51
|
Wrenn ED, Apfelbaum AA, Rudzinski ER, Deng X, Jiang W, Sud S, Van Noord RA, Newman EA, Garcia NM, Hoglund VJ, Bhise SS, Kanaan SB, Waltner OG, Furlan SN, Lawlor ER. Carcinoma-associated fibroblast-like tumor cells remodel the Ewing sarcoma tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536619. [PMID: 37090655 PMCID: PMC10120623 DOI: 10.1101/2023.04.12.536619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Tumor heterogeneity is a major driver of cancer progression. In epithelial-derived malignancies, carcinoma-associated fibroblasts (CAFs) contribute to tumor heterogeneity by depositing extracellular matrix (ECM) proteins that dynamically remodel the tumor microenvironment (TME). Ewing sarcomas (EwS) are histologically monomorphous, mesenchyme-derived tumors that are devoid of CAFs. Here we identify a previously uncharacterized subpopulation of transcriptionally distinct EwS tumor cells that deposit pro-tumorigenic ECM. Single cell analyses revealed that these CAF-like cells differ from bulk EwS cells by their upregulation of a matrisome-rich gene signature that is normally repressed by EWS::FLI1, the oncogenic fusion transcription factor that underlies EwS pathogenesis. Further, our studies showed that ECM-depositing tumor cells express the cell surface marker CD73, allowing for their isolation ex vivo and detection in situ. Spatial profiling of tumor xenografts and patient biopsies demonstrated that CD73 + EwS cells and tumor cell-derived ECM are prevalent along tumor borders and invasive fronts. Importantly, despite loss of EWS::FLI1-mediated gene repression, CD73 + EwS cells retain expression of EWS::FLI1 and the fusion-activated gene signature, as well as tumorigenic and proliferative capacities. Thus, EwS tumor cells can be reprogrammed to adopt CAF-like properties and these transcriptionally and phenotypically distinct cell subpopulations contribute to tumor heterogeneity by remodeling the TME.
Collapse
|
52
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
53
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
54
|
Lu DY, Ellegast JM, Ross KN, Malone CF, Lin S, Mabe NW, Dharia NV, Meyer A, Conway A, Su AH, Selich-Anderson J, Taslim C, Byrum AK, Seong BKA, Adane B, Gray NS, Rivera MN, Lessnick SL, Stegmaier K. The ETS transcription factor ETV6 constrains the transcriptional activity of EWS-FLI to promote Ewing sarcoma. Nat Cell Biol 2023; 25:285-297. [PMID: 36658220 PMCID: PMC9928584 DOI: 10.1038/s41556-022-01059-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/24/2022] [Indexed: 01/21/2023]
Abstract
Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.
Collapse
Affiliation(s)
- Diana Y Lu
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth N Ross
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashleigh Meyer
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angela H Su
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrea K Byrum
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Bo Kyung A Seong
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Miguel N Rivera
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Hematology, Oncology and BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
55
|
ETV6 dependency in Ewing sarcoma by antagonism of EWS-FLI1-mediated enhancer activation. Nat Cell Biol 2023; 25:298-308. [PMID: 36658219 PMCID: PMC10101761 DOI: 10.1038/s41556-022-01060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/24/2022] [Indexed: 01/21/2023]
Abstract
The EWS-FLI1 fusion oncoprotein deregulates transcription to initiate the paediatric cancer Ewing sarcoma. Here we used a domain-focused CRISPR screen to implicate the transcriptional repressor ETV6 as a unique dependency in this tumour. Using biochemical assays and epigenomics, we show that ETV6 competes with EWS-FLI1 for binding to select DNA elements enriched for short GGAA repeat sequences. Upon inactivating ETV6, EWS-FLI1 overtakes and hyper-activates these cis-elements to promote mesenchymal differentiation, with SOX11 being a key downstream target. We show that squelching of ETV6 with a dominant-interfering peptide phenocopies these effects and suppresses Ewing sarcoma growth in vivo. These findings reveal targeting of ETV6 as a strategy for neutralizing the EWS-FLI1 oncoprotein by reprogramming of genomic occupancy.
Collapse
|
56
|
Mo J, Tan K, Dong Y, Lu W, Liu F, Mei Y, Huang H, Zhao K, Lv Z, Ye Y, Tang Y. Therapeutic targeting the oncogenic driver EWSR1::FLI1 in Ewing sarcoma through inhibition of the FACT complex. Oncogene 2023; 42:11-25. [PMID: 36357572 DOI: 10.1038/s41388-022-02533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
EWS/ETS fusion transcription factors, most commonly EWSR1::FLI1, drives initiation and progression of Ewing sarcoma (EwS). Even though direct targeting EWSR1::FLI1 is a formidable challenge, epigenetic/transcriptional modulators have been proved to be promising therapeutic targets for indirectly disrupting its expression and/or function. Here, we identified structure-specific recognition protein 1 (SSRP1), a subunit of the Facilitates Chromatin Transcription (FACT) complex, to be an essential tumor-dependent gene directly induced by EWSR1::FLI1 in EwS. The FACT-targeted drug CBL0137 exhibits potent therapeutic efficacy against multiple EwS preclinical models both in vitro and in vivo. Mechanistically, SSRP1 and EWSR1::FLI1 form oncogenic positive feedback loop via mutual transcriptional regulation and activation, and cooperatively promote cell cycle/DNA replication process and IGF1R-PI3K-AKT-mTOR pathway to drive EwS oncogenesis. The FACT inhibitor drug CBL0137 effectively targets the EWSR1::FLI1-FACT circuit, resulting in transcriptional disruption of EWSR1::FLI1, SSRP1 and their downstream effector oncogenic signatures. Our study illustrates a crucial role of the FACT complex in facilitating the expression and function of EWSR1::FLI1 and demonstrates FACT inhibition as a novel and effective epigenetic/transcriptional-targeted therapeutic strategy against EwS, providing preclinical support for adding EwS to CBL0137's future clinical trials.
Collapse
Affiliation(s)
- Jialin Mo
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjie Lu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Fang Liu
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanqing Mei
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
57
|
Pallotta MM, Di Nardo M, Hennekam RCM, Kaiser FJ, Parenti I, Pié J, Ramos FJ, Kline AD, Musio A. Cornelia de Lange syndrome and cancer: An open question. Am J Med Genet A 2023; 191:292-295. [PMID: 36253936 PMCID: PMC10092277 DOI: 10.1002/ajmg.a.62992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Maria M Pallotta
- Institute for Biomedical Technologies, National Research Council, Pisa, Italy
| | - Maddalena Di Nardo
- Institute for Biomedical Technologies, National Research Council, Pisa, Italy
| | - Raoul C M Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank J Kaiser
- Institute for Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Essen Center for Rare Diseases (Essener Zentrum für Seltene Erkrankungen, EZSE), University Hospital Essen, Essen, Germany
| | - Ilaria Parenti
- Institute for Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, Zaragoza, Spain
| | - Feliciano J Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, Zaragoza, Spain.,Clinical Genetics Unit, Service of Paediatrics, University Hospital "Lozano Blesa", University of Zaragoza, CIBERER GCV02 and ISS-Aragón, Zaragoza, Spain
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland, USA
| | - Antonio Musio
- Institute for Biomedical Technologies, National Research Council, Pisa, Italy
| |
Collapse
|
58
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
59
|
Orth MF, Surdez D, Faehling T, Ehlers AC, Marchetto A, Grossetête S, Volckmann R, Zwijnenburg DA, Gerke JS, Zaidi S, Alonso J, Sastre A, Baulande S, Sill M, Cidre-Aranaz F, Ohmura S, Kirchner T, Hauck SM, Reischl E, Gymrek M, Pfister SM, Strauch K, Koster J, Delattre O, Grünewald TGP. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep 2022; 41:111761. [PMID: 36476851 DOI: 10.1016/j.celrep.2022.111761] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Collapse
Affiliation(s)
- Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Didier Surdez
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zürich, 8008 Zürich, Switzerland
| | - Tobias Faehling
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Anna C Ehlers
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sandrine Grossetête
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sakina Zaidi
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28029 Madrid, Spain
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Shunya Ohmura
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 80337 Munich, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Eva Reischl
- Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melissa Gymrek
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology & Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biometry, Epidemiology, and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Olivier Delattre
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
60
|
Abstract
In the past decade, we have seen the emergence of sequence-based methods to understand chromosome organization. With the confluence of in situ approaches to capture information on looping, topological domains, and larger chromatin compartments, understanding chromatin-driven disease is becoming feasible. Excitingly, recent advances in single molecule imaging with capacity to reconstruct “bulk-cell” features of chromosome conformation have revealed cell-to-cell chromatin structural variation. The fundamental question motivating our analysis of the literature is, can altered chromatin structure drive tumorigenesis? As our community learns more about rare disease, including low mutational frequency cancers, understanding “chromatin-driven” pathology will illuminate the regulatory structures of the genome. We describe recent insights into altered genome architecture in human cancer, highlighting multiple pathways toward disruptions of chromatin structure, including structural variation, noncoding mutations, metabolism, and de novo mutations to architectural regulators themselves. Our analysis of the literature reveals that deregulation of genome structure is characteristic in distinct classes of chromatin-driven tumors. As we begin to integrate the findings from single cell imaging studies and chromatin structural sequencing, we will be able to understand the diversity of cells within a common diagnosis, and begin to define structure–function relationships of the misfolded genome.
Collapse
|
61
|
Shulman DS, Chen S, Hall D, Nag A, Thorner AR, Lessnick SL, Stegmaier K, Janeway KA, DuBois SG, Krailo MD, Barkauskas DA, Church AJ, Crompton BD. Adverse prognostic impact of the loss of STAG2 protein expression in patients with newly diagnosed localised Ewing sarcoma: A report from the Children's Oncology Group. Br J Cancer 2022; 127:2220-2226. [PMID: 36221002 PMCID: PMC9726932 DOI: 10.1038/s41416-022-01977-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Ewing sarcoma (EWS) is an aggressive sarcoma with no validated molecular biomarkers. We aimed to determine the frequency of STAG2 protein loss by immunohistochemistry (IHC) and whether loss of expression is associated with outcome. METHODS We performed a retrospective cohort study of patients with EWS enrolled to Children's Oncology Group studies. We obtained unstained slides from 235 patients and DNA for sequencing from 75 patients. STAG2 expression was tested for association with clinical features and survival was estimated using Kaplan-Meier methods with log-rank tests. RESULTS In total, 155 cases passed quality control for STAG2 IHC. STAG2 expression in 20/155 cases could not be categorised with the limited available tissue, leaving 135 patients with definitive STAG2 IHC. In localised and metastatic disease, STAG2 was lost in 29/108 and 6/27 cases, respectively. Among patients with IHC and sequencing, 0/17 STAG2 expressing cases had STAG2 mutations, and 2/7 cases with STAG2 loss had STAG2 mutations. Among patients with localised disease, 5-year event-free survival was 54% (95% CI 34-70%) and 75% (95% CI 63-84%) for patients with STAG2 loss vs. expression (P = 0.0034). CONCLUSION STAG2 loss of expression is identified in a population of patients without identifiable STAG2 mutations and carries a poor prognosis.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sonja Chen
- Nationwide Children's Hospital, Columbus, OH, USA
| | - David Hall
- Children's Oncology Group, Monrovia, CA, USA
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aaron R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kimberly Stegmaier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Mark D Krailo
- Children's Oncology Group, Monrovia, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald A Barkauskas
- Children's Oncology Group, Monrovia, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alanna J Church
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
62
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
63
|
Shields JA, Meier SR, Bandi M, Mulkearns-Hubert EE, Hajdari N, Ferdinez MD, Engel JL, Silver DJ, Shen B, Zhang W, Hubert CG, Mitchell K, Shakya S, Zhao SC, Bejnood A, Zhang M, Tjin Tham Sjin R, Wilker E, Lathia JD, Andersen JN, Chen Y, Li F, Weber B, Huang A, Emmanuel N. VRK1 Is a Synthetic-Lethal Target in VRK2-Deficient Glioblastoma. Cancer Res 2022; 82:4044-4057. [PMID: 36069976 PMCID: PMC9627132 DOI: 10.1158/0008-5472.can-21-4443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic-lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2-M arrest and DNA damage. The VRK1-VRK2 synthetic-lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line-derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. SIGNIFICANCE A paralog synthetic-lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Hajdari
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | - Kelly Mitchell
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sajina Shakya
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | - Fang Li
- Tango Therapeutics, Boston, Massachusetts
| | | | - Alan Huang
- Tango Therapeutics, Boston, Massachusetts
| | - Natasha Emmanuel
- Tango Therapeutics, Boston, Massachusetts.,Corresponding Author: Natasha Emmanuel, Tango Therapeutics, 201 Brookline Avenue, Suite 901, Boston, MA 02215. Phone: 857-320-4900, E-mail:
| |
Collapse
|
64
|
Apfelbaum AA, Wu F, Hawkins AG, Magnuson B, Jiménez JA, Taylor SD, Wrenn ED, Waltner O, Pfaltzgraff ER, Song JY, Hall C, Wellik DM, Ljungman M, Furlan SN, Ryan RJ, Sarthy JF, Lawlor ER. EWS::FLI1 and HOXD13 Control Tumor Cell Plasticity in Ewing Sarcoma. Clin Cancer Res 2022; 28:4466-4478. [PMID: 35653119 PMCID: PMC9588607 DOI: 10.1158/1078-0432.ccr-22-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.
Collapse
Affiliation(s)
- April A. Apfelbaum
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Allegra G. Hawkins
- Childhood Cancer Data Lab Alex’s Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Brian Magnuson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer A. Jiménez
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sean D. Taylor
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Emma D. Wrenn
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Olivia Waltner
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
| | | | - Jane Y. Song
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cody Hall
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53705
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott N. Furlan
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Russell J.H. Ryan
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jay F. Sarthy
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Elizabeth R. Lawlor
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
65
|
Guo Y, Wang GG. Modulation of the high-order chromatin structure by Polycomb complexes. Front Cell Dev Biol 2022; 10:1021658. [PMID: 36274840 PMCID: PMC9579376 DOI: 10.3389/fcell.2022.1021658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| |
Collapse
|
66
|
Athans SR, Krishnan N, Ramakrishnan S, Cortes Gomez E, Lage-Vickers S, Rak M, Kazmierczak ZI, Ohm JE, Attwood K, Wang J, Woloszynska A. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1129-1143. [PMID: 36275363 PMCID: PMC9583756 DOI: 10.1158/2767-9764.crc-22-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STAG2 (Stromal Antigen 2), in healthy somatic cells, functions in sister chromatid cohesion, DNA damage repair, and genome organization, but its role in muscle invasive bladder cancer (MIBC) remains unknown. Here, using whole-exome and targeted sequencing (n=119 bladder cancer clinical samples), we found several STAG2 mutations in MIBC that correlate with loss of protein expression. The analysis of a bladder cancer tissue microarray (n=346) revealed that decreased STAG2 protein expression is associated with improved overall and progression-free survival for MIBC patients. In mouse xenograft studies, STAG2 knockdown (KD) decelerated MIBC tumor growth, whereas STAG2 overexpression accelerated tumor growth. In cell line studies, STAG2 loss augmented treatment with cisplatin, a first-line therapy for MIBC. STAG2 KD or overexpression did not alter degree of aneuploidy, copy number variations, or cell cycle distribution. However, unbiased RNA sequencing analysis revealed that STAG2 KD altered gene expression. STAG2 KD led to significant downregulation of several gene sets, such as collagen containing extracellular matrix, external encapsulating structure organization, and regulation of chemotaxis. Therefore, we investigated the effect of STAG2 KD on cell migration and invasion in vitro. We found that STAG2 KD minimized cell speed, displacement, and invasion. Altogether, our results present a non-canonical function of STAG2 in promoting cell motility and invasion of MIBC cells. This work forms the basis for additional investigation into the role of STAG2 in transcriptional regulation and how it becomes dysregulated in STAG2-mutant MIBC.
Collapse
Affiliation(s)
- Sarah R. Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nithya Krishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Monika Rak
- Department of Cell Biology, Jagiellonian University, 31-007, Krakow, Poland
| | - Zara I. Kazmierczak
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Author: Anna Woloszynska, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203. Phone: 716-845-8495; E-mail:
| |
Collapse
|
67
|
Showpnil IA, Selich-Anderson J, Taslim C, Boone MA, Crow JC, Theisen ER, Lessnick SL. EWS/FLI mediated reprogramming of 3D chromatin promotes an altered transcriptional state in Ewing sarcoma. Nucleic Acids Res 2022; 50:9814-9837. [PMID: 36124657 PMCID: PMC9508825 DOI: 10.1093/nar/gkac747] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or a highly related FET/ETS chimera. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma cells using a well-validated ‘knock-down/rescue’ model of EWS/FLI function in combination with next generation sequencing assays to evaluate how the chromatin landscape changes with loss, and recovery, of EWS/FLI expression. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. This EWS/FLI binding signature is associated with establishment of topologically-associated domain (TAD) boundaries, compartment activation, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. In addition, EWS/FLI co-localizes with the loop-extrusion factor cohesin to promote chromatin loops and TAD boundaries. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators of three-dimensional reprogramming of chromatin.
Collapse
Affiliation(s)
- Iftekhar A Showpnil
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Megann A Boone
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jesse C Crow
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA.,Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
68
|
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, Shlien A, Hayashi M, Bishop AJR, Crompton BD, DuBois SG, Shukla N, Leavey PJ, Lessnick SL, Kovar H, Delattre O, Grünewald TGP, Antonescu CR, Roberts RD, Toretsky JA, Tirode F, Gorlick R, Janeway KA, Reed D, Lawlor ER, Grohar PJ. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022; 6:65. [PMID: 36115869 PMCID: PMC9482616 DOI: 10.1038/s41698-022-00307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah B Whittle
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Didier Surdez
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kelly M Bailey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC/Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology/Department of Paediatric Laboratory Medicine/Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute and Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Leavey
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, and the Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heinrich Kovar
- St. Anna Children´s Cancer Research Institute (CCRI) and Department Pediatrics Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg/Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)/Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC, USA
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008, Lyon, France
| | - Richard Gorlick
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Damon Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Seattle, WA, USA
| | - Patrick J Grohar
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Ogura K, Elkrief A, Bowman AS, Koche RP, de Stanchina E, Benayed R, Mauguen A, Mattar MS, Khodos I, Meyers PA, Healey JH, Tap WD, Hameed M, Zehir A, Shukla N, Sawyers C, Bose R, Slotkin E, Ladanyi M. Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance. JCO Precis Oncol 2022; 6:e2200048. [PMID: 35952322 PMCID: PMC9384944 DOI: 10.1200/po.22.00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts.
Collapse
Affiliation(s)
- Koichi Ogura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arielle Elkrief
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,AstraZeneca Pharmaceuticals, Wilmington, DE
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marissa S Mattar
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Inna Khodos
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John H Healey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William D Tap
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,AstraZeneca Pharmaceuticals, Wilmington, DE
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,HHMI, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rohit Bose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA.,Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Department of Urology, University of California, San Francisco, San Francisco, CA.,Benioff Initiative for Prostate Cancer Research, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
70
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
71
|
Hypoxia-activated neuropeptide Y/Y5 receptor/RhoA pathway triggers chromosomal instability and bone metastasis in Ewing sarcoma. Nat Commun 2022; 13:2323. [PMID: 35484119 PMCID: PMC9051212 DOI: 10.1038/s41467-022-29898-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Adverse prognosis in Ewing sarcoma (ES) is associated with the presence of metastases, particularly in bone, tumor hypoxia and chromosomal instability (CIN). Yet, a mechanistic link between these factors remains unknown. We demonstrate that in ES, tumor hypoxia selectively exacerbates bone metastasis. This process is triggered by hypoxia-induced stimulation of the neuropeptide Y (NPY)/Y5 receptor (Y5R) pathway, which leads to RhoA over-activation and cytokinesis failure. These mitotic defects result in the formation of polyploid ES cells, the progeny of which exhibit high CIN, an ability to invade and colonize bone, and a resistance to chemotherapy. Blocking Y5R in hypoxic ES tumors prevents polyploidization and bone metastasis. Our findings provide evidence for the role of the hypoxia-inducible NPY/Y5R/RhoA axis in promoting genomic changes and subsequent osseous dissemination in ES, and suggest that targeting this pathway may prevent CIN and disease progression in ES and other cancers rich in NPY and Y5R. Ewing sarcoma tumour cells frequently metastasize to the bone but the molecular mechanisms governing this process are not well understood. Here, the authors show that neuropeptide Y/Y5 receptor pathway is activated in the hypoxic tumour microenvironment, which results in cytokinesis defects and chromosomal instability, leading to bone invasion.
Collapse
|
72
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
73
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
74
|
Seong BKA, Dharia NV, Lin S, Donovan KA, Chong S, Robichaud A, Conway A, Hamze A, Ross L, Alexe G, Adane B, Nabet B, Ferguson FM, Stolte B, Wang EJ, Sun J, Darzacq X, Piccioni F, Gray NS, Fischer ES, Stegmaier K. TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell 2021; 39:1262-1278.e7. [PMID: 34329586 PMCID: PMC8443273 DOI: 10.1016/j.ccell.2021.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/24/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.
Collapse
Affiliation(s)
- Bo Kyung A Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shasha Chong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Amanda Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amanda Hamze
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Dr.von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jialin Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | | | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|