signaling was investigated in the spleen of zebrafish (Danio rerio). The results demonstrated that the inhibition of GSK-3β induced the mRNA expression of β-catenin and C/EBPα by lithium (Li) treatments or GSK-3β RNA interference. The levels of hydrogen peroxide (H2O2), superoxide anion (O2.-), and hydroxy radical (·OH) as well as the activity of superoxide dismutase (SOD) were increased, while the activities of catalase (CAT) and glutathione peroxidase (GSH-PX) were decreased in the spleen and ZF4 cells of zebrafish by Li+ treatments. In addition, GSK-3β RNA interference increased ROS levels and decreased the activities of CAT and GSH-PX in the spleen. The fluorescence intensity of ROS was increased but the mitochondrial membrane potential (MMP) was decreased by Li+ treatments in ZF4 cells labeled with 2',7'-dichlorofluorescein diacetate (DCFH-DA) and Rhodamine-123, respectively. The results of present study indicated that the inhibition of GSK-3β promoted the ROS production via β-catenin/C/EBPα signaling in the spleen of zebrafish, and the balance between ROS and antioxidants could be destroyed by the GSK-3β/β-catenin/C/EBPα signaling. The results may be a valuable contribution to understanding the modulatory mechanism of GSK-3β/β-catenin/C/EBPα signaling on the antioxidant system in fish species.
Collapse
Affiliation(s)
- Dongwu Liu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang 261061, China
| | - Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Ao Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zhuangzhuang Zhang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Shiyi Tao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Ziqiang Liu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Qiao Yang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
56
|
Reactive oxygen species participate in liver function recovery during compensatory growth in zebrafish (Danio rerio). Biochem Biophys Res Commun 2018; 499:285-290. [PMID: 29574160 DOI: 10.1016/j.bbrc.2018.03.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 01/02/2023]
Abstract
Compensatory growth (CG) is defined as a phase of accelerated growth when the disadvantageous environment is improved, accompanied by metabolic adjustment. Here, we report that hepatic oxidative phosphorylation (OXPHOS) activity was enhanced during compensatory growth in zebrafish. Mitochondrial metabolism enabled the generation of reactive oxygen species (ROS), which activated the nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway, as well as the mTOR signaling pathway. Tempol (a superoxide dismutase mimetic) treatment blocked ROS signaling in the liver as well as CG in zebrafish. These results demonstrated that mitochondrial ROS signaling are essential for the occurrence of compensatory growth in zebrafish.
Collapse
|
57
|
Liu D, Gao L, Zhang Z, Tao S, Pang Q, Li A, Deng H, Yu H. Lithium promotes the production of reactive oxygen species via GSK-3β/TSC2/TOR signaling in the gill of zebrafish (Danio rerio). CHEMOSPHERE 2018; 195:854-863. [PMID: 29291576 DOI: 10.1016/j.chemosphere.2017.12.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the mechanism that lithium (Li) promotes the production of reactive oxygen species (ROS) via the glycogen synthase kinase-3β (GSK-3β)/tuberous sclerosis complex 2 (TSC2)/target of rapamycin (TOR) signaling was investigated in the gill of zebrafish (Danio rerio). After the zebrafish were treated by 25 and 50 mg/L Li+, the mRNA expression of GSK-3β and TSC2 was inhibited, but the expression of TOR was induced in the gill of zebrafish. The levels of hydrogen peroxide (H2O2), superoxide anion (O2·-), and hydroxy radical (·OH) as well as the activity of superoxide dismutase (SOD) were increased, while the activities of catalase (CAT), glutathione peroxidase (GSH-PX), and peroxidase (POD) were decreased by 25 and 50 mg/L Li+ treatments. In the ZF4 cells, the mRNA expression of GSK-3β and TSC2 was inhibited, but TOR expression was induced by 1, 5, and 10 mmol/L Li+ treatments. To further confirm that lithium promoted ROS production via GSK-3β inhibition, GSK-3β RNA was interfered. It was found that the interference of GSK-3β RNA induced the TSC2/TOR signaling. The levels of H2O2, O2·-, and ·OH were increased, but the activities of CAT, GSH-PX, and POD were decreased by GSK-3β RNA interference. In addition, lithium decreased the mitochondrial membrane potential (MMP) with Rhodamine-123 assay, but increased the levels of ROS by 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The present results indicated that lithium promoted the ROS production through the GSK-3β/TSC2/TOR signaling in the gill of zebrafish.
Collapse
Affiliation(s)
- Dongwu Liu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zhuangzhuang Zhang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Shiyi Tao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China.
| | - Ao Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China; Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang 261061, China
| |
Collapse
|
58
|
Christen F, Desrosiers V, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Dufresne F, Lamarre SG, Blier PU. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic Biol Med 2018; 116:11-18. [PMID: 29294390 DOI: 10.1016/j.freeradbiomed.2017.12.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022]
Abstract
Cardiac mitochondrial metabolism provides 90% of the ATP necessary for the contractile exertion of the heart muscle. Mitochondria are therefore assumed to play a pivotal role in heart failure (HF), cardiovascular disease and ageing. Heat stress increases energy metabolism and oxygen demand in tissues throughout the body and imposes a major challenge on the heart, which is suspected of being the first organ to fail during heat stress. The underlying mechanisms inducing heart failure are still unclear. To pinpoint the processes implicated in HF during heat stress, we measured mitochondrial respiration rates and hydrogen peroxide production of isolated Arctic char (Salvelinus alpinus) heart mitochondria at 4 temperatures: 10°C (acclimation), 15°C, 20°C and 25°C (just over critical maximum). We found that at temperature ranges causing the loss of an organism's general homeostasis (between 20°C and 25°C) and with a substrate combination close to physiological conditions, the heat-induced increase in mitochondrial oxygen consumption levels off. More importantly, at the same state, hydrogen peroxide efflux increased by almost 50%. In addition, we found that individuals with low mitochondrial respiration rates produced more hydrogen peroxide at 10°C, 15°C and 20°C. This could indicate that individuals with cardiac mitochondria having a low respiratory capacity, have a more fragile heart and will be more prone to oxidative stress and HF, and less tolerant to temperature changes and other stressors. Our results show that, at temperatures close to the thermal limit, mitochondrial capacity is compromised and ROS production rates increase. This could potentially alter the performance of the cardiac muscle and lead to heat-induced HF underlining the important role that mitochondria play in setting thermal tolerance limits.
Collapse
Affiliation(s)
- Felix Christen
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Véronique Desrosiers
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Bernard A Dupont-Cyr
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Grant W Vandenberg
- Université Laval, Département de sciences animales, Québec, Canada G1V 0A6
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada H1T 1C8
| | - France Dufresne
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Simon G Lamarre
- Université de Moncton, Département de biologie, Moncton, New-Brunswick, Canada E1A 3E9
| | - Pierre U Blier
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1.
| |
Collapse
|
59
|
Nuez-Ortín WG, Carter CG, Nichols PD, Cooke IR, Wilson R. Liver proteome response of pre-harvest Atlantic salmon following exposure to elevated temperature. BMC Genomics 2018; 19:133. [PMID: 29433420 PMCID: PMC5809918 DOI: 10.1186/s12864-018-4517-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Background Atlantic salmon production in Tasmania (Southern Australia) occurs near the upper limits of the species thermal tolerance. Summer water temperatures can average over 19 °C over several weeks and have negative effects on performance and health. Liver tissue exerts important metabolic functions in thermal adaptation. With the aim of identifying mechanisms underlying liver plasticity in response to chronic elevated temperature in Atlantic salmon, label-free shotgun proteomics was used to explore quantitative protein changes after 43 days of exposure to elevated temperature. Results A total of 276 proteins were differentially (adjusted p-value < 0.05) expressed between the control (15 °C) and elevated (21 °C) temperature treatments. As identified by Ingenuity Pathway Analysis (IPA), transcription and translation mechanisms, protein degradation via the proteasome, and cytoskeletal components were down-regulated at elevated temperature. In contrast, an up-regulated response was identified for NRF2-mediated oxidative stress, endoplasmic reticulum stress, and amino acid degradation. The proteome response was paralleled by reduced fish condition factor and hepato-somatic index at elevated temperature. Conclusions The present study provides new evidence of the interplay among different cellular machineries in a scenario of heat-induced energy deficit and oxidative stress, and refines present understanding of how Atlantic salmon cope with chronic exposure to temperature near the upper limits of thermal tolerance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4517-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Waldo G Nuez-Ortín
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Peter D Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.,CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Ira R Cooke
- Comparative Genomics Centre, James Cook University, Townsville, QLD, 4811, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| |
Collapse
|
60
|
Lau GY, Richards JG. Interspecific variation in brain mitochondrial complex I and II capacity and ROS emission in marine sculpins. J Exp Biol 2018; 222:jeb.189407. [DOI: 10.1242/jeb.189407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022]
Abstract
Environmental hypoxia presents a metabolic challenge for animals because it inhibits mitochondrial respiration and can lead to the generation of reactive oxygen species (ROS). We investigated the interplay between O2 use for aerobic respiration and ROS generation among sculpin fishes (Cottidae, Actinopterygii) that are known to vary in whole-animal hypoxia tolerance. We hypothesized that mitochondria from hypoxia tolerant sculpins would show more efficient O2 use with a higher phosphorylation efficiency and lower ROS emission. We showed that brain mitochondria from more hypoxia tolerant sculpins had lower complex I and higher complex II flux capacities compared with less hypoxia tolerant sculpins, but these differences were not related to variation in phosphorylation efficiency (ADP/O) or mitochondrial coupling (respiratory control ratio). The hypoxia tolerant sculpin had higher mitochondrial H2O2 emission per O2 consumed (H2O2/O2) under oligomycin-induced state 4 conditions compared to less hypoxia tolerant sculpin. An in vitro redox challenge experiment revealed species differences in how well mitochondria defend their glutathione redox status when challenged with high levels of reduced glutathione, but the redox challenge elicited the same H2O2/O2 in all species. Furthermore, in vitro anoxia-recovery lowered absolute H2O2 emission (H2O2/mg mitochondrial protein) in all species and negatively impacted state 3 respiration rates in some species, but the responses were not related to hypoxia tolerance. Overall, we clearly demonstrate a relationship between hypoxia tolerance and complex I and II flux capacities in sculpins, but the differences in complex flux capacity do not appear to be directly related to variation in ROS metabolism.
Collapse
Affiliation(s)
- Gigi Y. Lau
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada, V6T 1Z4
| | - Jeffrey G. Richards
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada, V6T 1Z4
| |
Collapse
|
61
|
Wiens L, Banh S, Sotiri E, Jastroch M, Block BA, Brand MD, Treberg JR. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle. Front Physiol 2017; 8:704. [PMID: 28966595 PMCID: PMC5605635 DOI: 10.3389/fphys.2017.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023] Open
Abstract
Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.
Collapse
Affiliation(s)
- Lilian Wiens
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Sheena Banh
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Emianka Sotiri
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Martin Jastroch
- Helmholtz Diabetes Center at Helmholtz Zentrum München, Institute for Diabetes and ObesityMunich, Germany
| | - Barbara A Block
- Tuna Research and Conservation Center, Hopkins Marine Station, Stanford UniversityStanford, CA, United States
| | - Martin D Brand
- Buck Institute for Research on AgingNovato, CA, United States
| | - Jason R Treberg
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada.,Department of Human Nutritional Sciences, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
62
|
Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. ACTA ACUST UNITED AC 2017; 220:1170-1180. [PMID: 28356365 DOI: 10.1242/jeb.132142] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are widely recognized as a source of reactive oxygen species (ROS) in animal cells, where it is assumed that over-production of ROS leads to an overwhelmed antioxidant system and oxidative stress. In this Commentary, we describe a more nuanced model of mitochondrial ROS metabolism, where integration of ROS production with consumption by the mitochondrial antioxidant pathways may lead to the regulation of ROS levels. Superoxide and hydrogen peroxide (H2O2) are the main ROS formed by mitochondria. However, superoxide, a free radical, is converted to the non-radical, membrane-permeant H2O2; consequently, ROS may readily cross cellular compartments. By combining measurements of production and consumption of H2O2, it can be shown that isolated mitochondria can intrinsically approach a steady-state concentration of H2O2 in the medium. The central hypothesis here is that mitochondria regulate the concentration of H2O2 to a value set by the balance between production and consumption. In this context, the consumers of ROS are not simply a passive safeguard against oxidative stress; instead, they control the established steady-state concentration of H2O2 By considering the response of rat skeletal muscle mitochondria to high levels of ADP, we demonstrate that H2O2 production by mitochondria is far more sensitive to changes in mitochondrial energetics than is H2O2 consumption; this concept is further extended to evaluate how the muscle mitochondrial H2O2 balance should respond to changes in aerobic work load. We conclude by considering how differences in the ROS consumption pathways may lead to important distinctions amongst tissues, along with briefly examining implications for differing levels of activity, temperature change and metabolic depression.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 .,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.,Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
63
|
Fang DA, Zhou YF, Zhang MY, Xu DP, Liu K, Duan JR. Developmental Expression of HSP60 and HSP10 in the Coilia nasus Testis during Upstream Spawning Migration. Genes (Basel) 2017; 8:genes8070189. [PMID: 28754007 PMCID: PMC5541322 DOI: 10.3390/genes8070189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 60 (HSP60) and heat shock protein 10 (HSP10) are important chaperones, which have been proven to have essential roles in mediating the correct folding of nuclear encoded proteins imported to mitochondria. Mitochondria are known as the power house of the cell, with which it produces energy and respires aerobically. In this regard, the obtained HSP60 and HSP10 have typical characteristics of the HSP60/10 family signature. Their mRNA transcripts detected were highest during the developmental phase (in April), while the lowest levels were found in the resting phase (after spawning in late July). Additionally, the strongest immunolabeling positive signals were found in the primary spermatocyte, with lower positive staining in secondary sperm cells, and a weak or absent level in the mature sperm. At the electron microscopic level, immunogold particles were localized in the mitochondrial matrix. Data indicated that HSP10 and HSP60 were inducible and functional in the Coilia nasus testis development and migration process, suggesting their essential roles in this process. The results also indicated that HSP60 may be one indicator of properly working mitochondrial import and refolding in the fish testis. This study also provides an expanded perspective on the role of heat shock protein families in spawning migration biology.
Collapse
Affiliation(s)
- Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214000, Jiangsu, China.
| | - Yan-Feng Zhou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| | - Min-Ying Zhang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| | - Dong-Po Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214000, Jiangsu, China.
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| | - Jin-Rong Duan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214000, Jiangsu, China.
| |
Collapse
|
64
|
Bu X, Wu D, Lu X, Yang L, Xu X, Wang J, Tang J. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 2017; 13:1633-1645. [PMID: 28694700 PMCID: PMC5491272 DOI: 10.2147/ndt.s129081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disorder and has a high prevalence in children. Recently, mitochondrial oxidative stress has been proposed to be associated with ASD. Besides, SIRT1/PGC-1α signaling plays an important role in combating oxidative stress. In this study, we sought to determine the role of SIRT1/PGC-1α signaling in the ASD lymphoblastoid cell lines (LCLs). In this study, the mRNA and protein expressions of SIRT1/PGC-1α axis genes were assessed in 35 children with ASD and 35 healthy controls (matched for age, gender, and IQ). An immortalized LCL was established by transforming lymphocytes with Epstein-Barr virus. Next, we used ASD LCLs and control LCLs to detect SIRT1/PGC-1α axis genes expression and oxidative damage. Finally, the effect of overexpression of PGC-1α on oxidative injury in the ASD LCLs was determined. SIRT1/PGC-1α axis genes expression was downregulated at RNA and protein levels in ASD patients and LCLs. Besides, the translocation of cytochrome c and DIABLO from mitochondria to the cytosol was found in the ASD LCLs. Moreover, the intracellular reactive oxygen species (ROS) and mitochondrial ROS and cell apoptosis were increased in the ASD LCLs. However, overexpression of PGC-1α upregulated the SIRT1/PGC-1α axis genes expression and reduced cytochrome c and DIABLO release in the ASD LCLs. Also, overexpression of PGC-1α reduced the ROS generation and cell apoptosis in the ASD LCLs. Overexpression of PGC-1α could reduce the oxidative injury in the ASD LCLs, and PGC-1α may act as a target for treatment.
Collapse
Affiliation(s)
- Xiaosong Bu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaomei Lu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Li Yang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Juan Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
65
|
Shuvo SR, Kovaltchouk U, Zubaer A, Kumar A, Summers WAT, Donald LJ, Hausner G, Court DA. Functional characterization of an N-terminally-truncated mitochondrial porin expressed in Neurospora crassa. Can J Microbiol 2017; 63:730-738. [PMID: 28414919 DOI: 10.1139/cjm-2016-0764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondrial porin, which forms voltage-dependent anion-selective channels (VDAC) in the outer membrane, can be folded into a 19-β-stranded barrel. The N terminus of the protein is external to the barrel and contains α-helical structure. Targeted modifications of the N-terminal region have been assessed in artificial membranes, leading to different models for gating in vitro. However, the in vivo requirements for gating and the N-terminal segment of porin are less well-understood. Using Neurospora crassa porin as a model, the effects of a partial deletion of the N-terminal segment were investigated. The protein, ΔN2-12porin, is assembled into the outer membrane, albeit at lower levels than the wild-type protein. The resulting strain displays electron transport chain deficiencies, concomitant expression of alternative oxidase, and decreased growth rates. Nonetheless, its mitochondrial genome does not contain any significant mutations. Most of the genes that are expressed in high levels in porin-less N. crassa are expressed at levels similar to that of wild type or are slightly increased in ΔN2-12porin strains. Thus, although the N-terminal segment of VDAC is required for complete function in vivo, low levels of a protein lacking part of the N terminus are able to rescue some of the defects associated with the absence of porin.
Collapse
Affiliation(s)
- Sabbir R Shuvo
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Uliana Kovaltchouk
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - William A T Summers
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah A Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
66
|
Ekström A, Sandblom E, Blier PU, Dupont Cyr BA, Brijs J, Pichaud N. Thermal sensitivity and phenotypic plasticity of cardiac mitochondrial metabolism in European perch, Perca fluviatilis. ACTA ACUST UNITED AC 2016; 220:386-396. [PMID: 27852753 DOI: 10.1242/jeb.150698] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023]
Abstract
Cellular and mitochondrial metabolic capacity of the heart has been suggested to limit performance of fish at warm temperatures. We investigated this hypothesis by studying the effects of acute temperature increases (16, 23, 30, 32.5 and 36°C) on the thermal sensitivity of 10 key enzymes governing cardiac oxidative and glycolytic metabolism in two populations of European perch (Perca fluviatilis) field-acclimated to 15.5 and 22.5°C, as well as the effects of acclimation on cardiac lipid composition. In both populations of perch, the activity of glycolytic (pyruvate kinase and lactate dehydrogenase) and tricarboxylic acid cycle (pyruvate dehydrogenase and citrate synthase) enzymes increased with acute warming. However, at temperatures exceeding 30°C, a drastic thermally induced decline in citrate synthase activity was observed in the cold- and warm-acclimated populations, respectively, indicating a bottleneck for producing the reducing equivalents required for oxidative phosphorylation. Yet, the increase in aspartate aminotransferase and malate dehydrogenase activities occurring in both populations at temperatures exceeding 30°C suggests that the malate-aspartate shuttle may help to maintain cardiac oxidative capacities at high temperatures. Warm acclimation resulted in a reorganization of the lipid profile, a general depression of enzymatic activity and an increased fatty acid metabolism and oxidative capacity. Although these compensatory mechanisms may help to maintain cardiac energy production at high temperatures, the activity of the electron transport system enzymes, such as complexes I and IV, declined at 36°C in both populations, indicating a thermal limit of oxidative phosphorylation capacity in the heart of European perch.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Pierre U Blier
- Department of Biology, University of Québec, Rimouski, Québec, Canada G5L 3A1
| | | | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Nicolas Pichaud
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden.,Department of Biology, University of Québec, Rimouski, Québec, Canada G5L 3A1.,Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB, Canada E1A 3E9
| |
Collapse
|
67
|
Olsvik PA, Waagbø R, Hevrøy EM, Remø SC, Søfteland L. In vitro Assessment of Hg Toxicity in Hepatocytes from Heat-Stressed Atlantic Salmon. Biol Trace Elem Res 2016; 174:226-239. [PMID: 27094051 DOI: 10.1007/s12011-016-0670-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/13/2016] [Indexed: 12/28/2022]
Abstract
Global warming may alter the bioavailability of contaminants in aquatic environments. In this work, mercury (Hg2+) toxicity was studied in cells obtained from Atlantic salmon smolt kept at 15 °C (optimal growth temperature) for 3 months or at a stepwise increase to 20 °C (temperature-stress) during 3 months prior to cell harvest to evaluate whether acclimation temperature affects Hg toxicity. To examine possible altered dietary requirements in warmer seas, one group of fish following the stepwise temperature regimes was fed a diet spiked with antioxidants. Atlantic salmon hepatocytes were exposed in vitro to 0, 1.0, or 100 μM Hg2+ for 48 h. Cytotoxicity, determined as electrical impedance changes with the xCELLigence system, and transcriptional responses, determined with RT-qPCR, were assessed as measures of toxicity. The results showed that inorganic Hg at a concentration up to 100 μM is not cytotoxic to Atlantic salmon hepatocytes. Significance and directional responses of the 18 evaluated target genes suggest that both Hg and temperature stress affected the transcription of genes encoding proteins involved in the protection against ROS-generated oxidative stress. Both stressors also affected the transcription of genes linked to lipid metabolism. Spiking the diet with antioxidants resulted in higher concentrations of Se and vitamin C and reduced concentration of Hg in the liver in vivo, but no interactions were seen between the dietary supplementation of antioxidants and Hg toxicity in vitro. In conclusion, no evidence was found suggesting that inorganic Hg is more toxic in cells harvested from temperature-stressed fish.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway.
| | - Rune Waagbø
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
| | - Ernst M Hevrøy
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
- EWOS AS, N-5803, Bergen, Norway
| | - Sofie C Remø
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
| | - Liv Søfteland
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
| |
Collapse
|
68
|
Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays 2016; 38:556-67. [PMID: 27171124 PMCID: PMC5084804 DOI: 10.1002/bies.201600043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP-dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Annika Rhiel
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Petra Weber
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| |
Collapse
|