51
|
Lai J, Wang H, Luo Q, Huang S, Lin S, Zheng Y, Chen Q. The relationship between DNA methylation and Reprimo gene expression in gastric cancer cells. Oncotarget 2017; 8:108610-108623. [PMID: 29312555 PMCID: PMC5752468 DOI: 10.18632/oncotarget.21296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Reprimo (RPRM) is a tumor suppressor involved in the development of a number of malignant tumors including gastric cancer which is highly related to its gene hypermethylation. However, the regulation of RPRM gene expression by DNA methylation in gastric cancer is not well understood. We examined the RPRM gene methylation in gastric cancer tissues or plasma samples by bisulfite sequencing, and investigated the relationship between DNA methylation and the RPRM gene expression by quantitative reverse transcription-PCR and Western blotting. We found that the RPRM gene promoter region is hypermethylated in gastric cancer tissues (75%, 45/60), plasma samples (86.3%, 44/51) and various cancer cell lines (75%, 3/4), which is correlated with the decrease of RPRM gene expression. The hypermethylation-induced RPRM reduction can be recovered by treating with zebularine, a demethylating agent, and by inhibition of the DNA methyltransferases via RNA interference and CRISPR/Cas9-mediated gene knockout. In addition, we generated RPRM gene-knockout cells and studied the effects of the RPRM deficiency on tumor formation by inoculating these cells in mice. The data show that the loss of RPRM can promote tumorigenesis. These data suggest that the RPRM expression is inhibited by DNA methyltransferases and the RPRM normal function can be restored by treating with DNA methylation inhibitors. The study provides important information regarding the role of RPRM and its methylation related to gastric cancer development.
Collapse
Affiliation(s)
- Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shanlu Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shujin Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Yansong Zheng
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| |
Collapse
|
52
|
Tse JWT, Jenkins LJ, Chionh F, Mariadason JM. Aberrant DNA Methylation in Colorectal Cancer: What Should We Target? Trends Cancer 2017; 3:698-712. [PMID: 28958388 DOI: 10.1016/j.trecan.2017.08.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
Colorectal cancers (CRCs) are characterized by global hypomethylation and promoter-specific DNA methylation. A subset of CRCs with extensive and co-ordinate patterns of promoter methylation has also been identified, termed the CpG-island methylator phenotype. Some genes methylated in CRC are established tumor suppressors; however, for the majority, direct roles in disease initiation or progression have not been established. Herein, we examine functional evidence of specific methylated genes contributing to CRC pathogenesis, focusing on components of commonly deregulated signaling pathways. We also review current knowledge of the mechanisms underpinning promoter methylation in CRC, including genetic events, altered transcription factor binding, and DNA damage. Finally, we summarize clinical trials of DNA methyltransferase inhibitors in CRC, and propose strategies for enhancing their efficacy.
Collapse
Affiliation(s)
- Janson W T Tse
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; These authors contributed equally
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; These authors contributed equally
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia.
| |
Collapse
|
53
|
Orta ML, Pastor N, Burgos-Morón E, Domínguez I, Calderón-Montaño JM, Huertas Castaño C, López-Lázaro M, Helleday T, Mateos S. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination. DNA Repair (Amst) 2017; 57:116-124. [PMID: 28732309 DOI: 10.1016/j.dnarep.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
Zebularine is a second-generation, highly stable hydrophilic inhibitor of DNA methylation with oral bioavailability that preferentially target cancer cells. It acts primarily as a trap for DNA methyl transferases (DNMTs) protein by forming covalent complexes between DNMT protein and zebularine-substrate DNA. It's well documented that replication-blocking DNA lesions can cause replication fork collapse and thereby to the formation of DNA double-strand breaks (DSB). DSB are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSB are non-homologous end joining (NHEJ) and homologous recombination (HR). Recently, multiple functions for the HR machinery have been identified at arrested forks. Here we investigate in more detail the importance of the lesions induced by zebularine in terms of DNA damage and cytotoxicity as well as the role of HR in the repair of these lesions. When we examined the contribution of NHEJ and HR in the repair of DSB induced by zebularine we found that these breaks were preferentially repaired by HR. Also we show that the production of DSB is dependent on active replication. To test this, we determined chromosome damage by zebularine while transiently inhibiting DNA synthesis. Here we report that cells deficient in single-strand break (SSB) repair are hypersensitive to zebularine. We have observed more DSB induced by zebularine in XRCC1 deficient cells, likely to be the result of conversion of SSB into toxic DSB when encountered by a replication fork. Furthermore we demonstrate that HR is required for the repair of these breaks. Overall, our data suggest that zebularine induces replication-dependent DSB which are preferentially repaired by HR.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain,.
| | - Nuria Pastor
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Inmaculada Domínguez
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Carlos Huertas Castaño
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17121, Stockholm, Sweden
| | - Santiago Mateos
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain,.
| |
Collapse
|
54
|
Zebularine Treatment Induces MAGE-A11 Expression and Improves CTL Cytotoxicity Using a Novel Identified HLA-A2-restricted MAGE-A11 Peptide. J Immunother 2017; 40:211-220. [DOI: 10.1097/cji.0000000000000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
55
|
Zhang J, Yao D, Jiang Y, Huang J, Yang S, Wang J. Synthesis and biological evaluation of benzimidazole derivatives as the G9a Histone Methyltransferase inhibitors that induce autophagy and apoptosis of breast cancer cells. Bioorg Chem 2017; 72:168-181. [PMID: 28460359 DOI: 10.1016/j.bioorg.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023]
Abstract
G9a (also known as KMT1C or EHMT2) is initially identified as a H3K9 methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. It is overexpressed in various human cancers and employed as a promising target in cancer therapy. We discovered a benzoxazole scaffold through virtual high-throughput screening, and designed, synthesized 24 derivatives and investigated for inhibition of G9a. After several rounds of kinase and anti-proliferative activity screening, we discovered a potent G9a antagonist (GA001) with an IC50 value of 1.32μM that could induce autophagy via AMPK in MCF7 cells. In addition, we found high concentration of GA001 could induce apoptosis via p21-Bim signal cascades in MCF7 cells. Our results highlight a new approach for the development of a novel drug targeting G9a with a potential to induce autophagy and apoptosis for future breast cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingnan Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shilin Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
56
|
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12:416-432. [PMID: 28358281 DOI: 10.1080/15592294.2017.1311434] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival.
Collapse
Affiliation(s)
- Gangning Liang
- a Department of Urology , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Daniel J Weisenberger
- b Department of Biochemistry and Molecular Medicine , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
57
|
Aranda J, Attana F, Tuñón I. Molecular Mechanism of Inhibition of DNA Methylation by Zebularine. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan Aranda
- Departamento Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Fedaa Attana
- Departamento Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departamento Química
Física, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
58
|
Ruan H, Qiu S, Beard BC, Black ME. Creation of zebularine-resistant human cytidine deaminase mutants to enhance the chemoprotection of hematopoietic stem cells. Protein Eng Des Sel 2016; 29:573-582. [PMID: 27160178 PMCID: PMC5181380 DOI: 10.1093/protein/gzw012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022] Open
Abstract
Human cytidine deaminase (hCDA) is a biomedically important enzyme able to inactivate cytidine nucleoside analogs such as the antileukemic agent cytosine arabinoside (AraC) and thereby limit antineoplastic efficacy. Potent inhibitors of hCDA have been developed, e.g. zebularine, that when administered in combination with AraC enhance antineoplastic activity. Tandem hematopoietic stem cell (HSC) transplantation and combination chemotherapy (zebularine and AraC) could exhibit robust antineoplastic potency, but AraC-based chemotherapy regimens lead to pronounced myelosuppression due to relatively low hCDA activity in HSCs, and this approach could exacerbate this effect. To circumvent the pronounced myelosuppression of zebularine and AraC combination therapy while maintaining antineoplastic potency, zebularine-resistant hCDA variants could be used to gene-modify HSCs prior to transplantation. To achieve this, our approach was to isolate hCDA variants through random mutagenesis in conjunction with selection for hCDA activity and resistance to zebularine in an Escherichia coli genetic complementation system. Here, we report the identification of nine novel variants from a pool of 1.6 × 106 transformants that conferred significant zebularine resistance relative to wild-type hCDA2. Several variants revealed significantly higher Ki values toward zebularine when compared with wild-type hCDA values and, as such, are candidates for further exploration for gene-modified HSC transplantation approaches.
Collapse
Affiliation(s)
- Hongmei Ruan
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
| | - Songbo Qiu
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian C Beard
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret E Black
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
| |
Collapse
|
59
|
Ye K, Wang S, Wang J, Han H, Ma B, Yang Y. Zebularine enhances apoptosis of human osteosarcoma cells by suppressing methylation of ARHI. Cancer Sci 2016; 107:1851-1857. [PMID: 27685841 PMCID: PMC5198947 DOI: 10.1111/cas.13088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 01/08/2023] Open
Abstract
ARHI is an imprinted tumor suppressor gene and its methylation suppresses ARHI transcription levels to cause the development and progression of malignant tumors. Zebularine exerts a demethylation function for tumor suppressor genes. Our study aims to investigate the effect and mechanism of action of zebularine on the epigenetic modification of the ARHI gene, and whether this effect may modulate the viability and apoptosis of human osteosarcoma cells. We found that zebularine inhibited the viability and promoted apoptosis in osteosarcoma cells. Zebularine potentiated the expression of ARHI at both the protein and mRNA level. This was related to the downregulation of methylation of ARHI caused by zebularine. Zebularine suppressed the interaction of DNA methyltransferase 1 (DNMT1) with histone methyltransferase G9a, but had no effect on G9a alone. Knockdown of DNMT1 or G9a can induce a reduction of ARHI methylation. Therefore, we inferred that zebularine was likely to directly repress DNMT1 alone, but G9a was necessary to regulate the function of DNMT1 on ARHI methylation. Moreover, knockdown of ARHI rescued cell viability and apoptosis under the zebularine-treated condition. We showed that zebularine inhibited viability and promoted apoptosis by disturbing the interaction between DNMT1 and G9a, thereby resulting in lower ARHI methylation and elevated ARHI expression in osteosarcoma cells.
Collapse
Affiliation(s)
- Kaishan Ye
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuChina
| | - Shuanke Wang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuChina
| | - Jing Wang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuChina
| | - Hua Han
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuChina
| | - Bing Ma
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuChina
| | - Yong Yang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
60
|
Andrade AF, Borges KS, Suazo VK, Geron L, Corrêa CAP, Castro-Gamero AM, de Vasconcelos EJR, de Oliveira RS, Neder L, Yunes JA, Dos Santos Aguiar S, Scrideli CA, Tone LG. The DNA methyltransferase inhibitor zebularine exerts antitumor effects and reveals BATF2 as a poor prognostic marker for childhood medulloblastoma. Invest New Drugs 2016; 35:26-36. [PMID: 27785591 DOI: 10.1007/s10637-016-0401-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common solid tumor among pediatric patients and corresponds to 20 % of all pediatric intracranial tumors in this age group. Its treatment currently involves significant side effects. Epigenetic changes such as DNA methylation may contribute to its development and progression. DNA methyltransferase (DNMT) inhibitors have shown promising anticancer effects. The agent Zebularine acts as an inhibitor of DNA methylation and shows low toxicity and high efficacy, being a promising adjuvant agent for anti-cancer chemotherapy. Several studies have reported its effects on different types of tumors; however, there are no studies reporting its effects on MB. We analyzed its potential anticancer effects in four pediatric MB cell lines. The treatment inhibited proliferation and clonogenicity, increased the apoptosis rate and the number of cells in the S phase (p < 0.05), as well as the expression of p53, p21, and Bax, and decreased cyclin A, Survivin and Bcl-2 proteins. In addition, the combination of zebularine with the chemotherapeutic agents vincristine and cisplatin resulted in synergism and antagonism, respectively. Zebularine also modulated the activation of the SHH pathway, reducing SMO and GLI1 levels and one of its targets, PTCH1, without changing SUFU levels. A microarray analysis revealed different pathways modulated by the drug, including the Toll-Like Receptor pathway and high levels of the BATF2 gene. The low expression of this gene was associated with a worse prognosis in MB. Taken together, these data suggest that Zebularine may be a potential drug for further in vivo studies of MB treatment.
Collapse
Affiliation(s)
- Augusto Faria Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Kleiton Silva Borges
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Veridiana Kiill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, USP, São Paulo, Brazil
| | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.,Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
61
|
Ma X, Wang Q, Wang Y, Ma J, Wu N, Ni S, Luo T, Zhuang L, Chu C, Cho SW, Tsujimoto H, Qi Z. Chromosome aberrations induced by zebularine in triticale. Genome 2016; 59:485-92. [DOI: 10.1139/gen-2016-0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0–12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat–rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation.
Collapse
Affiliation(s)
- Xuhui Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Jieyun Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Ni
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengxiao Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifang Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenggen Chu
- Monsanto Company, 21120 Hwy 30, Filer, ID 83328, USA
| | - Seong-Woo Cho
- Crop Breeding Research Division, National Institute of Crop Science, RDA, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Hamasaka, Tottori 680-0001, Japan
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
62
|
Zagorac S, Alcala S, Fernandez Bayon G, Bou Kheir T, Schoenhals M, González-Neira A, Fernandez Fraga M, Aicher A, Heeschen C, Sainz B. DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster. Cancer Res 2016; 76:4546-58. [PMID: 27261509 DOI: 10.1158/0008-5472.can-15-3268] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/27/2016] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and other carcinomas are hierarchically organized, with cancer stem cells (CSC) residing at the top of the hierarchy, where they drive tumor progression, metastasis, and chemoresistance. As CSC and non-CSC share an identical genetic background, we hypothesize that differences in epigenetics account for the striking functional differences between these two cell populations. Epigenetic mechanisms, such as DNA methylation, play an important role in maintaining pluripotency and regulating the differentiation of stem cells, but the role of DNA methylation in pancreatic CSC is obscure. In this study, we investigated the genome-wide DNA methylation profile of PDAC CSC, and we determined the importance of DNA methyltransferases for CSC maintenance and tumorigenicity. Using high-throughput methylation analysis, we discovered that sorted CSCs have a higher level of DNA methylation, regardless of the heterogeneity or polyclonality of the CSC populations present in the tumors analyzed. Mechanistically, CSC expressed higher DNMT1 levels than non-CSC. Pharmacologic or genetic targeting of DNMT1 in CSCs reduced their self-renewal and in vivo tumorigenic potential, defining DNMT1 as a candidate CSC therapeutic target. The inhibitory effect we observed was mediated in part through epigenetic reactivation of previously silenced miRNAs, in particular the miR-17-92 cluster. Together, our findings indicate that DNA methylation plays an important role in CSC biology and also provide a rationale to develop epigenetic modulators to target CSC plasticity and improve the poor outcome of PDAC patients. Cancer Res; 76(15); 4546-58. ©2016 AACR.
Collapse
Affiliation(s)
- Sladjana Zagorac
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Alcala
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Gustavo Fernandez Bayon
- Cancer Epigenetics Unit, Asturias Central University Hospital, Spanish Council for Scientific Research (CSIC), Oviedo, Spain
| | - Tony Bou Kheir
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Matthieu Schoenhals
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Anna González-Neira
- Human Genotyping-Cegen Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mario Fernandez Fraga
- Cancer Epigenetics Unit, Asturias Central University Hospital, Spanish Council for Scientific Research (CSIC), Oviedo, Spain
| | - Alexandra Aicher
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christopher Heeschen
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Bruno Sainz
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| |
Collapse
|
63
|
Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res 2016; 76:1683-9. [PMID: 26988985 PMCID: PMC4873370 DOI: 10.1158/0008-5472.can-15-2125] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
The most exciting recent advance for achieving durable management of advanced human cancers is immunotherapy, especially the concept of immune checkpoint blockade. However, with the exception of melanoma, most patients do not respond to immunotherapy alone. A growing body of work has shown that epigenetic drugs, specifically DNA methyltransferase inhibitors, can upregulate immune signaling in epithelial cancer cells through demethylation of endogenous retroviruses and cancer testis antigens. These demethylating agents may induce T-cell attraction and enhance immune checkpoint inhibitor efficacy in mouse models. Current clinical trials are testing this combination therapy as a potent new cancer management strategy. Cancer Res; 76(7); 1683-9. ©2016 AACR.
Collapse
Affiliation(s)
- Katherine B Chiappinelli
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Nita Ahuja
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
64
|
Lakshminarasimhan R, Liang G. The Role of DNA Methylation in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:151-172. [PMID: 27826838 PMCID: PMC7409375 DOI: 10.1007/978-3-319-43624-1_7] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ranjani Lakshminarasimhan
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
| |
Collapse
|
65
|
Gnoni A, Santini D, Scartozzi M, Russo A, Licchetta A, Palmieri V, Lupo L, Faloppi L, Palasciano G, Memeo V, Angarano G, Brunetti O, Guarini A, Pisconti S, Lorusso V, Silvestris N. Hepatocellular carcinoma treatment over sorafenib: epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin Ther Targets 2015. [PMID: 26212068 DOI: 10.1517/14728222.2015.1071354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sorafenib is currently the only approved therapy in hepatocellular carcinoma (HCC). Alternative first- and second-line treatments are a significant unmet medical need, and several biologic agents have been tested in recent years, with poor results. Therefore, angiogenic pathways and the cytokine cascade remain possible targets in HCC. Recent studies suggest a role of epigenetic processes, associated with the initiation and development of HCC. In this field, DNA methylation, micro-RNAs (miRNAs) and tumor microenvironment cells became a possible new target for HCC treatment. AREAS COVERED This review explains the possible role of DNA methylation and histone deacetylase inhibitors as predictive biomarkers and target therapy, the extensive world of the promising miRNA blockade strategy, and the recent strong evidence of correlation between HCC tumors and peritumoral stroma cells. The literature and preclinic/clinic data were obtained through an electronic search. EXPERT OPINION Future research should aim to understand how best to identify patient groups that would benefit most from the prescribed therapy. To overcome the 'therapeutic stranding' of HCC, a possible way out from the current therapeutic tunnel might be to evaluate the major epigenetic and genetic processes involved in HCC carcinogenesis, not underestimating the tumor microenvironment and its 'actors' (angiogenesis, immune system, platelets). We are only at the start of a long journey towards the elucidation of HCC molecular pathways as therapeutic targets. Yet, currently this path appears to be the only one to cast some light at the end of the tunnel.
Collapse
Affiliation(s)
- Antonio Gnoni
- a 1 Hospital of Taranto, Medical Oncology Unit , Taranto, Italy
| | - Daniele Santini
- b 2 University Campus Biomedico, Medical Oncology Unit , Rome, Italy
| | - Mario Scartozzi
- c 3 University of Cagliari, Medical Oncology Unit , Cagliari, Italy
| | - Antonio Russo
- d 4 University of Palermo, Medical Oncology Unit , Palermo, Italy
| | | | - Vincenzo Palmieri
- e 5 University of Bari, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , Bari, Italy
| | - Luigi Lupo
- f 6 University of Bari, Institute of General Surgery and Liver Transplantation, Department of Emergency and Organ Transplantation , Bari, Italy
| | - Luca Faloppi
- g 7 Polytechnic University of the Marche, Medical Oncology Unit , Ancona, Italy
| | - Giuseppe Palasciano
- e 5 University of Bari, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , Bari, Italy
| | - Vincenzo Memeo
- f 6 University of Bari, Institute of General Surgery and Liver Transplantation, Department of Emergency and Organ Transplantation , Bari, Italy
| | | | - Oronzo Brunetti
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| | - Attilio Guarini
- j 10 National Cancer Research Centre "Giovanni Paolo II", Medical Ematology Unit , Bari, Italy
| | | | - Vito Lorusso
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| | - Nicola Silvestris
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| |
Collapse
|
66
|
Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta 2015; 448:124-32. [PMID: 26148722 DOI: 10.1016/j.cca.2015.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
Although gastric cancer (GC) is highly prevalent in China and is a leading cause of cancer-related death, major advances in early diagnostic and effective therapeutic strategies have not been made. GC patients are usually diagnosed at an advanced stage and the prognosis is still poor. Over the years, many efforts have been done on exploring the pathology of GC. In particular, genome-wide analysis tools have been widely used in the detection of genetic and epigenetic alterations in GC. For example, many tumor suppressor genes have been found to be aberrantly hypermethylated in GCs, and some even in gastric precancerous lesions, suggesting a role of this molecular event in early gastric tumorigenesis. In addition, accumulating evidences have demonstrated that some hypermethylated genes can be used as potential biomarkers for detection and diagnosis of GC in biopsy specimens and non-invasive body fluids. These exciting advances provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for GC. Here, we reviewed recent findings on the promoter hypermethylation of tumor suppressor genes in GC and aimed to provide better understanding of the contribution of this epigenetic event to gastric tumorigenesis.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junrong Liang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
67
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
69
|
DNA Methyltransferase Inhibitor Zebularine Induces Human Cholangiocarcinoma Cell Death through Alteration of DNA Methylation Status. PLoS One 2015. [DOI: 10.1371/journal.pone.0120545
expr 911344426 + 964939221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
70
|
Nakamura K, Nakabayashi K, Htet Aung K, Aizawa K, Hori N, Yamauchi J, Hata K, Tanoue A. DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One 2015; 10:e0120545. [PMID: 25799509 PMCID: PMC4370694 DOI: 10.1371/journal.pone.0120545] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a cancer arising from the neoplastic transformation of cholangiocytes. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on CCA cells. We demonstrate that zebularine exerts an antitumor effect on CCA cells. Zebularine treatment decreased the concentrations of DNA methyltransferase (DNMT) proteins, and DNMT1 knockdown led to apoptotic cell death in the CCA cell lines TFK-1 and HuCCT1. DNA methylation analysis demonstrated that zebularine induced DNA demethylation, and the GO Biological Process terms “hemophilic cell adhesion”, “regulation of transcription, DNA-dependent” and “Wnt signaling pathway” were found to be significantly enriched in association with demethylated genes. Furthermore, we observed that zebularine treatment decreased β-catenin protein levels in TFK-1 and HuCCT1 cells. These results suggest that zebularine alters DNA methylation status, and that some aspect of DNA demethylation by zebularine induces suppression of the Wnt signaling pathway, which leads to apoptotic cell death in CCA. We previously reported a novel mechanism of zebularine-induced cell growth arrest and apoptosis in hepatocellular carcinoma via a DNA methylation-independent pathway. Together, our present and previous studies indicate that zebularine could function as both a DNMT inhibitor and a non-DNMT inhibitor reagent, and that, while the optimal usage of zebularine may depend on cancer type, zebularine may be useful for chemotherapy against cancer.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
- * E-mail:
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kyaw Htet Aung
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuko Aizawa
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Naoko Hori
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
71
|
Odunsi K, Matsuzaki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A, Zhang W, Akers SN, Griffiths EA, Miliotto A, Beck A, Batt CA, Ritter G, Lele S, Gnjatic S, Karpf AR. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2014; 2:37-49. [PMID: 24535937 DOI: 10.1158/2326-6066.cir-13-0126] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cancer-testis/cancer-germline antigen NY-ESO-1 is a vaccine target in epithelial ovarian cancer (EOC), but its limited expression is a barrier to vaccine efficacy. As NY-ESO-1 is regulated by DNA methylation, we hypothesized that DNA methyltransferase (DNMT) inhibitors may augment NY-ESO-1 vaccine therapy. In agreement, global DNA hypomethylation in EOC was associated with the presence of circulating antibodies to NY-ESO-1. Pre-clinical studies using EOC cell lines showed that decitabine treatment enhanced both NY-ESO-1 expression and NY-ESO-1-specific CTL-mediated responses. Based on these observations, we performed a phase I dose-escalation trial of decitabine, as an addition to NY-ESO-1 vaccine and doxorubicin liposome (doxorubicin) chemotherapy, in 12 patients with relapsed EOC. The regimen was safe, with limited and clinically manageable toxicities. Both global and promoter-specific DNA hypomethylation occurred in blood and circulating DNAs, the latter of which may reflect tumor cell responses. Increased NY-ESO-1 serum antibodies and T cell responses were observed in the majority of patients, and antibody spreading to additional tumor antigens was also observed. Finally, disease stabilization or partial clinical response occurred in 6/10 evaluable patients. Based on these encouraging results, evaluation of similar combinatorial chemo-immunotherapy regimens in EOC and other tumor types is warranted.
Collapse
Affiliation(s)
- Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Smitha R James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | | | - Takemasa Tsuji
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Wa Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Stacey N Akers
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | | | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Amy Beck
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Carl A Batt
- Department of Food Science, Cornell University, Ithaca, NY, 14853
| | - Gerd Ritter
- Ludwig Institute for Cancer Research, NY Branch at Memorial Sloan Kettering, New York, NY, 10021
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Sacha Gnjatic
- Tisch Cancer Institute, Mount Sinai School of Medicine, Omaha, NE, 68198
| | - Adam R Karpf
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| |
Collapse
|
72
|
Erdmann A, Halby L, Fahy J, Arimondo PB. Targeting DNA Methylation with Small Molecules: What’s Next? J Med Chem 2014; 58:2569-83. [DOI: 10.1021/jm500843d] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexandre Erdmann
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Ludovic Halby
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Jacques Fahy
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer,
USR3388 ETaC, CNRS-Pierre Fabre, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| |
Collapse
|
73
|
Serman L, Nikuseva Martic T, Serman A, Vranic S. Epigenetic alterations of the Wnt signaling pathway in cancer: a mini review. Bosn J Basic Med Sci 2014; 14:191-4. [PMID: 25428669 PMCID: PMC4333971 DOI: 10.17305/bjbms.2014.4.205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/02/2014] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms play a crucial role in cellular proliferation, migration and differentiation in both normal and neoplastic development. One of the key signaling pathways whose components are altered through the epigenetic mechanisms is the Wnt signaling pathway. In this review, we briefly discuss the key concepts of epigenetics and focus on the recent advances in the Wnt signaling pathway research and its potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb.
| | | | | | | |
Collapse
|
74
|
Maschietto M, Charlton J, Perotti D, Radice P, Geller JI, Pritchard-Jones K, Weeks M. The IGF signalling pathway in Wilms tumours--a report from the ENCCA Renal Tumours Biology-driven drug development workshop. Oncotarget 2014; 5:8014-26. [PMID: 25478630 PMCID: PMC4226664 DOI: 10.18632/oncotarget.2485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
It is hypothesised that Wilms tumour (WT) results from aberrant renal development due to its embryonic morphology, associated undifferentiated precursor lesions (termed nephrogenic rests) and embryonic kidney-like chromatin and gene expression profiles. From the study of overgrowth syndrome-associated WT, germline dysregulation was identified in the imprinted region at 11p15 affecting imprinted genes IGF2 and H19. This is also detected in ~70% sporadic cases, making this the most common somatic molecular aberration in WT. This review summarises the critical discussion at an international workshop held under the auspices of The European Network for Cancer Research in Children and Adolescents (ENCCA) consortium, where the potential for drug development to target IGF2 and the WT epigenome was debated. Here, we consider current cancer treatments which include targeting the IGF pathway and the use of methylation agents alone or in combination with other drugs in clinical trials of paediatric cancers. Finally, we discuss the possibility of the use of these drugs to treat patients with WT.
Collapse
Affiliation(s)
- Mariana Maschietto
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jocelyn Charlton
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Radice
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James I Geller
- UC department of paediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kathy Pritchard-Jones
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark Weeks
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
75
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
76
|
Hutajulu SH, Kurnianda J, Tan IB, Middeldorp JM. Therapeutic implications of Epstein-Barr virus infection for the treatment of nasopharyngeal carcinoma. Ther Clin Risk Manag 2014; 10:721-36. [PMID: 25228810 PMCID: PMC4161530 DOI: 10.2147/tcrm.s47434] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is highly endemic in certain regions including the People’s Republic of China and Southeast Asia. Its etiology is unique and multifactorial, involving genetic background, epigenetic, and environment factors, including Epstein–Barr virus (EBV) infection. The presence of EBV in all tumor cells, aberrant pattern of antibodies against EBV antigens in patient sera, and elevated viral DNA in patient circulation as well as nasopharyngeal site underline the role of EBV during NPC development. In NPC tumors, EBV expresses latency type II, where three EBV-encoded proteins, Epstein–Barr nuclear antigen 1, latent membrane protein 1 and 2 (LMP1, 2), are expressed along with BamH1-A rightward reading frame 1, Epstein–Barr virus-encoded small nuclear RNAs, and BamH1-A rightward transcripts. Among all encoded proteins, LMP1 plays a central role in the propagation of NPC. Standard treatment of NPC consists of radiotherapy with or without chemotherapy for early stage, concurrent chemoradiotherapy in locally advanced tumors, and palliative systemic chemotherapy in metastatic disease. However, this standard care has limitations, allowing recurrences and disease progression in a certain proportion of cases. Although the pathophysiological link and molecular process of EBV-induced oncogenesis are not fully understood, therapeutic approaches targeting the virus may increase the cure rate and add clinical benefit. The promising results of early phase clinical trials on EBV-specific immunotherapy, epigenetic therapy, and treatment with viral lytic induction offer new options for treating NPC.
Collapse
Affiliation(s)
- Susanna Hilda Hutajulu
- Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Johan Kurnianda
- Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - I Bing Tan
- Department of Ear, Nose and Throat, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands ; Department of Ear, Nose and Throat, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Andersen JB. Molecular pathogenesis of intrahepatic cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 22:101-13. [PMID: 25174625 DOI: 10.1002/jhbp.155] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop with no apparent etiological background. The impact of the stromal compartment on tumor progression as well as resistance to therapy is in vogue, and the epithelial-stromal crosstalk may present a target for novel treatment strategies. As such, the complexity of tumor cellularity and the molecular mechanisms underlying the diversity of growth patterns of this malignancy remain a clinical concern. It is crucial to advance our present understanding of the molecular pathogenesis of CCA to improve current clinical strategies and patient outcome. This will facilitate the delineation of patient subsets and individualization for precision therapies. Many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of intratumoral plasticity and the causal driver action. Next-generation sequencing has begun to underline the persistent alterations, which may be the trigger of acquired drug resistance, and the cause of metastasis and disease recurrence. A complex issue that remains is to account for the heterogeneous pool of "backseat" aberrations, which in chromosomal proximity to the causative variant are likely to influence, for example, drug response. This review explores the recent advances in defining the molecular pathways implicated in the development of this devastating disease and, which present putative clinical strategies.
Collapse
Affiliation(s)
- Jesper B Andersen
- Andersen Group, Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
78
|
You JS, Han JH. Targeting components of epigenome by small molecules. Arch Pharm Res 2014; 37:1367-74. [PMID: 25070764 DOI: 10.1007/s12272-014-0455-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The diverse epigenetic modifications regulate the gene expression and determine the cellular identity. Pioneering work over the past decades has highlighted that these epigenetic regulations establish normal development but also contribute various diseases. Furthermore, the epigenetic priming events are considered as a key factor for efficient master transcription factor(s) mediated reprogramming process. With the advent of numerous small molecules that target specific enzymes or proteins involved in the epigenetic regulation of gene expression, the utilization of epigenetic targets is emerging as a valuable approach to cancer therapy and cellular reprogramming. Here, we briefly present the basic principles of epigenetic regulations and review the recent application of epigenetic targeting small molecules.
Collapse
Affiliation(s)
- Jueng Soo You
- Insitute of Biomedical Science & Technology, Departments of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea,
| | | |
Collapse
|
79
|
Raggi C, Factor VM, Seo D, Holczbauer A, Gillen MC, Marquardt JU, Andersen JB, Durkin M, Thorgeirsson SS. Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology 2014; 59:2251-62. [PMID: 24449497 PMCID: PMC4043911 DOI: 10.1002/hep.27026] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Reversal of DNA hypermethylation and associated gene silencing is an emerging cancer therapy approach. Here we addressed the impact of epigenetic alterations and cellular context on functional and transcriptional reprogramming of hepatocellular carcinoma (HCC) cells. Our strategy employed a 3-day treatment of established and primary human HCC-derived cell lines grown as a monolayer at various cell densities with the DNMT1 inhibitor zebularine (ZEB) followed by a 3D culture to identify cells endowed with self-renewal potential. Differences in self-renewal, gene expression, tumorigenicity, and metastatic potential of spheres at generations G1-G5 were examined. Transient ZEB exposure produced differential cell density-dependent responses. In cells grown at low density, ZEB caused a remarkable increase in self-renewal and tumorigenicity associated with long-lasting gene expression changes characterized by a stable overexpression of cancer stem cell-related and key epithelial-mesenchymal transition genes. These effects persisted after restoration of DNMT1 expression. In contrast, at high cell density, ZEB caused a gradual decrease in self-renewal and tumorigenicty, and up-regulation of apoptosis- and differentiation-related genes. A permanent reduction of DNMT1 protein using short hairpin RNA (shRNA)-mediated DNMT1 silencing rendered HCC cells insensitive both to cell density and ZEB effects. Similarly, WRL68 and HepG2 hepatoblastoma cells expressing low DNMT1 basal levels also possessed a high self-renewal, irrespective of cell density or ZEB exposure. Spheres formed by low-density cells treated with ZEB or shDNMT1 displayed a high molecular similarity which was sustained through consecutive generations, confirming the essential role of DNMT1 depletion in the enhancement of cancer stem cell properties. CONCLUSION These results identify DNA methylation as a key epigenetic regulatory mechanism determining the pool of cancer stem cells in liver cancer and possibly other solid tumors.
Collapse
Affiliation(s)
- Chiara Raggi
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Agnes Holczbauer
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Matthew C. Gillen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Jens U. Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Jesper B. Andersen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Marian Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH,Corresponding author: Snorri S. Thorgeirsson
| |
Collapse
|
80
|
NAPSO TINA, FARES FUAD. Zebularine induces prolonged apoptosis effects via the caspase-3/PARP pathway in head and neck cancer cells. Int J Oncol 2014; 44:1971-9. [DOI: 10.3892/ijo.2014.2386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/18/2013] [Indexed: 11/05/2022] Open
|
81
|
Flis S, Gnyszka A, Flis K. DNA methyltransferase inhibitors improve the effect of chemotherapeutic agents in SW48 and HT-29 colorectal cancer cells. PLoS One 2014; 9:e92305. [PMID: 24676085 PMCID: PMC3967992 DOI: 10.1371/journal.pone.0092305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/20/2014] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an epigenetic phenomenon known to play an important role in the development and progression of human cancer. Enzyme responsible for this process is DNA methyltransferase 1 (DNMT1) that maintains an altered methylation pattern by copying it from parent to daughter DNA strands after replication. Aberrant methylation of the promoter regions of genes critical for normal cellular functions is potentially reversible. Therefore, inactivation of DNMT1 seems to be a valuable target for the development of cancer therapies. Currently, the most popular DNMT inhibitors (DNMTi) are cytidine analogues like 5-azacytidine, 5-aza-2′-deoxycytidine (decitabine) and pyrimidin-2-one ribonucleoside (zebularine). In colorectal cancer, epigenetic modifications play an essential role at each step of carcinogenesis. Therefore, we have addressed the hypothesis that DNA methyltransferase inhibitors may potentiate inhibitory effects of classical chemotherapeutic agents, such as oxaliplatin and 5-fluorouracil (5-FU), commonly used in colorectal cancer therapy. Here, our report shows that DNMTi can have positive interactions with standard chemotherapeutics in colorectal cancer treatment. Using pharmacological models for the drug-drug interaction analysis, we have revealed that the combination of decitabine with 5-FU or oxaliplatin shows the most attractive interaction (synergism), whereas the effect of zebularine in combinations with chemotherapeutics is moderate and may be depended on genetic/epigenetic background of a cell line or secondary drug used in combination. Our results suggest that DNMTi administered in combination with standard chemotherapeutics might improve the treatment of patients with colorectal cancers.
Collapse
Affiliation(s)
- Sylwia Flis
- Department of Pharmacology, National Medicines Institute, Warsaw, Poland
- * E-mail:
| | - Agnieszka Gnyszka
- Department of Pharmacology, National Medicines Institute, Warsaw, Poland
| | - Krzysztof Flis
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
82
|
Functional Epigenetic Analysis of Prostate Carcinoma: A Role for Seryl-tRNA Synthetase? J Biomark 2014; 2014:362164. [PMID: 26317032 PMCID: PMC4437382 DOI: 10.1155/2014/362164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/21/2014] [Indexed: 01/10/2023] Open
Abstract
Transcriptional silencing, as a result of aberrant promoter hypermethylation, is a common mechanism through which genes in cancer cells become inactive. Functional epigenetic screens using demethylating agents to reexpress transcriptional silenced genes may identify such inactivated genes for needing further evaluation. We aimed to identify genes so far not known to be inactivated by promoter hypermethylation in prostate cancer. DU-145 and LNCaP cells were treated with the DNMT inhibitor zebularine. Expression changes of total RNA from treated and untreated cells were compared using an RNA expression microarray. Genes upregulated more than 2-fold were evaluated by RT-qPCR in 50 cases of paired normal and tumor tissues of prostate cancer patients. SARS was found to be downregulated in prostate cancer in 42/50 cases (84%). In addition, GADD45A and SPRY4 showed a remarkable diminished expression (88% and 74%, resp.). The gold standard for promoter hypermethylation-inactivated genes in prostate cancer (GSTP1) was repressed in 90% of our patient samples. ROC analyses reported statistically significant AUC curves in SARS, GADD45A, and GSTP1 and positive Spearman correlations were found between these genes. SARS was discovered to be a novel gene that is repressed in prostate cancer and could therefore be recommended for its involvement in prostate carcinogenesis.
Collapse
|
83
|
Alkamal I, Ikromov O, Tölle A, Fuller TF, Magheli A, Miller K, Krause H, Kempkensteffen C. An epigenetic screen unmasks metallothioneins as putative contributors to renal cell carcinogenesis. Urol Int 2014; 94:99-110. [PMID: 24662736 DOI: 10.1159/000357282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Functional epigenetic studies aimed to re-express transcriptionally silenced genes in renal cell carcinoma (RCC) may facilitate the ongoing search for appropriate markers supporting clinical decision-making. METHODS The RCC cell line A-498 was treated with the DNA methyltransferase inhibitor zebularine under low-cytotoxicity conditions. RNA chip analyses revealed several upregulated transcripts that were further validated by qPCR on 49 matched pairs of human kidney tissues to identify suitable marker candidates. RESULTS Members of the metallothionein (MT) group were remarkably downregulated in tumor tissues. MT1G and MT1H expression was decreased in 98% of cases, whereas MT2A expression was downregulated in 73% of all cases. Comparison of 308 reactivated transcripts upregulated more than 1.5-fold to published data revealed a high number of shared candidates, which supports the consistency of this experimental approach. CONCLUSION MTs were found to be transcriptionally inactivated in human RCC. Our observations support the hypothesis of a possible involvement of these metalloproteins in renal cell carcinogenesis. Additional functional studies of these genes may provide clues for understanding renal cancers as essentially metabolic diseases.
Collapse
Affiliation(s)
- Imad Alkamal
- Klinik für Urologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Bryan JN, Kumar SR, Jia F, Balkin ER, Lewis MR. Zebularine significantly sensitises MEC1 cells to external irradiation and radiopharmaceutical therapy when administered sequentially in vitro. Cell Biol Int 2014; 38:187-97. [PMID: 24323360 PMCID: PMC3947096 DOI: 10.1002/cbin.10215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/10/2013] [Indexed: 01/13/2023]
Abstract
Zebularine is a cytidine analogue incorporated into DNA during replication, inhibiting DNA methyltransferase 1 (DNMT1), resulting in demethylation and changes in gene expression. Such modification may improve radiosensitivity in resistant lymphoma cells. The hypothesis of this study was that zebularine and radiation would synergistically inhibit cell growth and viability. Human MEC1 malignant B cells were incubated with 0-200 µM zebularine for 48 h. Media containing zebularine was removed, and the cells were irradiated with 0-2 Gy of either external beam irradiation or (177) Lu-DOTA-TATE, a radiolabelled somatostatin analogue. Concentration and viability were measured over 48-72 h. The proportion of apoptotic cells was identified using an active Caspase 3/7 assay. Zebularine inhibited growth of cells in a dose-dependent manner during exposure. No residual growth inhibition occurred following removal of the drug. Zebularine and external irradiation inhibited cell proliferation in a dose-dependent, synergistic interaction, but the effect on viability was additive. Treatment with zebularine and (177) Lu-DOTA-TATE resulted in less inhibition of proliferation (P = 0.0135), but a synergistic decrease in viability. Apoptotic fraction was much higher in cells irradiated with (177) Lu-DOTA-TATE than external irradiation. External irradiation induces growth arrest rather than apoptosis. Apoptosis is the primary effect of radiopharmaceutical therapy on tumour cells. Treatment with the methylation inhibitor, zebularine, appears to synergistically augment these natural effects in vitro, which could be exploited clinically.
Collapse
Affiliation(s)
- Jeffrey N. Bryan
- Dept of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, MO 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65211
- Area of Pathobiology, University of Missouri-Columbia, Columbia MO 65211
| | - Senthil R. Kumar
- Dept of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, MO 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65211
| | - Fang Jia
- Dept of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, MO 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65211
| | - Ethan R. Balkin
- Area of Pathobiology, University of Missouri-Columbia, Columbia MO 65211
| | - Michael R. Lewis
- Dept of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, MO 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65211
| |
Collapse
|
85
|
Gomez A, Ingelman-Sundberg M. Pharmacoepigenetic aspects of gene polymorphism on drug therapies: effects of DNA methylation on drug response. Expert Rev Clin Pharmacol 2014; 2:55-65. [DOI: 10.1586/17512433.2.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
86
|
Abstract
Pancreatic cancer is a deadly and aggressive disease. Less than 1% of diagnosed patients survive 5 years with an average survival time of only 4–8 months. The only option for metastatic pancreatic cancer is chemotherapy where only the antimetabolites gemcitabine and 5-fluorouracil are used clinically. Unfortunately, efforts to improve chemotherapy regimens by combining, 5-fluorouracil or gemcitabine with other drugs, such as cisplatin or oxaliplatin, have not increased cell killing or improved patient survival. The novel antimetabolite zebularine shows promise, inducing apoptosis and arresting cellular growth in various pancreatic cancer cell lines. However, resistance to these antimetabolites remains a problem highlighting the need to discover and develop new antimetabolites that will improve a patient’s overall survival.
Collapse
Affiliation(s)
- Malyn May Asuncion Valenzuela
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, USA ; Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Jonathan W Neidigh
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Nathan R Wall
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, USA ; Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
87
|
Aberrant DNA methylation in human cancers. ACTA ACUST UNITED AC 2013; 33:798-804. [PMID: 24337838 DOI: 10.1007/s11596-013-1201-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 11/15/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation, one of the best-characterized epigenetic modifications, plays essential roles in diseases, including human cancers. In recent years, our understanding on DNA methylation with human cancers has made significant progress, which was facilitated by stunning development in the analysis of the human methylome of multiple cancer types. In this review, recent developments in the characterization of aberrant DNA methylation involved in human cancers development were discussed with special emphasis on the mechanisms of aberrant DNA methylation in human cancers. We also summarize the recent treatment strategy for human cancers with de-methylation drugs.
Collapse
|
88
|
Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci Rep 2013; 3:3219. [PMID: 24225777 PMCID: PMC3827606 DOI: 10.1038/srep03219] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
Aberrant DNA hypermethylation is frequently found in tumor cells and inhibition of DNA methylation is an effective anticancer strategy. In this study, the therapeutic effect of DNA methyltransferase (DNMT) inhibitor zebularine (Zeb) on colorectal cancer (CRC) was investigated. Zeb exhibited anticancer activity in cell cultures, tumor xenografts and mouse colitis-associated CRC model. It stabilizes p53 through ribosomal protein S7 (RPS7)/MDM2 pathways and DNA damage. Zeb-induced cell death was dependent on p53. Microarray analysis revealed that genes related to endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were affected by Zeb. Zeb induced p53-dependent ER stress and autophagy. Pro-survival markers of ER stress/UPR (GRP78) and autophagy (p62) were increased in tumor tissues of CRC patients, AOM/DSS-induced CRC mice and HCT116-derived colonospheres. Zeb downregulates GRP78 and p62, and upregulates a pro-apoptotic CHOP. Our results reveal a novel mechanism for the anticancer activity of Zeb.
Collapse
|
89
|
Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, Young MR, Klarmann KD, Keller JR, Farrar WL. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells 2013; 31:1454-66. [PMID: 23592398 PMCID: PMC3775871 DOI: 10.1002/stem.1394] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 03/10/2013] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related mortality in the world. Pancreatic cancer can be localized, locally advanced, or metastatic. The median 1- and 5-year survival rates are 25% and 6%, respectively. Epigenetic modifications such as DNA methylation play a significant role during both normal human development and cancer progression. To investigate epigenetic regulation of genes in the tumor-initiating population of pancreatic cancer cells, which are also termed cancer stem cells (CSCs), we conducted epigenetic arrays in PANC1 and HPAC pancreatic cancer cell lines and compared the global DNA methylation status of CpG promoters in invasive cells, demonstrated to be CSCs, to their noninvasive counterparts, or non-CSCs. Our results suggested that the NF-κB pathway is one of the most activated pathways in pancreatic CSCs. In agreement with this, we determined that upon treatment with NF-κB pathway inhibitors, the stem cell-like properties of cells are significantly disrupted. Moreover, SOX9, demethylated in CSCs, is shown to play a crucial role in the invasion process. Additionally, we found a potential NF-κB binding site located in the SOX9 promoter and determined that the NF-κB subunit p65 positively regulates SOX9 expression by binding to its promoter directly. This interaction can be efficiently blocked by NF-κB inhibitors. Thus, our work establishes a link between the classic NF-κB signaling transduction pathway and the invasiveness of pancreatic CSCs, which may result in the identification of novel signals and molecules that function at an epigenetic level, and could potentially be targeted for pharmaceutical investigations and clinical trials.
Collapse
Affiliation(s)
- Lei Sun
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Delpu Y, Cordelier P, Cho WC, Torrisani J. DNA methylation and cancer diagnosis. Int J Mol Sci 2013; 14:15029-15058. [PMID: 23873296 PMCID: PMC3742286 DOI: 10.3390/ijms140715029] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results.
Collapse
Affiliation(s)
- Yannick Delpu
- Cancer Research Center of Toulouse Inserm UMR 1037, 31432 Toulouse cedex 4, France; E-Mails: (Y.D.); (P.C.)
- University de Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Pierre Cordelier
- Cancer Research Center of Toulouse Inserm UMR 1037, 31432 Toulouse cedex 4, France; E-Mails: (Y.D.); (P.C.)
- University de Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China; E-Mail:
| | - Jérôme Torrisani
- Cancer Research Center of Toulouse Inserm UMR 1037, 31432 Toulouse cedex 4, France; E-Mails: (Y.D.); (P.C.)
- University de Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| |
Collapse
|
91
|
Xiong X, Lan D, Li J, Zhong J, Zi X, Ma L, Wang Y. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency. Cell Reprogram 2013; 15:293-300. [PMID: 23790013 DOI: 10.1089/cell.2012.0092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.
Collapse
Affiliation(s)
- Xianrong Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
92
|
Sabatino MA, Geroni C, Ganzinelli M, Ceruti R, Broggini M. Zebularine partially reverses GST methylation in prostate cancer cells and restores sensitivity to the DNA minor groove binder brostallicin. Epigenetics 2013; 8:656-65. [PMID: 23771052 DOI: 10.4161/epi.24916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Brostallicin is a DNA minor groove binder that shows enhanced antitumor activity in cells with high glutathione S-transferase (GST)/glutathione content. Prostate cancer cells present, almost invariably, methylation of the GSTP1 gene promoter and, as a consequence, low levels of GST-pi expression and activity. In these cells, brostallicin shows very little activity. We tested whether pretreatment of heavily GST-methylated prostate cancer cells with demethylating agents could enhance the activity of brostallicin. Human prostate cancer cells LNCaP and DU145 were used for these studies both in vitro and in vivo. The demethylating agent zebularine was used in combination with brostallicin. Methylation specific PCR and pyrosequencing were used to determine the level of GST methylation. Pretreatment with demethylating agents enhanced the in vitro activity of brostallicin in LNCaP cells. Zebularine, in particular, induced an enhancement of activity in vivo comparable to that obtained by transfecting the human GSTP1 gene in LNCaP cells in vitro. Molecular analysis performed on tumor xenografts in mice pretreated with zebularine failed to detect re-expression of GST-pi and demethylation of GSTP1. However, we found demethylation in the GSTM1 gene, with consequent re-expression of GST-mu at the mRNA level. These results indicate that zebularine, both in vitro and in vivo, enhances the activity of brostallicin and that this enhancement correlates with re-expression of GST-pi and GST-mu. These findings highlight the potential therapeutic value of combining demethylating agents and brostallicin in tumors with GST methylation that poorly respond to brostallicin.
Collapse
Affiliation(s)
- Maria Antonietta Sabatino
- Laboratory of Molecular Pharmacology; Department of Oncology; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milan, Italy
| | | | | | | | | |
Collapse
|
93
|
Horvat T, Deželjin M, Redžić I, Barišić D, Herak Bosnar M, Lauc G, Zoldoš V. Reversibility of membrane N-glycome of HeLa cells upon treatment with epigenetic inhibitors. PLoS One 2013; 8:e54672. [PMID: 23336012 PMCID: PMC3545996 DOI: 10.1371/journal.pone.0054672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/17/2012] [Indexed: 01/20/2023] Open
Abstract
Glycans are essential regulators of protein function and are now in the focus of research in many physiological and pathophysiological processes. There are numerous modes of regulating their biosynthesis, including epigenetic mechanisms implicated in the expression of glyco-genes. Since N-glycans located at the cell membrane define intercellular communication as well as a cellular response to a given environment, we developed a method to preferentially analyze this fraction of glycans. The method is based on incorporation of living cells into polyacrylamide gels, partial denaturation of membrane proteins with 3 M urea and subsequent release of N-glycans with PNGase F followed by HPLC analysis. Using this newly developed method, we revealed multiple effects of epigenetic inhibitors Trichostatin A, sodium butyrate and zebularine on the composition of N-glycans in human cells. The induced changes were found to be reversible after inhibitor removal. Given that many epigenetic inhibitors are currently explored as a therapeutic strategy in treatment of cancer, wherein surface glycans play an important role, the presented work contributes to our understanding of their efficiency in altering the N-glycan profile of cancer cells in culture.
Collapse
Affiliation(s)
| | | | - Irma Redžić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Darko Barišić
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Glycobiology Laboratory, Genos Ltd, Zagreb, Croatia
- Edith Cowan University, Perth, Australia
- * E-mail: (VZ); (GL)
| | - Vlatka Zoldoš
- Faculty of Science, University of Zagreb, Zagreb, Croatia
- * E-mail: (VZ); (GL)
| |
Collapse
|
94
|
Nakamura K, Aizawa K, Nakabayashi K, Kato N, Yamauchi J, Hata K, Tanoue A. DNA methyltransferase inhibitor zebularine inhibits human hepatic carcinoma cells proliferation and induces apoptosis. PLoS One 2013; 8:e54036. [PMID: 23320119 PMCID: PMC3540068 DOI: 10.1371/journal.pone.0054036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancers worldwide. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-(D)-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on hepatocellular carcinoma cell line HepG2. We demonstrate that zebularine exhibits antitumor activity on HepG2 cells by inhibiting cell proliferation and inducing apoptosis, however, it has little effect on DNA methylation in HepG2 cells. On the other hand, zebularine treatment downregulated CDK2 and the phosphorylation of retinoblastoma protein (Rb), and upregulated p21(WAF/CIP1) and p53. We also found that zebularine treatment upregulated the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). These results suggest that the p44/42 MAPK pathway plays a role in zebularine-induced cell-cycle arrest by regulating the activity of p21(WAF/CIP1) and Rb. Furthermore, although the proapoptotic protein Bax levels were not affected, the antiapoptotic protein Bcl-2 level was downregulated with zebularine treatment. In addition, the data in the present study indicate that inhibition of the double-stranded RNA-dependent protein kinase (PKR) is involved in inducing apoptosis with zebularine. These results suggest a novel mechanism of zebularine-induced cell growth arrest and apoptosis via a DNA methylation-independent pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
95
|
Mao YT, Liu JL, Wang Z, Chen YY, Chen JQ. Relationship between hMLH1 methylation, microsatellite instability and gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:3954. [DOI: 10.11569/wcjd.v21.i35.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
96
|
Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E, Cheng SY. Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 2013. [PMID: 23183175 PMCID: PMC3529371 DOI: 10.1210/en.2012-1728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
That a knock-in mouse harboring a dominant-negative thyroid hormone receptor (TR)-β (Thrb) mutation develops metastatic thyroid cancer strongly suggests the involvement of TRβ in carcinogenesis. Epigenetic silencing of the THRB gene is common in human cancers. The aim of the present study was to determine how DNA methylation affected the expression of the THRB gene in differentiated thyroid cancer (DTC) and how reexpression of the THRB gene attenuated the cancer phenotypes. We used methylation-specific PCR to examine the expression and promoter methylation of the THRB gene in DTC tissues. Thyroid cancer cells with hypermethylated THRB were treated with the demethylating agents 5'-aza-2'-deoxycytidine (5'-aza-CdR) and zebularine to evaluate their impact on the cancer cell phenotypes. THRB mRNA expression in DTC was 90% lower than in normal controls, and this decrease was associated with a higher tumor/lymph node staging. The promoter methylation level of the THRB gene had a significant negative correlation with the expression level of the THRB gene. Treatment of FTC-236 cells with 5'-aza-CdR or zebularine induced reexpression of the THRB gene and inhibited cell proliferation and migration. FTC-236 cells stably expressing TRβ exhibited lower cell proliferation and migration through inhibition of β-catenin signaling pathways compared with FTC-236 without TRβ. 5'-Aza-CdR also led to suppression of tumor growth in an in vivo xenograft model using FTC-236 cells consistent with the cell-based studies. These finding indicate that TRβ is a tumor suppressor and could be tested as a potential therapeutic target.
Collapse
Affiliation(s)
- Won Gu Kim
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | |
Collapse
|
97
|
Epigenetic targeting therapies to overcome chemotherapy resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:285-311. [PMID: 22956507 DOI: 10.1007/978-1-4419-9967-2_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is now well established that epigenetic aberrations occur early in malignant transformation, raising the possibility of identifying chemopreventive compounds or reliable diagnostic screening using epigenetic biomarkers. Combinatorial therapies effective for the reexpression of tumor suppressors, facilitating resensitization to conventional chemotherapies, hold great promise for the future therapy of cancer. This approach may also perturb cancer stem cells and thus represent an effective means for managing a number of solid tumors. We believe that in the near future, anticancer drug regimens will routinely include epigenetic therapies, possibly in conjunction with inhibitors of "stemness" signal pathways, to effectively reduce the devastating occurrence of cancer chemotherapy resistance.
Collapse
|
98
|
Abstract
Cancer has been considered a genetic disease with a wide array of well-characterized gene mutations and chromosomal abnormalities. Of late, aberrant epigenetic modifications have been elucidated in cancer, and together with genetic alterations, they have been helpful in understanding the complex traits observed in neoplasia. "Cancer Epigenetics" therefore has contributed substantially towards understanding the complexity and diversity of various cancers. However, the positioning of epigenetic events during cancer progression is still not clear, though there are some reports implicating aberrant epigenetic modifications in very early stages of cancer. Amongst the most studied aberrant epigenetic modifications are the DNA methylation differences at the promoter regions of genes affecting their expression. Hypomethylation mediated increased expression of oncogenes and hypermethylation mediated silencing of tumor suppressor genes are well known examples. This chapter also explores the correlation of DNA methylation and demethylation enzymes with cancer.
Collapse
Affiliation(s)
- Gopinathan Gokul
- Laboratory of Mammalian Genetics, CDFD, Hyderabad, 500001, India
| | | |
Collapse
|
99
|
Andreu-Vieyra CV, Liang G. Nucleosome occupancy and gene regulation during tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 754:109-34. [PMID: 22956498 DOI: 10.1007/978-1-4419-9967-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleosomes are the basic structural units of eukaryotic chromatin. In recent years, it has become evident that nucleosomes and their position, in concert with other epigenetic mechanisms (such as DNA methylation, histone modifications, changes in histone variants, as well as small noncoding regulatory RNAs) play essential roles in the control of gene expression. Here, we discuss the mechanisms and factors that regulate nucleosome position and gene expression in normal and cancer cells.
Collapse
|
100
|
Savickiene J, Treigyte G, Borutinskaite VV, Navakauskiene R. Antileukemic activity of combined epigenetic agents, DNMT inhibitors zebularine and RG108 with HDAC inhibitors, against promyelocytic leukemia HL-60 cells. Cell Mol Biol Lett 2012; 17:501-25. [PMID: 22820861 PMCID: PMC6275587 DOI: 10.2478/s11658-012-0024-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/12/2012] [Indexed: 12/12/2022] Open
Abstract
DNMT inhibitors are promising new drugs for cancer therapies. In this study, we have observed the antileukemic action of two diverse DNMT inhibitors, the nucleoside agent zebularine and the non-nucleoside agent RG108, in human promyelocytic leukemia (PML) HL-60 cells. Zebularine but not RG108 caused dose- and time-dependent cell growth inhibition and induction of apoptosis. However, co-treatment with either drug at a non-toxic dose and all trans retinoic acid (RA) reinforced differentiation to granulocytes, while 24 or 48 h-pretreatment with zebularine or RG108 followed by RA alone or in the presence of HDAC inhibitors (sodium phenyl butyrate or BML-210) significantly accelerated and enhanced cell maturation to granulocytes. This occurs in parallel with the expression of a surface biomarker, CD11b, and early changes in histone H4 acetylation and histone H3K4me3 methylation. The application of both drugs to HL-60 cells in continuous or sequential fashion decreased DNMT1 expression, and induced E-cadherin promoter demethylation and reactivation at both the mRNA and the protein levels in association with the induction of granulocytic differentiation. The results confirmed the utility of zebularine and RG108 in combinations with RA and HDAC inhibitors to reinforce differentiation effects in promyelocytic leukemia.
Collapse
Affiliation(s)
- Jurate Savickiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| | - Grazina Treigyte
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| | - Veronika-Viktorija Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| | - Ruta Navakauskiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| |
Collapse
|