51
|
Pun M, Pratt D, Nano PR, Joshi PK, Jiang L, Englinger B, Rao A, Cieslik M, Chinnaiyan AM, Aldape K, Pfister S, Filbin MG, Bhaduri A, Venneti S. Common molecular features of H3K27M DMGs and PFA ependymomas map to hindbrain developmental pathways. Acta Neuropathol Commun 2023; 11:25. [PMID: 36759899 PMCID: PMC9912509 DOI: 10.1186/s40478-023-01514-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Globally decreased histone 3, lysine 27 tri-methylation (H3K27me3) is a hallmark of H3K27-altered diffuse midline gliomas (DMGs) and group-A posterior fossa ependymomas (PFAs). H3K27-altered DMGs are largely characterized by lysine-to-methionine mutations in histone 3 at position 27 (H3K27M). Most PFAs overexpress EZH inhibitory protein (EZHIP), which possesses a region of similarity to the mutant H3K27M. Both H3K27M and EZHIP inhibit the function of the polycomb repressive complex 2 (PRC2) responsible for H3K27me3 deposition. These tumors often arise in neighboring regions of the brainstem and posterior fossa. In rare cases PFAs harbor H3K27M mutations, and DMGs overexpress EZHIP. These findings together raise the possibility that certain cell populations in the developing hindbrain/posterior fossa are especially sensitive to modulation of H3K27me3 states. We identified shared molecular features by comparing genomic, bulk transcriptomic, chromatin-based profiles, and single-cell RNA-sequencing (scRNA-seq) data from the two tumor classes. Our approach demonstrated that 1q gain, a key biomarker in PFAs, is prognostic in H3.1K27M, but not H3.3K27M gliomas. Conversely, Activin A Receptor Type 1 (ACVR1), which is associated with mutations in H3.1K27M gliomas, is overexpressed in a subset of PFAs with poor outcome. Despite diffuse H3K27me3 reduction, previous work shows that both tumors maintain genomic H3K27me3 deposition at select sites. We demonstrate heterogeneity in shared patterns of residual H3K27me3 for both tumors that largely segregated with inferred anatomic tumor origins and progenitor populations of tumor cells. In contrast, analysis of genes linked to H3K27 acetylation (H3K27ac)-marked enhancers showed higher expression in astrocytic-like tumor cells. Finally, common H3K27me3-marked genes mapped closely to expression patterns in the human developing hindbrain. Overall, our data demonstrate developmentally relevant molecular similarities between PFAs and H3K27M DMGs and support the overall hypothesis that deregulated mechanisms of hindbrain development are central to the biology of both tumors.
Collapse
Affiliation(s)
- Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Patricia R Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Piyush K Joshi
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, 1090, Vienna, Austria
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Stefan Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA.
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
52
|
Endogenous retroelements as alarms for disruptions to cellular homeostasis. Trends Cancer 2023; 9:55-68. [PMID: 36216729 DOI: 10.1016/j.trecan.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.
Collapse
|
53
|
Rechberger JS, Power BT, Power EA, Nesvick CL, Daniels DJ. H3K27-altered diffuse midline glioma: a paradigm shifting opportunity in direct delivery of targeted therapeutics. Expert Opin Ther Targets 2023; 27:9-17. [PMID: 36744399 PMCID: PMC10165636 DOI: 10.1080/14728222.2023.2177531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite much progress, the prognosis for H3K27-altered diffuse midline glioma (DMG), previously known as diffuse intrinsic pontine glioma when located in the brainstem, remains dark and dismal. AREAS COVERED A wealth of research over the past decade has revolutionized our understanding of the molecular basis of DMG, revealing potential targetable vulnerabilities for treatment of this lethal childhood cancer. However, obstacles to successful clinical implementation of novel therapies remain, including effective delivery across the blood-brain barrier (BBB) to the tumor site. Here, we review relevant literature and clinical trials and discuss direct drug delivery via convection-enhanced delivery (CED) as a promising treatment modality for DMG. We outline a comprehensive molecular, pharmacological, and procedural approach that may offer hope for afflicted patients and their families. EXPERT OPINION Challenges remain in successful drug delivery to DMG. While CED and other techniques offer a chance to bypass the BBB, the variables influencing successful intratumoral targeting are numerous and complex. We discuss these variables and potential solutions that could lead to the successful clinical implementation of preclinically promising therapeutic agents.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Blake T Power
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Erica A Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cody L Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
54
|
Skouras P, Markouli M, Strepkos D, Piperi C. Advances on Epigenetic Drugs for Pediatric Brain Tumors. Curr Neuropharmacol 2023; 21:1519-1535. [PMID: 36154607 PMCID: PMC10472812 DOI: 10.2174/1570159x20666220922150456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric malignant brain tumors represent the most frequent cause of cancer-related deaths in childhood. The therapeutic scheme of surgery, radiotherapy and chemotherapy has improved patient management, but with minimal progress in patients' prognosis. Emerging molecular targets and mechanisms have revealed novel approaches for pediatric brain tumor therapy, enabling personalized medical treatment. Advances in the field of epigenetic research and their interplay with genetic changes have enriched our knowledge of the molecular heterogeneity of these neoplasms and have revealed important genes that affect crucial signaling pathways involved in tumor progression. The great potential of epigenetic therapy lies mainly in the widespread location and the reversibility of epigenetic alterations, proposing a wide range of targeting options, including the possible combination of chemoand immunotherapy, significantly increasing their efficacy. Epigenetic drugs, including inhibitors of DNA methyltransferases, histone deacetylases and demethylases, are currently being tested in clinical trials on pediatric brain tumors. Additional novel epigenetic drugs include protein and enzyme inhibitors that modulate epigenetic modification pathways, such as Bromodomain and Extraterminal (BET) proteins, Cyclin-Dependent Kinase 9 (CDK9), AXL, Facilitates Chromatin Transcription (FACT), BMI1, and CREB Binding Protein (CBP) inhibitors, which can be used either as standalone or in combination with current treatment approaches. In this review, we discuss recent progress on epigenetic drugs that could possibly be used against the most common malignant tumors of childhood, such as medulloblastomas, high-grade gliomas and ependymomas.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
55
|
Groves A, Cooney TM. Epigenetic programming of pediatric high-grade glioma: Pushing beyond proof of concept to clinical benefit. Front Cell Dev Biol 2022; 10:1089898. [PMID: 36589742 PMCID: PMC9795020 DOI: 10.3389/fcell.2022.1089898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a molecularly diverse group of malignancies, each incredibly aggressive and in dire need of treatment advancements. Genomic analysis has revolutionized our understanding of these tumors, identifying biologically relevant subgroups with differing canonical mutational profiles that vary based on tumor location and age. In particular, the discovery of recurrent histone H3 mutations (H3K27M in diffuse midline glioma, H3G34R/V in hemispheric pediatric high-grade gliomas) as unique "oncohistone" drivers revealed epigenetic dysregulation as a hallmark of pediatric high-grade gliomas oncogenesis. While reversing this signature through epigenetic programming has proven effective in several pre-clinical survival models, early results from pediatric high-grade gliomas clinical trials suggest that epigenetic modifier monotherapy will likely not provide long-term disease control. In this review we summarize the genetic, epigenetic, and cellular heterogeneity of pediatric high-grade gliomas, and highlight potential paths forward for epigenetic programming in this devastating disease.
Collapse
Affiliation(s)
- Andrew Groves
- Division of Hematology/Oncology, University of Iowa Stead Family Children’s Hospital, Iowa City, IA, United States
| | - Tabitha M. Cooney
- Dana Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, United States
| |
Collapse
|
56
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
57
|
Cottone L, Ligammari L, Lee HM, Knowles HJ, Henderson S, Bianco S, Davies C, Strauss S, Amary F, Leite AP, Tirabosco R, Haendler K, Schultze JL, Herrero J, O’Donnell P, Grigoriadis AE, Salomoni P, Flanagan AM. Aberrant paracrine signalling for bone remodelling underlies the mutant histone-driven giant cell tumour of bone. Cell Death Differ 2022; 29:2459-2471. [PMID: 36138226 PMCID: PMC9750984 DOI: 10.1038/s41418-022-01031-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023] Open
Abstract
Oncohistones represent compelling evidence for a causative role of epigenetic perturbations in cancer. Giant cell tumours of bone (GCTs) are characterised by a mutated histone H3.3 as the sole genetic driver present in bone-forming osteoprogenitor cells but absent from abnormally large bone-resorbing osteoclasts which represent the hallmark of these neoplasms. While these striking features imply a pathogenic interaction between mesenchymal and myelomonocytic lineages during GCT development, the underlying mechanisms remain unknown. We show that the changes in the transcriptome and epigenome in the mesenchymal cells caused by the H3.3-G34W mutation contribute to increase osteoclast recruitment in part via reduced expression of the TGFβ-like soluble factor, SCUBE3. Transcriptional changes in SCUBE3 are associated with altered histone marks and H3.3G34W enrichment at its enhancer regions. In turn, osteoclasts secrete unregulated amounts of SEMA4D which enhances proliferation of mutated osteoprogenitors arresting their maturation. These findings provide a mechanism by which GCTs undergo differentiation in response to denosumab, a drug that depletes the tumour of osteoclasts. In contrast, hTERT alterations, commonly found in malignant GCT, result in the histone-mutated neoplastic cells being independent of osteoclasts for their proliferation, predicting unresponsiveness to denosumab. We provide a mechanism for the initiation of GCT, the basis of which is dysfunctional cross-talk between bone-forming and bone-resorbing cells. The findings highlight the role of tumour/microenvironment bidirectional interactions in tumorigenesis and how this is exploited in the treatment of GCT.
Collapse
Affiliation(s)
- Lucia Cottone
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Lorena Ligammari
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Hang-Mao Lee
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Helen J. Knowles
- grid.4991.50000 0004 1936 8948Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Stephen Henderson
- grid.83440.3b0000000121901201Bill Lyons Informatics Centre (BLIC), UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Sara Bianco
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.83440.3b0000000121901201Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Christopher Davies
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Sandra Strauss
- grid.439749.40000 0004 0612 2754London Sarcoma Service, University College London Hospitals Foundation Trust, London, WC1E 6DD UK
| | - Fernanda Amary
- grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Ana Paula Leite
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.83440.3b0000000121901201Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Roberto Tirabosco
- grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Kristian Haendler
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Platform for Single Cell Genomics and Epigenomics (PRECISE) at the DZNE and the University of Bonn, 53127 Bonn, Germany ,grid.4562.50000 0001 0057 2672Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Joachim L. Schultze
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Platform for Single Cell Genomics and Epigenomics (PRECISE) at the DZNE and the University of Bonn, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Javier Herrero
- grid.83440.3b0000000121901201Bill Lyons Informatics Centre (BLIC), UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Paul O’Donnell
- grid.416177.20000 0004 0417 7890Department of Radiology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Agamemnon E. Grigoriadis
- grid.239826.40000 0004 0391 895XCentre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, SE1 9RT UK
| | - Paolo Salomoni
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ,grid.83440.3b0000000121901201Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Adrienne M. Flanagan
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| |
Collapse
|
58
|
Pal S, Kaplan JP, Nguyen H, Stopka SA, Savani MR, Regan MS, Nguyen QD, Jones KL, Moreau LA, Peng J, Dipiazza MG, Perciaccante AJ, Zhu X, Hunsel BR, Liu KX, Alexandrescu S, Drissi R, Filbin MG, McBrayer SK, Agar NYR, Chowdhury D, Haas-Kogan DA. A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma. Cancer Cell 2022; 40:957-972.e10. [PMID: 35985342 PMCID: PMC9575661 DOI: 10.1016/j.ccell.2022.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022]
Abstract
Diffuse midline glioma (DMG) is a uniformly fatal pediatric cancer driven by oncohistones that do not readily lend themselves to drug development. To identify druggable targets for DMG, we conducted a genome-wide CRISPR screen that reveals a DMG selective dependency on the de novo pathway for pyrimidine biosynthesis. This metabolic vulnerability reflects an elevated rate of uridine/uracil degradation that depletes DMG cells of substrates for the alternate salvage pyrimidine biosynthesis pathway. A clinical stage inhibitor of DHODH (rate-limiting enzyme in the de novo pathway) diminishes uridine-5'-phosphate (UMP) pools, generates DNA damage, and induces apoptosis through suppression of replication forks-an "on-target" effect, as shown by uridine rescue. Matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy imaging demonstrates that this DHODH inhibitor (BAY2402234) accumulates in the brain at therapeutically relevant concentrations, suppresses de novo pyrimidine biosynthesis in vivo, and prolongs survival of mice bearing intracranial DMG xenografts, highlighting BAY2402234 as a promising therapy against DMGs.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jakub P Kaplan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Milan R Savani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyu Peng
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marina G Dipiazza
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew J Perciaccante
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoting Zhu
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bradley R Hunsel
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kevin X Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Sanda Alexandrescu
- Department of Pathology, Harvard Medical School Boston, Boston Children's Hospital, 300 Longwood Avenue, Bader 104, Boston, MA 02115, USA
| | - Rachid Drissi
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
59
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
60
|
Doyle EJ, Morey L, Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol 2022; 10:986319. [PMID: 36105358 PMCID: PMC9464936 DOI: 10.3389/fcell.2022.986319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.
Collapse
Affiliation(s)
- Emma J. Doyle
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Centre, Miami, FL, United States
- Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric Conway
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
61
|
Deng J, Hua L, Bian L, Chen H, Chen L, Cheng H, Dou C, Geng D, Hong T, Ji H, Jiang Y, Lan Q, Li G, Liu Z, Qi S, Qu Y, Shi S, Sun X, Wang H, You Y, Yu H, Yue S, Zhang J, Zhang X, Wang S, Mao Y, Zhong P, Gong Y. Molecular diagnosis and treatment of meningiomas: an expert consensus (2022). Chin Med J (Engl) 2022; 135:1894-1912. [PMID: 36179152 PMCID: PMC9746788 DOI: 10.1097/cm9.0000000000002391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Meningiomas are the most common primary intracranial neoplasm with diverse pathological types and complicated clinical manifestations. The fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), published in 2021, introduces major changes that advance the role of molecular diagnostics in meningiomas. To follow the revision of WHO CNS5, this expert consensus statement was formed jointly by the Group of Neuro-Oncology, Society of Neurosurgery, Chinese Medical Association together with neuropathologists and evidence-based experts. The consensus provides reference points to integrate key biomarkers into stratification and clinical decision making for meningioma patients. REGISTRATION Practice guideline REgistration for transPAREncy (PREPARE), IPGRP-2022CN234.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Changwu Dou
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 750306, China
| | - Dangmurenjiapu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, Jiangsu 215004, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250063, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian 350001, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hualin Yu
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan 650032, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jianming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ping Zhong
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
62
|
Dubois FPB, Shapira O, Greenwald NF, Zack T, Wala J, Tsai JW, Crane A, Baguette A, Hadjadj D, Harutyunyan AS, Kumar KH, Blattner-Johnson M, Vogelzang J, Sousa C, Kang KS, Sinai C, Wang DK, Khadka P, Lewis K, Nguyen L, Malkin H, Ho P, O'Rourke R, Zhang S, Gold R, Deng D, Serrano J, Snuderl M, Jones C, Wright KD, Chi SN, Grill J, Kleinman CL, Goumnerova LC, Jabado N, Jones DTW, Kieran MW, Ligon KL, Beroukhim R, Bandopadhayay P. Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. NATURE CANCER 2022; 3:994-1011. [PMID: 35788723 PMCID: PMC10365847 DOI: 10.1038/s43018-022-00403-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.
Collapse
Affiliation(s)
- Frank P B Dubois
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ofer Shapira
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noah F Greenwald
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Travis Zack
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeremiah Wala
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessica W Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alexander Crane
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Kiran H Kumar
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cecilia Sousa
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kyung Shin Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire Sinai
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dayle K Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Prasidda Khadka
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hayley Malkin
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patricia Ho
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan O'Rourke
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rose Gold
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Davy Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Chris Jones
- Division of Cancer Therapeutics and Department of Molecular Pathology, Institute of Cancer Research 15 Cotswold Road, Sutton, London, UK
| | - Karen D Wright
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Susan N Chi
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy Institute and University of Paris Saclay, Villejuif, France
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Liliana C Goumnerova
- Department of Neurosurgery, Boston Children's Hospital; Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- LCG: Tromboprotea, MWK: Day One Biopharmaceuticals, San Francisco, CA, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine and Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark W Kieran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- LCG: Tromboprotea, MWK: Day One Biopharmaceuticals, San Francisco, CA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham & Women's Hospital and Boston Children's Hospital, Boston, USA.
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
63
|
Alizadeh-Ghodsi M, Owen KL, Townley SL, Zanker D, Rollin SP, Hanson AR, Shrestha R, Toubia J, Gargett T, Chernukhin I, Luu J, Cowley KJ, Clark A, Carroll JS, Simpson KJ, Winter JM, Lawrence MG, Butler LM, Risbridger GP, Thierry B, Taylor RA, Hickey TE, Parker BS, Tilley WD, Selth LA. Potent Stimulation of the Androgen Receptor Instigates a Viral Mimicry Response in Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:706-724. [PMID: 36923279 PMCID: PMC10010308 DOI: 10.1158/2767-9764.crc-21-0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/18/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen deprivation therapy is a standard-of-care treatment for metastatic prostate cancer. Paradoxically, activation of AR can also inhibit the growth of prostate cancer in some patients and experimental systems, but the mechanisms underlying this phenomenon are poorly understood. This study exploited a potent synthetic androgen, methyltestosterone (MeT), to investigate AR agonist-induced growth inhibition. MeT strongly inhibited growth of prostate cancer cells expressing AR, but not AR-negative models. Genes and pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT induced a quantitatively greater androgenic response in prostate cancer cells. MeT potently downregulated DNA methyltransferases, leading to global DNA hypomethylation. These epigenomic changes were associated with dysregulation of transposable element expression, including upregulation of endogenous retrovirus (ERV) transcripts after sustained MeT treatment. Increased ERV expression led to accumulation of double-stranded RNA and a "viral mimicry" response characterized by activation of IFN signaling, upregulation of MHC class I molecules, and enhanced recognition of murine prostate cancer cells by CD8+ T cells. Positive associations between AR activity and ERVs/antiviral pathways were evident in patient transcriptomic data, supporting the clinical relevance of our findings. Collectively, our study reveals that the potent androgen MeT can increase the immunogenicity of prostate cancer cells via a viral mimicry response, a finding that has potential implications for the development of strategies to sensitize this cancer type to immunotherapies. Significance Our study demonstrates that potent androgen stimulation of prostate cancer cells can elicit a viral mimicry response, resulting in enhanced IFN signaling. This finding may have implications for the development of strategies to sensitize prostate cancer to immunotherapies.
Collapse
Affiliation(s)
- Mohammadreza Alizadeh-Ghodsi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
| | - Katie L. Owen
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott L. Townley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, Australia
| | - Damien Zanker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel P.G. Rollin
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, Australia
| | - Adrienne R. Hanson
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, Australia
| | - Raj Shrestha
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA, Australia
| | - Tessa Gargett
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jennii Luu
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Karla J. Cowley
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ashlee Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jean M. Winter
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Mitchell G. Lawrence
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Malvern, Victoria, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Lisa M. Butler
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Gail P. Risbridger
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Malvern, Victoria, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Benjamin Thierry
- ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide, SA, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Renea A. Taylor
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Malvern, Victoria, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Belinda S. Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
| | - Luke A. Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
64
|
Single-cell epigenetic analysis reveals principles of chromatin states in H3.3-K27M gliomas. Mol Cell 2022; 82:2696-2713.e9. [PMID: 35716669 DOI: 10.1016/j.molcel.2022.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
Cancer cells are highly heterogeneous at the transcriptional level and epigenetic state. Methods to study epigenetic heterogeneity are limited in throughput and information obtained per cell. Here, we adapted cytometry by time-of-flight (CyTOF) to analyze a wide panel of histone modifications in primary tumor-derived lines of diffused intrinsic pontine glioma (DIPG). DIPG is a lethal glioma, driven by a histone H3 lysine 27 mutation (H3-K27M). We identified two epigenetically distinct subpopulations in DIPG, reflecting inherent heterogeneity in expression of the mutant histone. These two subpopulations are robust across tumor lines derived from different patients and show differential proliferation capacity and expression of stem cell and differentiation markers. Moreover, we demonstrate the use of these high-dimensional data to elucidate potential interactions between histone modifications and epigenetic alterations during the cell cycle. Our work establishes new concepts for the analysis of epigenetic heterogeneity in cancer that could be applied to diverse biological systems.
Collapse
|
65
|
Palmitoyl transferases act as potential regulators of tumor-infiltrating immune cells and glioma progression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:716-731. [PMID: 35664705 PMCID: PMC9126852 DOI: 10.1016/j.omtn.2022.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
High immune-cell infiltration in glioblastomas (GBMs) leads to immunotherapy resistance. Emerging evidence has shown that zinc finger Asp-His-His-Cyc-type (ZDHHC) palmitoyl transferases participate in regulating tumor progression and the immune microenvironment. In the present study, a large cohort of patients with gliomas from The Cancer Genome Atlas (TCGA) and Rembrandt databases was included to perform omics analysis of ZDHHCs in gliomas. CCK-8, flow cytometry, quantitative real-time PCR, western blotting, and transwell assays were performed to determine the effects of ZDHHC inhibition on glioma cells and microglia. We found that five (ZDHHC11, ZDHHC12, ZDHHC15, ZDHHC22, and ZDHHC23) out of 23 ZDHHCs were aberrantly expressed in gliomas and might play their roles through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Further results indicated that inhibition of ZDHHCs with 2-bromopalmitate (2-BP) suppressed glioma-cell viability and autophagy, as well as promoted apoptosis. Targeting ZDHHCs also promoted the sensitivity of glioma cells to temozolomide (TMZ) chemotherapy. In addition, the inhibition of ZDHHCs weakened the migratory ability of microglia induced by glioma cells in vitro and in vivo. Taken together, our findings suggest that the inhibition of ZDHHCs suppresses glioma-cell viability and microglial infiltration. Targeting ZDHHCs may be promising for glioma treatments.
Collapse
|
66
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Crosstalk of Epigenetic and Metabolic Signaling Underpinning Glioblastoma Pathogenesis. Cancers (Basel) 2022; 14:2655. [PMID: 35681635 PMCID: PMC9179868 DOI: 10.3390/cancers14112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic alterations in neoplastic cells have recently gained increasing attention as a main topic of research, playing a crucial regulatory role in the development and progression of tumors. The interplay between epigenetic modifications and metabolic pathways in glioblastoma cells has emerged as a key pathogenic area with great potential for targeted therapy. Epigenetic mechanisms have been demonstrated to affect main metabolic pathways, such as glycolysis, pentose phosphate pathway, gluconeogenesis, oxidative phosphorylation, TCA cycle, lipid, and glutamine metabolism by modifying key regulatory genes. Although epigenetic modifications can primarily promote the activity of metabolic pathways, they may also exert an inhibitory role. In this way, they participate in a complex network of interactions that regulate the metabolic behavior of malignant cells, increasing their heterogeneity and plasticity. Herein, we discuss the main epigenetic mechanisms that regulate the metabolic pathways in glioblastoma cells and highlight their targeting potential against tumor progression.
Collapse
|
67
|
Lewis NA, Klein RH, Kelly C, Yee J, Knoepfler PS. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics Chromatin 2022; 15:18. [PMID: 35590427 PMCID: PMC9121554 DOI: 10.1186/s13072-022-00447-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The histone variant H3.3 K27M mutation is a defining characteristic of diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). This histone mutation is responsible for major alterations to histone H3 post-translational modification (PTMs) and subsequent aberrant gene expression. However, much less is known about the effect this mutation has on chromatin structure and function, including open versus closed chromatin regions as well as their transcriptomic consequences. Results Recently, we developed isogenic CRISPR-edited DIPG cell lines that are wild-type for histone H3.3 that can be compared to their matched K27M lines. Here we show via ATAC-seq analysis that H3.3K27M glioma cells have unique accessible chromatin at regions corresponding to neurogenesis, NOTCH, and neuronal development pathways and associated genes that are overexpressed in H3.3K27M compared to our isogenic wild-type cell line. As to mechanisms, accessible enhancers and super-enhancers corresponding to increased gene expression in H3.3K27M cells were also mapped to genes involved in neurogenesis and NOTCH signaling, suggesting that these pathways are key to DIPG tumor maintenance. Motif analysis implicates specific transcription factors as central to the neuro-oncogenic K27M signaling pathway, in particular, ASCL1 and NEUROD1. Conclusions Altogether our findings indicate that H3.3K27M causes chromatin to take on a more accessible configuration at key regulatory regions for NOTCH and neurogenesis genes resulting in increased oncogenic gene expression, which is at least partially reversible upon editing K27M back to wild-type. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00447-6.
Collapse
Affiliation(s)
- Nichole A Lewis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Cailin Kelly
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Jennifer Yee
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA.
| |
Collapse
|
68
|
Furth N, Algranati D, Dassa B, Beresh O, Fedyuk V, Morris N, Kasper LH, Jones D, Monje M, Baker SJ, Shema E. H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Rep 2022; 39:110836. [PMID: 35584667 DOI: 10.1016/j.celrep.2022.110836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated mutations in genes encoding histones dramatically reshape chromatin and support tumorigenesis. Lysine to methionine substitution of residue 27 on histone H3 (K27M) is a driver mutation in high-grade pediatric gliomas, known to abrogate polycomb repressive complex 2 (PRC2) activity. We applied single-molecule systems to image individual nucleosomes and delineate the combinatorial epigenetic patterns associated with H3-K27M expression. We found that chromatin marks on H3-K27M-mutant nucleosomes are dictated both by their incorporation preferences and by intrinsic properties of the mutation. Mutant nucleosomes not only preferentially bind PRC2 but also directly interact with MLL1, leading to genome-wide redistribution of H3K4me3. H3-K27M-mediated deregulation of repressive and active chromatin marks leads to unbalanced "bivalent" chromatin, which may support a poorly differentiated cellular state. This study provides evidence for a direct effect of H3-K27M oncohistone on the MLL1-H3K4me3 pathway and highlights the capability of single-molecule tools to reveal mechanisms of chromatin deregulation in cancer.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Danielle Algranati
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Olga Beresh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vadim Fedyuk
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natasha Morris
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lawryn H Kasper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
69
|
Golbourn BJ, Halbert ME, Halligan K, Varadharajan S, Krug B, Mbah NE, Kabir N, Stanton ACJ, Locke AL, Casillo SM, Zhao Y, Sanders LM, Cheney A, Mullett SJ, Chen A, Wassell M, Andren A, Perez J, Jane EP, Premkumar DRD, Koncar RF, Mirhadi S, McCarl LH, Chang YF, Wu YL, Gatesman TA, Cruz AF, Zapotocky M, Hu B, Kohanbash G, Wang X, Vartanian A, Moran MF, Lieberman F, Amankulor NM, Wendell SG, Vaske OM, Panigrahy A, Felker J, Bertrand KC, Kleinman CL, Rich JN, Friedlander RM, Broniscer A, Lyssiotis C, Jabado N, Pollack IF, Mack SC, Agnihotri S. Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. NATURE CANCER 2022; 3:629-648. [PMID: 35422502 PMCID: PMC9551679 DOI: 10.1038/s43018-022-00348-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.
Collapse
Affiliation(s)
- Brian J Golbourn
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Katharine Halligan
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pediatrics, Division of Hematology-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Srinidhi Varadharajan
- Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, TX, USA
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Nneka E Mbah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nisha Kabir
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ann-Catherine J Stanton
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail L Locke
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie M Casillo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua Zhao
- Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, TX, USA
| | - Lauren M Sanders
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Allison Cheney
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Michelle Wassell
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Perez
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Esther P Jane
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel R David Premkumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert F Koncar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Shideh Mirhadi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lauren H McCarl
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh and Rangos Research Center Animal Imaging Core, Pittsburgh, PA, USA
| | - Taylor A Gatesman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea F Cruz
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Zapotocky
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Xiuxing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | | | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Lieberman
- Department of Neurology, Adult Neurooncology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olena M Vaske
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - James Felker
- Pediatric Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kelsey C Bertrand
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jeremy N Rich
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Broniscer
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Pediatrics, Division of Hematology-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Costas Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C Mack
- Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, TX, USA.
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
70
|
Abstract
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author: Chao Lu:
| |
Collapse
|
71
|
Qin Y, Qi Y, Zhang X, Guan Z, Han W, Peng X. Production and Stabilization of Specific Upregulated Long Noncoding RNA HOXD-AS2 in Glioblastomas Are Mediated by TFE3 and miR-661, Respectively. Int J Mol Sci 2022; 23:2828. [PMID: 35269968 PMCID: PMC8911140 DOI: 10.3390/ijms23052828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Differential expression of long noncoding RNAs (lncRNA) plays a key role in the development of gliomas. Because gliomas are the most common primary central nervous system tumor and glioblastomas have poor prognosis, it is urgent to develop new diagnostic methods. We have previously reported that lncRNA HOXD-AS2, which is specifically up-regulated in gliomas, can activate cell cycle and promote the development of gliomas. It is expected to be a new marker for molecular diagnosis of gliomas, but little is known about HOXD-AS2. Here, we demonstrate that TFE3 and miR-661 maintain the high expression level of HOXD-AS2 by regulating its production and degradation. We found that TFE3 acted as a transcription factor binding to the HOXD-AS2 promoter region and raised H3K27ac to activate HOXD-AS2. As the cytoplasmic-located lncRNA, HOXD-AS2 could be degraded by miR-661. This process was inhibited in gliomas due to the low expression of miR-661. Our study explains why HOXD-AS2 was specifically up-regulated in gliomas, helps to understand the molecular characteristics of gliomas, and provids insights for the search for specific markers in gliomas.
Collapse
Affiliation(s)
| | | | | | | | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Medical Primate Research Center, Neuroscience Center, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; (Y.Q.); (Y.Q.); (X.Z.); (Z.G.)
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Medical Primate Research Center, Neuroscience Center, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; (Y.Q.); (Y.Q.); (X.Z.); (Z.G.)
| |
Collapse
|
72
|
Deshmukh S, Ptack A, Krug B, Jabado N. Oncohistones: a roadmap to stalled development. FEBS J 2022; 289:1315-1328. [PMID: 33969633 PMCID: PMC9990449 DOI: 10.1111/febs.15963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 01/18/2023]
Abstract
Since the discovery of recurrent mutations in histone H3 variants in paediatric brain tumours, so-called 'oncohistones' have been identified in various cancers. While their mechanism of action remains under active investigation, several studies have shed light on how they promote genome-wide epigenetic perturbations. These findings converge on altered post-translational modifications on two key lysine (K) residues of the H3 tail, K27 and K36, which regulate several cellular processes, including those linked to cell differentiation during development. We will review how these oncohistones affect the methylation of cognate residues, but also disrupt the distribution of opposing chromatin marks, creating genome-wide epigenetic changes which participate in the oncogenic process. Ultimately, tumorigenesis is promoted through the maintenance of a progenitor state at the expense of differentiation in defined cellular and developmental contexts. As these epigenetic disruptions are reversible, improved understanding of oncohistone pathogenicity can result in needed alternative therapies.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Adam Ptack
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
73
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
74
|
Liang Y, Turcan S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines 2022; 10:biomedicines10020211. [PMID: 35203421 PMCID: PMC8868629 DOI: 10.3390/biomedicines10020211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Epigenetic drugs are used for the clinical treatment of hematologic malignancies; however, their therapeutic potential in solid tumors is still under investigation. Current evidence suggests that epigenetic drugs may lead to antitumor immunity by increasing antigen presentation and may enhance the therapeutic effect of immune checkpoint inhibitors. Here, we highlight their impact on the tumor epigenome and discuss the recent evidence that epigenetic agents may optimize the immune microenvironment and promote antiviral response.
Collapse
|
75
|
Oncohistone interactome profiling uncovers contrasting oncogenic mechanisms and identifies potential therapeutic targets in high grade glioma. Acta Neuropathol 2022; 144:1027-1048. [PMID: 36070144 PMCID: PMC9547787 DOI: 10.1007/s00401-022-02489-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.
Collapse
|
76
|
Jiang X, Deng X, Wang J, Mo Y, Shi L, Wei F, Zhang S, Gong Z, He Y, Xiong F, Wang Y, Guo C, Xiang B, Zhou M, Liao Q, Li X, Li Y, Li G, Xiong W, Zeng Z. BPIFB1 inhibits vasculogenic mimicry via downregulation of GLUT1-mediated H3K27 acetylation in nasopharyngeal carcinoma. Oncogene 2022; 41:233-245. [PMID: 34725462 DOI: 10.1038/s41388-021-02079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023]
Abstract
Nasopharyngeal carcinoma (NPC) demonstrates significant regional differences and a high incidence in Southeast Asia and Southern China. Bactericidal/permeability-increasing-fold- containing family B member 1 (BPIFB1) is a relatively specific and highly expressed protein in the nasopharyngeal epithelium. BPIFB1 expression is substantially downregulated in NPC and is significantly associated with poor prognosis in patients with NPC. However, the specific molecular mechanism by which BPIFB1 regulates NPC is not well understood. In this study, we found that BPIFB1 inhibits vasculogenic mimicry by regulating the metabolic reprogramming of NPC. BPIFB1 decreases GLUT1 transcription by downregulating the JNK/AP1 signaling pathway. Altered glycolysis reduces the acetylation level of histone and decreases the expression of vasculogenic mimicry-related genes, VEGFA, VE-cadherin, and MMP2, ultimately leading to the inhibition of vasculogenic mimicry. To our knowledge, this is the first report on the role and specific mechanism of BPIFB1 as a tumor suppressor gene involved in regulating glycolysis and vasculogenic mimicry in NPC. Overall, these results provide a new therapeutic target for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
77
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
78
|
Chaouch A, Berlandi J, Chen CCL, Frey F, Badini S, Harutyunyan AS, Chen X, Krug B, Hébert S, Jeibmann A, Lu C, Kleinman CL, Hasselblatt M, Lasko P, Shirinian M, Jabado N. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Mol Cell 2021; 81:4876-4890.e7. [PMID: 34739871 PMCID: PMC9990445 DOI: 10.1016/j.molcel.2021.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022]
Abstract
Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.
Collapse
Affiliation(s)
- Amel Chaouch
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Johannes Berlandi
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Felice Frey
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Shireen Badini
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Xiao Chen
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Steven Hébert
- The Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Chao Lu
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Department of Paediatrics, McGill University and the Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
79
|
H3.3K27M Mutation Controls Cell Growth and Resistance to Therapies in Pediatric Glioma Cell Lines. Cancers (Basel) 2021; 13:cancers13215551. [PMID: 34771714 PMCID: PMC8583077 DOI: 10.3390/cancers13215551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Although the involvement of the H3.3K27M mutation in Diffuse Midline Glioma tumorigenesis is now established, its role in their resistance to treatments and, therefore, in their fatal outcome remains poorly documented. Here, thanks to our models of H3.3K27M induction in pediatric glioma cells, we finally shed light on this crucial issue. Hence, we demonstrate here for the first time that H3.3K27M can increase cell radioresistance capabilities independently of TP53 alterations. Moreover, thanks to a drug library screening, we evidenced that this mutation can, depending on the cellular context, drastically modulate the response of these cells to different classes of compounds, thus paving the way for new therapeutic strategies. Altogether, our results provide here the proof that, beyond its role in tumorigenesis, the presence of H3.3K27M mutation by itself alters the response to treatments of pediatric glioma cells. Abstract High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells’ resistance to therapies, likely through transcriptomic reprogramming.
Collapse
|
80
|
Bočkaj I, Martini TEI, de Camargo Magalhães ES, Bakker PL, Meeuwsen-de Boer TGJ, Armandari I, Meuleman SL, Mondria MT, Stok C, Kok YP, Bakker B, Wardenaar R, Seiler J, Broekhuis MJC, van den Bos H, Spierings DCJ, Ringnalda FCA, Clevers H, Schüller U, van Vugt MATM, Foijer F, Bruggeman SWM. The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genet 2021; 17:e1009868. [PMID: 34752469 PMCID: PMC8604337 DOI: 10.1371/journal.pgen.1009868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/19/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.
Collapse
Affiliation(s)
- Irena Bočkaj
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tosca E. I. Martini
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eduardo S. de Camargo Magalhães
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Petra L. Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiny G. J. Meeuwsen-de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inna Armandari
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Saskia L. Meuleman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marin T. Mondria
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Colin Stok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yannick P. Kok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bjorn Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - René Wardenaar
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jonas Seiler
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mathilde J. C. Broekhuis
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Diana C. J. Spierings
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Femke C. A. Ringnalda
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrich Schüller
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophia W. M. Bruggeman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
81
|
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and Treatment of H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel) 2021; 13:cancers13215280. [PMID: 34771443 PMCID: PMC8582453 DOI: 10.3390/cancers13215280] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) are rare childhood central nervous system tumors that carry a dismal prognosis. Thus, innovative treatment approaches are greatly needed to improve clinical outcomes for these patients. Here, we discuss current trends in research of H3K27M-mutant diffuse midline glioma. This review highlights new developments of molecular pathophysiology for these tumors, as they relate to epigenetics and therapeutic targeting. We focus our discussion on combinatorial therapies addressing the inherent complexity of treating H3K27M-mutant diffuse midline gliomas and incorporating recent advances in immunotherapy, molecular biology, genetics, radiation, and stereotaxic surgical diagnostics.
Collapse
|
82
|
Xu YW, Lin P, Zheng SF, Huang W, Lin ZY, Shang-Guan HC, Lin YX, Yao PS, Kang DZ. Acetylation Profiles in the Metabolic Process of Glioma-Associated Seizures. Front Neurol 2021; 12:713293. [PMID: 34664012 PMCID: PMC8519730 DOI: 10.3389/fneur.2021.713293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We test the hypothesis that lysine acetylation is involved in the metabolic process of glioma-associated seizures (GAS). Methods: We used label-free mass spectrometry-based quantitative proteomics to quantify dynamic changes of protein acetylation between gliomas with seizure (CA1 group) and gliomas without seizure (CA2 group). Furthermore, differences of acetyltransferase and deacetylase expression between CA1 and CA2 groups were performed by a quantitative proteomic study. We further classified acetylated proteins into groups according to cell component, molecular function, and biological process. In addition, metabolic pathways and protein interaction networks were analyzed. Regulated acetyltransferases and acetylated profiles were validated by PRM and Western blot. Results: We detected 169 downregulated lysine acetylation sites of 134 proteins and 39 upregulated lysine acetylation sites of 35 proteins in glioma with seizures based on acetylome. We detected 407 regulated proteins by proteomics, from which ACAT2 and ACAA2 were the differentially regulated enzymes in the acetylation of GAS. According to the KEGG analysis, the upregulated acetylated proteins within the PPIs were mapped to pathways involved in the TCA cycle, oxidative phosphorylation, biosynthesis of amino acids, and carbon metabolism. The downregulated acetylated proteins within the PPIs were mapped to pathways involved in fatty acid metabolism, oxidative phosphorylation, TCA cycle, and necroptosis. Regulated ACAT2 expression and acetylated profiles were validated by PRM and Western blot. Conclusions: The data support the hypothesis that regulated protein acetylation is involved in the metabolic process of GAS, which may be induced by acetyl-CoA acetyltransferases.
Collapse
Affiliation(s)
- Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Huang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhang-Ya Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
83
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
84
|
Leszczynska KB, Jayaprakash C, Kaminska B, Mieczkowski J. Emerging Advances in Combinatorial Treatments of Epigenetically Altered Pediatric High-Grade H3K27M Gliomas. Front Genet 2021; 12:742561. [PMID: 34646308 PMCID: PMC8503186 DOI: 10.3389/fgene.2021.742561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
Somatic mutations in histone encoding genes result in gross alterations in the epigenetic landscape. Diffuse intrinsic pontine glioma (DIPG) is a pediatric high-grade glioma (pHGG) and one of the most challenging cancers to treat, with only 1% surviving for 5 years. Due to the location in the brainstem, DIPGs are difficult to resect and rapidly turn into a fatal disease. Over 80% of DIPGs confer mutations in genes coding for histone 3 variants (H3.3 or H3.1/H3.2), with lysine to methionine substitution at position 27 (H3K27M). This results in a global decrease in H3K27 trimethylation, increased H3K27 acetylation, and widespread oncogenic changes in gene expression. Epigenetic modifying drugs emerge as promising candidates to treat DIPG, with histone deacetylase (HDAC) inhibitors taking the lead in preclinical and clinical studies. However, some data show the evolving resistance of DIPGs to the most studied HDAC inhibitor panobinostat and highlight the need to further investigate its mechanism of action. A new forceful line of research explores the simultaneous use of multiple inhibitors that could target epigenetically induced changes in DIPG chromatin and enhance the anticancer response of single agents. In this review, we summarize the therapeutic approaches against H3K27M-expressing pHGGs focused on targeting epigenetic dysregulation and highlight promising combinatorial drug treatments. We assessed the effectiveness of the epigenetic drugs that are already in clinical trials in pHGGs. The constantly expanding understanding of the epigenetic vulnerabilities of H3K27M-expressing pHGGs provides new tumor-specific targets, opens new possibilities of therapy, and gives hope to find a cure for this deadly disease.
Collapse
Affiliation(s)
- Katarzyna B Leszczynska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.,3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
85
|
Hu MJ, Long M, Dai RJ. Acetylation of H3K27 activated lncRNA NEAT1 and promoted hepatic lipid accumulation in non-alcoholic fatty liver disease via regulating miR-212-5p/GRIA3. Mol Cell Biochem 2021; 477:191-203. [PMID: 34652536 PMCID: PMC8517567 DOI: 10.1007/s11010-021-04269-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) was a world-wide health burden. H3K27 acetylation, long non-coding RNA (lncRNA), and miRNA were all implicated in NAFLD regulation, yet the detailed regulatory mechanism was not well understood. LncRNA NEAT1, miR-212-5p, and GRIA3 expression were detected both in high fatty acid-treated hepatocytes cells and NAFLD patients. Lipid droplets were stained and analyzed by oil red O staining. Expression of fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), and GRIA3 was detected by qRT-PCR and western blot. RNA level of lncRNA NEAT1 and miR-212-5p was analyzed by qRT-PCR. The binding sequences of lncRNA NEAT1/miR-212-5p and miR-212-5p/GRIA3 were predicted bioinformatically and validated through luciferase assay. ChIP was performed to analyze H3K27 acetylation on the promoter of lncRNA NEAT1. LncRNA NEAT1 and GRIA3 was upregulated, while miR-212-5p was downregulated in NAFLD patients. FFA promoted lncRNA NEAT1 and GRIA3 expression while suppressing miR-212-5p and promoted lipid accumulation as indicated by increased oil red O staining and FAS and ACC expression. ChIP indicated enrichment of H3K27 on NEAT1 promoter. Inhibition of H3K27 acetylation suppressed lncRNA NEAT1 level. Luciferase results indicated direct interaction of NEAT1/miR-212-5p (which was confirmed by RIP) and miR-212-5p/GRIA3. LncRNA NEAT1 knockdown upregulated miR-212-5p level and inhibited FFA-induced lipid accumulation while suppressing GRIA3 expression. Such function was antagonized by miR-212-5p inhibition and GRIA3 knockdown counteracted with miR-212-5p inhibition. H3K27 acetylation was enriched within the promoter of lncRNA NEAT1 and promoted lncRNA NEAT1 transcription. LncRNA NEAT1 could then interact with miR-212-5p and suppress its cellular concentration.
Collapse
Affiliation(s)
- Min-Jie Hu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan Province, People's Republic of China
| | - Mei Long
- Department of Rheumatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan Province, People's Republic of China
| | - Rong-Juan Dai
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Shigu District, Hengyang, 421000, Hunan Province, People's Republic of China.
| |
Collapse
|
86
|
Panwalkar P, Tamrazi B, Dang D, Chung C, Sweha S, Natarajan SK, Pun M, Bayliss J, Ogrodzinski MP, Pratt D, Mullan B, Hawes D, Yang F, Lu C, Sabari BR, Achreja A, Heon J, Animasahun O, Cieslik M, Dunham C, Yip S, Hukin J, Phillips JJ, Bornhorst M, Griesinger AM, Donson AM, Foreman NK, Garton HJ, Heth J, Muraszko K, Nazarian J, Koschmann C, Jiang L, Filbin MG, Nagrath D, Kool M, Korshunov A, Pfister SM, Gilbertson RJ, Allis CD, Chinnaiyan A, Lunt SY, Blüml S, Judkins AR, Venneti S. Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Sci Transl Med 2021; 13:eabc0497. [PMID: 34613815 PMCID: PMC8762577 DOI: 10.1126/scitranslmed.abc0497] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle–related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT–expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.
Collapse
Affiliation(s)
- Pooja Panwalkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benita Tamrazi
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA, 90027, USA
| | - Derek Dang
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chan Chung
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Current address- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Stefan Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jill Bayliss
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Martin P. Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Physiology, Michigan State University, East Lansing, MI, 48823, USA
| | - Drew Pratt
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brendan Mullan
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA, 90027, USA
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA, 90027, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Benjamin R. Sabari
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Abhinav Achreja
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jin Heon
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olamide Animasahun
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marcin Cieslik
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher Dunham
- Division of Anatomic Pathology, British Columbia Children's Hospital, Vancouver, British Columbia, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Juliette Hukin
- Division of Hematology and Oncology, Children's and Women's Health Centre of B.C, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Joanna J. Phillips
- Department of Pathology, University of California, San Francisco, CA, 94132, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA. 94132
| | - Miriam Bornhorst
- Research Center for Genetic Medicine, Children's National Health System, Washington DC, 20012, USA
- Brain Tumor Institute, Children's National Health System, Washington, DC 20012, USA
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, 80045, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, 80045, Colorado
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, 80045, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, 80045, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, 80045, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, 80045, Colorado
| | - Hugh J.L. Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karin Muraszko
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington DC, 20012, USA
- Brain Tumor Institute, Children's National Health System, Washington, DC 20012, USA
- DMG Research Center Department of Oncology University Children's Hospital, CH-8032 Zürich
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Deepak Nagrath
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, 69120, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584, the Netherlands
| | - Andrey Korshunov
- Department of Neuropathology, German Cancer Research Center (DKFZ), University Hospital Heidelberg and CCU Neuropathology, Heidelberg, 69120, Germany
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, 69120, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | | | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Arul Chinnaiyan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48823, USA
| | - Stefan Blüml
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA, 90027, USA
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA, 90027, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
87
|
An Epigenetic Perspective on Intra-Tumour Heterogeneity: Novel Insights and New Challenges from Multiple Fields. Cancers (Basel) 2021; 13:cancers13194969. [PMID: 34638453 PMCID: PMC8508087 DOI: 10.3390/cancers13194969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Although research on cancer biology in recent decades has unveiled the main genetic perturbations driving the onset of tumorigenesis, we are still far from properly treating this disease without the occurrence of drug resistance and metastatic burden. This achievement is hampered by the onset of intra-tumour heterogeneity (ITH), which increases cancer cell fitness and plasticity, thereby fostering cell adaptation to foreign environments and stimuli. In this review, we discuss the contribution of the epigenetic factors in sustaining ITH and their interplay with the tumour microenvironment. We also highlight the recent technological advancements that are contributing to defining the epigenetic mechanisms governing tumour heterogeneity at the single-cell level. Abstract Cancer is a group of heterogeneous diseases that results from the occurrence of genetic alterations combined with epigenetic changes and environmental stimuli that increase cancer cell plasticity. Indeed, multiple cancer cell populations coexist within the same tumour, favouring cancer progression and metastatic dissemination as well as drug resistance, thereby representing a major obstacle for treatment. Epigenetic changes contribute to the onset of intra-tumour heterogeneity (ITH) as they facilitate cell adaptation to perturbation of the tumour microenvironment. Despite being its central role, the intrinsic multi-layered and reversible epigenetic pattern limits the possibility to uniquely determine its contribution to ITH. In this review, we first describe the major epigenetic mechanisms involved in tumourigenesis and then discuss how single-cell-based approaches contribute to dissecting the key role of epigenetic changes in tumour heterogeneity. Furthermore, we highlight the importance of dissecting the interplay between genetics, epigenetics, and tumour microenvironments to decipher the molecular mechanisms governing tumour progression and drug resistance.
Collapse
|
88
|
Brien GL, Bressan RB, Monger C, Gannon D, Lagan E, Doherty AM, Healy E, Neikes H, Fitzpatrick DJ, Deevy O, Grant V, Marqués-Torrejón MA, Alfazema N, Pollard SM, Bracken AP. Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nat Genet 2021; 53:1221-1232. [PMID: 34294917 DOI: 10.1038/s41588-021-00897-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Driver mutations in genes encoding histone H3 proteins resulting in p.Lys27Met substitutions (H3-K27M) are frequent in pediatric midline brain tumors. However, the precise mechanisms by which H3-K27M causes tumor initiation remain unclear. Here, we use human hindbrain neural stem cells to model the consequences of H3.3-K27M on the epigenomic landscape in a relevant developmental context. Genome-wide mapping of epitope-tagged histone H3.3 revealed that both the wild type and the K27M mutant incorporate abundantly at pre-existing active enhancers and promoters, and to a lesser extent at Polycomb repressive complex 2 (PRC2)-bound regions. At active enhancers, H3.3-K27M leads to focal H3K27ac loss, decreased chromatin accessibility and reduced transcriptional expression of nearby neurodevelopmental genes. In addition, H3.3-K27M deposition at a subset of PRC2 target genes leads to increased PRC2 and PRC1 binding and augmented transcriptional repression that can be partially reversed by PRC2 inhibitors. Our work suggests that, rather than imposing de novo transcriptional circuits, H3.3-K27M drives tumorigenesis by locking initiating cells in their pre-existing, immature epigenomic state, via disruption of PRC2 and enhancer functions.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Raul Bardini Bressan
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Dáire Gannon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Eimear Lagan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Anthony M Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannah Neikes
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Vivien Grant
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria-Angeles Marqués-Torrejón
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Neza Alfazema
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
89
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
90
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
91
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
92
|
Haag D, Mack N, Benites Goncalves da Silva P, Statz B, Clark J, Tanabe K, Sharma T, Jäger N, Jones DTW, Kawauchi D, Wernig M, Pfister SM. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 2021; 39:407-422.e13. [PMID: 33545065 DOI: 10.1016/j.ccell.2021.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.
Collapse
Affiliation(s)
- Daniel Haag
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Norman Mack
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Britta Statz
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jessica Clark
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Koji Tanabe
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Tokyo 187-0031, Japan
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
93
|
Peeters SM, Muftuoglu Y, Na B, Daniels DJ, Wang AC. Pediatric Gliomas: Molecular Landscape and Emerging Targets. Neurosurg Clin N Am 2021; 32:181-190. [PMID: 33781501 DOI: 10.1016/j.nec.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing of pediatric gliomas has revealed the importance of molecular genetic characterization in understanding the biology underlying these tumors and a breadth of potential therapeutic targets. Promising targeted therapies include mTOR inhibitors for subependymal giant cell astrocytomas in tuberous sclerosis, BRAF and MEK inhibitors mainly for low-grade gliomas, and MEK inhibitors for NF1-deficient BRAF:KIAA fusion tumors. Challenges in developing targeted molecular therapies include significant intratumoral and intertumoral heterogeneity, highly varied mechanisms of treatment resistance and immune escape, adequacy of tumor penetrance, and sensitivity of brain to treatment-related toxicities.
Collapse
Affiliation(s)
- Sophie M Peeters
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Yagmur Muftuoglu
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Brian Na
- Department of Pediatrics, Division of Hematology/Oncology, University of California Los Angeles, 200 UCLA Medical Plaza, Suite 265, Los Angeles, CA 90095, USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA.
| |
Collapse
|
94
|
Khan MI, Nur SM, Adhami V, Mukhtar H. Epigenetic regulation of RNA sensors: Sentinels of immune response. Semin Cancer Biol 2021; 83:413-421. [PMID: 33484869 DOI: 10.1016/j.semcancer.2020.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Living host system possess mechanisms like innate immune system to combat against inflammation, stress singling, and cancer. These mechanisms are initiated by PAMP and DAMP mediated recognition by PRR. PRR is consist of variety of nucleic acid sensors like-RNA sensors. They play crucial role in identifying exogenous and endogenous RNA molecules, which subsequently mediate pro/inflammatory cytokine, IFN and ISGs response in traumatized or tumorigenic conditions. The sensors can sensitize wide range of nucleic acid particle in term of size and structure, while each category sensors belongs subclasses with differentially expressed in cell and distinguished functioning mechanisms. They are also able to make comparison between self and non-self-nucleic acid molecules through specific mechanisms. Besides exhibiting anti-inflammatory and anti-tumorigenic responses, RNA sensors cover the broad spectrum of response mechanisms. Transcriptionally RNA sensors undergo with tight epigenetic regulations. In this review study, we will be going to discuss about the details of RNA sensors, their functional mechanisms and epi-transactional regulations.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vaqar Adhami
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, USA.
| |
Collapse
|
95
|
Epigenetic-Targeted Treatments for H3K27M-Mutant Midline Gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:73-84. [PMID: 33155139 DOI: 10.1007/978-981-15-8104-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal midline brainstem tumor that most commonly occurs in children and is genetically defined by substitution of methionine for lysine at site 27 of histone 3 (H3K27M) in the majority of cases. This mutation has since been shown to exert an influence on the posttranslational epigenetic landscape of this disease, with the loss of trimethylation at lysine 27 (H3K27me3) the most common alteration. Based on these findings, a number of drugs targeting these epigenetic changes have been proposed, specifically that alter histone trimethylation, acetylation, or phosphorylation. Various mechanisms have been explored, including inhibition of H327 demethylase and methyltransferase to target trimethylation, inhibition of histone deacetylase (HDAC) and bromodomain and extraterminal (BET) to target acetylation, and inhibition of phosphatase-related enzymes to target phosphorylation. This chapter reviews the current rationales and progress made to date in epigenetically targeting DIPG via these mechanisms.
Collapse
|
96
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
97
|
Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11:6216. [PMID: 33277484 PMCID: PMC7718276 DOI: 10.1038/s41467-020-19972-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations. Histone H3 at lysine 27 (H3K27M) is often mutated in cancer but its role in tumour initiation is unclear. Here, the authors generated a transgenic model expressing H3.3K27M from the Fabp7 gene promoter, demonstrating that H3.3K27M can initiate diverse tumorigesis on its own, acting through a RAS/MYC transcriptomic programme.
Collapse
|
98
|
Khazaei S, De Jay N, Deshmukh S, Hendrikse LD, Jawhar W, Chen CCL, Mikael LG, Faury D, Marchione DM, Lanoix J, Bonneil É, Ishii T, Jain SU, Rossokhata K, Sihota TS, Eveleigh R, Lisi V, Harutyunyan AS, Jung S, Karamchandani J, Dickson BC, Turcotte R, Wunder JS, Thibault P, Lewis PW, Garcia BA, Mack SC, Taylor MD, Garzia L, Kleinman CL, Jabado N. H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone. Cancer Discov 2020; 10:1968-1987. [PMID: 32967858 PMCID: PMC7710565 DOI: 10.1158/2159-8290.cd-20-0461] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
Glycine 34-to-tryptophan (G34W) substitutions in H3.3 arise in approximately 90% of giant cell tumor of bone (GCT). Here, we show H3.3 G34W is necessary for tumor formation. By profiling the epigenome, transcriptome, and secreted proteome of patient samples and tumor-derived cells CRISPR-Cas9-edited for H3.3 G34W, we show that H3.3K36me3 loss on mutant H3.3 alters the deposition of the repressive H3K27me3 mark from intergenic to genic regions, beyond areas of H3.3 deposition. This promotes redistribution of other chromatin marks and aberrant transcription, altering cell fate in mesenchymal progenitors and hindering differentiation. Single-cell transcriptomics reveals that H3.3 G34W stromal cells recapitulate a neoplastic trajectory from a SPP1+ osteoblast-like progenitor population toward an ACTA2+ myofibroblast-like population, which secretes extracellular matrix ligands predicted to recruit and activate osteoclasts. Our findings suggest that H3.3 G34W leads to GCT by sustaining a transformed state in osteoblast-like progenitors, which promotes neoplastic growth, pathologic recruitment of giant osteoclasts, and bone destruction. SIGNIFICANCE: This study shows that H3.3 G34W drives GCT tumorigenesis through aberrant epigenetic remodeling, altering differentiation trajectories in mesenchymal progenitors. H3.3 G34W promotes in neoplastic stromal cells an osteoblast-like progenitor state that enables undue interactions with the tumor microenvironment, driving GCT pathogenesis. These epigenetic changes may be amenable to therapeutic targeting in GCT.See related commentary by Licht, p. 1794.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Sima Khazaei
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Shriya Deshmukh
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Liam D Hendrikse
- Cancer and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wajih Jawhar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joel Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | - Takeaki Ishii
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada
| | - Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | | | - Tianna S Sihota
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Robert Eveleigh
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Véronique Lisi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Ashot S Harutyunyan
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Robert Turcotte
- Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada
| | - Jay S Wunder
- University of Toronto Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Michael D Taylor
- Cancer and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
99
|
Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Faury D, Jawhar W, Dali R, Suzuki H, Pathania M, A D, Dubois F, Woodward E, Hébert S, Coutelier M, Karamchandani J, Albrecht S, Brandner S, De Jay N, Gayden T, Bajic A, Harutyunyan AS, Marchione DM, Mikael LG, Juretic N, Zeinieh M, Russo C, Maestro N, Bassenden AV, Hauser P, Virga J, Bognar L, Klekner A, Zapotocky M, Vicha A, Krskova L, Vanova K, Zamecnik J, Sumerauer D, Ekert PG, Ziegler DS, Ellezam B, Filbin MG, Blanchette M, Hansford JR, Khuong-Quang DA, Berghuis AM, Weil AG, Garcia BA, Garzia L, Mack SC, Beroukhim R, Ligon KL, Taylor MD, Bandopadhayay P, Kramm C, Pfister SM, Korshunov A, Sturm D, Jones DTW, Salomoni P, Kleinman CL, Jabado N. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell 2020; 183:1617-1633.e22. [PMID: 33259802 DOI: 10.1016/j.cell.2020.11.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.
Collapse
Affiliation(s)
- Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shriya Deshmukh
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 2A7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Véronique Lisi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wajih Jawhar
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Rola Dali
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC H3A 0E9, Canada
| | - Hiromichi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Manav Pathania
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge CB2 0RE, UK
| | - Deli A
- Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Frank Dubois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Eleanor Woodward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Steven Hébert
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Marie Coutelier
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Ashot S Harutyunyan
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nikoleta Juretic
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nicola Maestro
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Peter Hauser
- Second Department of Paediatrics, Semmelweis University, Budapest 1094, Hungary
| | - József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary; Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Katerina Vanova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - David Sumerauer
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Paul G Ekert
- Children's Cancer Center, The Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Jordan R Hansford
- Children's Cancer Center, The Royal Children's Hospital; Murdoch Children's Research Institute; Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Center, The Royal Children's Hospital; and Murdoch Children's Research Institute; Parkville, VIC 3052, Australia
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Keith L Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Department of Pathology, Boston Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen 37075, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ) and Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg 69120, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dominik Sturm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen 37075, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David T W Jones
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg 69120, Germany
| | - Paolo Salomoni
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Nuclear Function in CNS Pathophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
100
|
An S, Camarillo JM, Huang TYT, Li D, Morris JA, Zoltek MA, Qi J, Behbahani M, Kambhampati M, Kelleher NL, Nazarian J, Thomas PM, Saratsis AM. Histone tail analysis reveals H3K36me2 and H4K16ac as epigenetic signatures of diffuse intrinsic pontine glioma. J Exp Clin Cancer Res 2020; 39:261. [PMID: 33239043 PMCID: PMC7687710 DOI: 10.1186/s13046-020-01773-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor. Most DIPGs harbor a histone H3 mutation, which alters histone post-translational modification (PTM) states and transcription. Here, we employed quantitative proteomic analysis to elucidate the impact of the H3.3K27M mutation, as well as radiation and bromodomain inhibition (BRDi) with JQ1, on DIPG PTM profiles. METHODS We performed targeted mass spectrometry on H3.3K27M mutant and wild-type tissues (n = 12) and cell lines (n = 7). RESULTS We found 29.2 and 26.4% of total H3.3K27 peptides were H3.3K27M in mutant DIPG tumor cell lines and tissue specimens, respectively. Significant differences in modification states were observed in H3.3K27M specimens, including at H3K27, H3K36, and H4K16. In addition, H3.3K27me1 and H4K16ac were the most significantly distinct modifications in H3.3K27M mutant tumors, relative to wild-type. Further, H3.3K36me2 was the most abundant co-occurring modification on the H3.3K27M mutant peptide in DIPG tissue, while H4K16ac was the most acetylated residue. Radiation treatment caused changes in PTM abundance in vitro, including increased H3K9me3. JQ1 treatment resulted in increased mono- and di-methylation of H3.1K27, H3.3K27, H3.3K36 and H4K20 in vitro. CONCLUSION Taken together, our findings provide insight into the effects of the H3K27M mutation on histone modification states and response to treatment, and suggest that H3K36me2 and H4K16ac may represent unique tumor epigenetic signatures for targeted DIPG therapy.
Collapse
Affiliation(s)
- Shejuan An
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Tina Yi-Ting Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daphne Li
- Department of Neurological Surgery, Loyola University, Chicago, IL, USA
| | - Juliette A Morris
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Madeline A Zoltek
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Jin Qi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mandana Behbahani
- Department of Neurological Surgery, University of Illinois Chicago, Chicago, IL, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Paul M Thomas
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Amanda M Saratsis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 28., Chicago, IL, 60611-2991, USA.
| |
Collapse
|