51
|
Huang Q, Zhong Q, Mayaka JBA, Ni J, Shen Y. Autophosphorylation and Cross-Phosphorylation of Protein Kinases from the Crenarchaeon Sulfolobus islandicus. Front Microbiol 2017; 8:2173. [PMID: 29163450 PMCID: PMC5682000 DOI: 10.3389/fmicb.2017.02173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022] Open
Abstract
Protein phosphorylation, one of the most important post-translational modifications, regulates almost every cellular process. Although signal transduction by protein phosphorylation is extensively studied in Eukaryotes and Bacteria, the knowledge of this process in archaea is greatly lagging behind, especially for Ser/Thr/Tyr phosphorylation by eukaryotic-like protein kinases (ePKs). So far, only a few studies on archaeal ePKs have been reported, most of which focused on the phosphorylation activities in vitro, but their physiological functions and interacting network are still largely unknown. In this study, we systematically investigated the autophosphorylation and cross-phosphorylation activities of ePKs from Sulfolobus islandicus REY15A using proteins expressed in Escherichia coli or S. islandicus. In vitro kinase assay showed that 7 out of the 11 putative ePKs have autophosphorylation activity. A protein Ser/Thr phosphatase, SiRe_1009, was able to dephosphorylate various autophosphorylated ePKs, confirming that these proteins are Ser/Thr kinases. Two ePKs, SiRe_2030 and SiRe_2056, homologs of typical eukaryotic PKs involved in peptide synthesis in response to various cellular stresses, exhibit highly efficient phosphorylation activities on both themselves and other ePKs. Overexpression of the protein kinases in vivo revealed that elevated level of either SiRe_1531 or SiRe_2056 inhibited the cell growth of S. islandicus cells. Finally, a phosphorylation network of the protein kinases was proposed and their putative physiological roles were discussed.
Collapse
Affiliation(s)
- Qihong Huang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qing Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Joseph B A Mayaka
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
52
|
Function and Biosynthesis of the Universal tRNA Modification N6-Threonylcarbamoyl-Adenosine. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-65795-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
53
|
Drew K, Müller CL, Bonneau R, Marcotte EM. Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. PLoS Comput Biol 2017; 13:e1005625. [PMID: 29023445 PMCID: PMC5638211 DOI: 10.1371/journal.pcbi.1005625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Determining the three dimensional arrangement of proteins in a complex is highly beneficial for uncovering mechanistic function and interpreting genetic variation in coding genes comprising protein complexes. There are several methods for determining co-complex interactions between proteins, among them co-fractionation / mass spectrometry (CF-MS), but it remains difficult to identify directly contacting subunits within a multi-protein complex. Correlation analysis of CF-MS profiles shows promise in detecting protein complexes as a whole but is limited in its ability to infer direct physical contacts among proteins in sub-complexes. To identify direct protein-protein contacts within human protein complexes we learn a sparse conditional dependency graph from approximately 3,000 CF-MS experiments on human cell lines. We show substantial performance gains in estimating direct interactions compared to correlation analysis on a benchmark of large protein complexes with solved three-dimensional structures. We demonstrate the method’s value in determining the three dimensional arrangement of proteins by making predictions for complexes without known structure (the exocyst and tRNA multi-synthetase complex) and by establishing evidence for the structural position of a recently discovered component of the core human EKC/KEOPS complex, GON7/C14ORF142, providing a more complete 3D model of the complex. Direct contact prediction provides easily calculable additional structural information for large-scale protein complex mapping studies and should be broadly applicable across organisms as more CF-MS datasets become available. Proteins physically associate into complexes in order to carry out the essential functions of life. Knowing how proteins are physically arranged three dimensionally in these complexes provides clues towards how they work. In principle, the associations between proteins in large-scale proteomics datasets should often reflect direct physical contacts between proteins in each complex. Here, we describe a statistical method to discover which subunits within complexes directly contact each other based on their co-purification behavior in published co-fractionation mass spectrometry datasets. Within our predictions, we recover many known protein-protein contacts, serving to validate our method, as well as unknown contacts that can inform future studies of these complexes. Specifically, we observe confident contacts between subunits within the exocyst and tRNA multi-synthetase complexes, two complexes that have incomplete structural information. Using our method, we further provide structural information for a previously missing subunit of the EKC/KEOPS complex. We anticipate that this method and the associated predictions will help to better inform our understanding of the functions and structures of diverse protein complexes.
Collapse
Affiliation(s)
- Kevin Drew
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
- * E-mail: (KD); (CLM); (EMM)
| | - Christian L. Müller
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY, United States of America
- * E-mail: (KD); (CLM); (EMM)
| | - Richard Bonneau
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY, United States of America
- New York University Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
- * E-mail: (KD); (CLM); (EMM)
| |
Collapse
|
54
|
Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, Gribouval O, Boyer O, Revy P, Jobst-Schwan T, Schmidt JM, Lawson JA, Schanze D, Ashraf S, Ullmann JFP, Hoogstraten CA, Boddaert N, Collinet B, Martin G, Liger D, Lovric S, Furlano M, Guerrera IC, Sanchez-Ferras O, Hu JF, Boschat AC, Sanquer S, Menten B, Vergult S, De Rocker N, Airik M, Hermle T, Shril S, Widmeier E, Gee HY, Choi WI, Sadowski CE, Pabst WL, Warejko JK, Daga A, Basta T, Matejas V, Scharmann K, Kienast SD, Behnam B, Beeson B, Begtrup A, Bruce M, Ch'ng GS, Lin SP, Chang JH, Chen CH, Cho MT, Gaffney PM, Gipson PE, Hsu CH, Kari JA, Ke YY, Kiraly-Borri C, Lai WM, Lemyre E, Littlejohn RO, Masri A, Moghtaderi M, Nakamura K, Ozaltin F, Praet M, Prasad C, Prytula A, Roeder ER, Rump P, Schnur RE, Shiihara T, Sinha MD, Soliman NA, Soulami K, Sweetser DA, Tsai WH, Tsai JD, Topaloglu R, Vester U, Viskochil DH, Vatanavicharn N, Waxler JL, Wierenga KJ, Wolf MTF, Wong SN, Leidel SA, Truglio G, Dedon PC, Poduri A, Mane S, Lifton RP, Bouchard M, Kannu P, Chitayat D, Magen D, Callewaert B, van Tilbeurgh H, Zenker M, et alBraun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, Gribouval O, Boyer O, Revy P, Jobst-Schwan T, Schmidt JM, Lawson JA, Schanze D, Ashraf S, Ullmann JFP, Hoogstraten CA, Boddaert N, Collinet B, Martin G, Liger D, Lovric S, Furlano M, Guerrera IC, Sanchez-Ferras O, Hu JF, Boschat AC, Sanquer S, Menten B, Vergult S, De Rocker N, Airik M, Hermle T, Shril S, Widmeier E, Gee HY, Choi WI, Sadowski CE, Pabst WL, Warejko JK, Daga A, Basta T, Matejas V, Scharmann K, Kienast SD, Behnam B, Beeson B, Begtrup A, Bruce M, Ch'ng GS, Lin SP, Chang JH, Chen CH, Cho MT, Gaffney PM, Gipson PE, Hsu CH, Kari JA, Ke YY, Kiraly-Borri C, Lai WM, Lemyre E, Littlejohn RO, Masri A, Moghtaderi M, Nakamura K, Ozaltin F, Praet M, Prasad C, Prytula A, Roeder ER, Rump P, Schnur RE, Shiihara T, Sinha MD, Soliman NA, Soulami K, Sweetser DA, Tsai WH, Tsai JD, Topaloglu R, Vester U, Viskochil DH, Vatanavicharn N, Waxler JL, Wierenga KJ, Wolf MTF, Wong SN, Leidel SA, Truglio G, Dedon PC, Poduri A, Mane S, Lifton RP, Bouchard M, Kannu P, Chitayat D, Magen D, Callewaert B, van Tilbeurgh H, Zenker M, Antignac C, Hildebrandt F. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 2017; 49:1529-1538. [PMID: 28805828 DOI: 10.1038/ng.3933] [Show More Authors] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
Collapse
Affiliation(s)
- Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Geraldine Mollet
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie-Claire Daugeron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Weizhen Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Nephrology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrick Revy
- Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,INSERM, U1163, Imagine Institute, Laboratory of Genome Dynamics in the Immune system, Paris, France
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Johanna Magdalena Schmidt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer A Lawson
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy F P Ullmann
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte A Hoogstraten
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Boddaert
- Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,INSERM, U1163, Imagine Institute, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, and INSERM U1000, Paris, France.,Department of Pediatric Radiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Collinet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Sorbonne Universités UPMC, UFR 927, Sciences de la Vie, Paris, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie UMR 7590, Sorbonne Universités, UPMC, Université Paris 06, Paris, France
| | - Gaëlle Martin
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Dominique Liger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Svjetlana Lovric
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Monica Furlano
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Nephrology Department, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma de Barcelona and REDINREN, Barcelona, Spain
| | - I Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jennifer F Hu
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Sylvia Sanquer
- Department of Metabolomic and Proteomic Biochemistry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR-S1124, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Nina De Rocker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Merlin Airik
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heon Yung Gee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Il Choi
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin E Sadowski
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Werner L Pabst
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Basta
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Verena Matejas
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Scharmann
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sandra D Kienast
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Medical Genetics Branch, National Human Genome Research Institute (NHGRI), Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Brendan Beeson
- Department of Diagnostic Imaging, Princess Margaret and King Edward Memorial Hospitals, Perth, Western Australia, Australia
| | | | - Malcolm Bruce
- Department of Diagnostic Imaging, Princess Margaret and King Edward Memorial Hospitals, Perth, Western Australia, Australia
| | - Gaik-Siew Ch'ng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Shuan-Pei Lin
- Department of Pediatric Genetics, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chao-Huei Chen
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Patrick M Gaffney
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Patrick E Gipson
- Internal Medicine and Pediatrics Divisions of Adult and Pediatric Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yu-Yuan Ke
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cathy Kiraly-Borri
- Genetic Services of Western Australia, Princess Margaret Hospital for Children and King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
| | - Wai-Ming Lai
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Emmanuelle Lemyre
- Service de Génétique Médicale, Département de Pédiatrie, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Rebecca Okashah Littlejohn
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Amira Masri
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Mastaneh Moghtaderi
- Chronic Kidney Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Nephrogenetics Laboratory, Hacettepe University Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Hacettepe University Center for Biobanking and Genomics, Hacettepe University, Ankara, Turkey
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Chitra Prasad
- Department of Genetics, Metabolism and Pediatrics, Western University, London Health Sciences Centre, London, Ontario, Canada
| | | | - Elizabeth R Roeder
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Patrick Rump
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Takashi Shiihara
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Manish D Sinha
- Department of Paediatric Nephrology, Kings College London, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology &Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt.,Egyptian Group for Orphan Renal Diseases, Cairo, Egypt
| | - Kenza Soulami
- Department of Nephrology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - David A Sweetser
- Division of Medical Genetics, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Wen-Hui Tsai
- Division of Genetics and Metabolism, Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Jeng-Daw Tsai
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Udo Vester
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - David H Viskochil
- Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jessica L Waxler
- Division of Medical Genetics, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Klaas J Wierenga
- Department of Pediatrics, Oklahoma University Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Matthias T F Wolf
- Division of Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sik-Nin Wong
- Department of Pediatrics and Adolescent Medicine, Tuen Mun Hospital, Tuen Mun, Hong Kong, China
| | - Sebastian A Leidel
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Medical Faculty, University of Muenster, Muenster, Germany
| | - Gessica Truglio
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Singapore-MIT Alliance for Research and Technology, Infectious Disease IRG, Singapore
| | - Annapurna Poduri
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Peter Kannu
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniella Magen
- Pediatric Nephrology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Genetics, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
56
|
Rab35 Functions in Axon Elongation Are Regulated by P53-Related Protein Kinase in a Mechanism That Involves Rab35 Protein Degradation and the Microtubule-Associated Protein 1B. J Neurosci 2017; 36:7298-313. [PMID: 27383602 DOI: 10.1523/jneurosci.4064-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Rab35 is a key protein for cargo loading in the recycling endosome. In neuronal immortalized cells, Rab35 promotes neurite differentiation. Here we describe that Rab35 favors axon elongation in rat primary neurons in an activity-dependent manner. In addition, we show that the p53-related protein kinase (PRPK) negatively regulates axonal elongation by reducing Rab35 protein levels through the ubiquitin-proteasome degradation pathway. PRPK-induced Rab35 degradation is regulated by its interaction with microtubule-associated protein 1B (MAP1B), a microtubule stabilizing binding protein essential for axon elongation. Consistently, axon defects found in MAP1B knock-out neurons were reversed by Rab35 overexpression or PRPK inactivation suggesting an epistatic relationship among these proteins. These results define a novel mechanism to support axonal elongation, by which MAP1B prevents PRPK-induced Rab35 degradation. Such a mechanism allows Rab35-mediated axonal elongation and connects the regulation of actin dynamics with membrane trafficking. In addition, our study reveals for the first time that the ubiquitin-proteasome degradation pathway regulates a Rab GTPase. SIGNIFICANCE STATEMENT Rab35 is required for axonal outgrowth. We define that its protein levels are negatively regulated by p53-related protein kinase (PRPK). We show that microtubule-associated protein 1B (MAP1B) interacts with PRPK, preventing PRPK-dependent Rab35 proteasome degradation. We demonstrate that Rab35 regulates Cdc42 activity in neurons. This is the first evidence showing that a Rab protein is regulated by degradation dependent on the ubiquitin-proteasome system.
Collapse
|
57
|
CO 2 sensing in fungi: at the heart of metabolic signaling. Curr Genet 2017; 63:965-972. [PMID: 28493119 DOI: 10.1007/s00294-017-0700-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Adaptation to the changing environmental CO2 levels is essential for all living cells. In particular, microorganisms colonizing and infecting the human body are exposed to highly variable concentrations, ranging from atmospheric 0.04 to 5% and more in blood and specific host niches. Carbonic anhydrases are highly conserved metalloenzymes that enable fixation of CO2 by its conversion into bicarbonate. This process is not only crucial to ensure the supply of adequate carbon amounts for cellular metabolism, but also contributes to several signaling processes in fungi, including morphology and communication. The fungal specific carbonic anhydrase gene NCE103 is transcribed in response to CO2 availability. As recently shown, this regulation relies on the ATF/CREB transcription factor Cst6 and the AGC family protein kinase Sch9. Here, we review the regulatory mechanisms which control NCE103 expression in the model organism Saccharomyces cerevisiae and the pathogenic yeasts Candida albicans and Candida glabrata and discuss which additional factors might contribute in this novel CO2 sensing cascade.
Collapse
|
58
|
p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood 2017; 129:1308-1319. [PMID: 28082445 DOI: 10.1182/blood-2016-09-738500] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
p53-related protein kinase (TP53RK, also known as PRPK) is an upstream kinase that phosphorylates (serine residue Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in multiple myeloma (MM) patients, and, conversely, that TP53RK knockdown inhibits p53 phosphorylation and triggers MM cell apoptosis, associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient and p53-mutant MM cell lines and identify novel downstream targets of TP53RK including ribonucleotide reductase-1, telomerase reverse transcriptase, and cyclin-dependent kinase inhibitor 2C. Our previous studies showed that immunomodulatory drugs (IMiDs) downregulate p21 and trigger apoptosis in wild-type-p53 MM.1S cells, Importantly, we demonstrate by pull-down, nuclear magnetic resonance spectroscopy, differential scanning fluorimetry, and isothermal titration calorimetry that IMiDs bind and inhibit TP53RK, with biologic sequelae similar to TP53RK knockdown. Our studies therefore demonstrate that either genetic or pharmacological inhibition of TP53RK triggers MM cell apoptosis via both p53-Myc axis-dependent and axis-independent pathways, validating TP53RK as a novel therapeutic target in patients with poor-prognosis MM.
Collapse
|
59
|
Kyriakou D, Stavrou E, Demosthenous P, Angelidou G, San Luis BJ, Boone C, Promponas VJ, Kirmizis A. Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 2016; 14:106. [PMID: 27927215 PMCID: PMC5142380 DOI: 10.1186/s12915-016-0325-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed producing numerous long non-coding RNAs (lncRNAs). However, only a few lncRNAs have been ascribed a cellular role thus far, with most regulating the expression of adjacent genes. Even less lncRNAs have been annotated as essential hence implying that the majority may be functionally redundant. Therefore, the function of lncRNAs could be illuminated through systematic analysis of their synthetic genetic interactions (GIs). RESULTS Here, we employ synthetic genetic array (SGA) in Saccharomyces cerevisiae to identify GIs between long intergenic non-coding RNAs (lincRNAs) and protein-coding genes. We first validate this approach by demonstrating that the telomerase RNA TLC1 displays a GI network that corresponds to its well-described function in telomere length maintenance. We subsequently performed SGA screens on a set of uncharacterised lincRNAs and uncover their connection to diverse cellular processes. One of these lincRNAs, SUT457, exhibits a GI profile associating it to telomere organisation and we consistently demonstrate that SUT457 is required for telomeric overhang homeostasis through an Exo1-dependent pathway. Furthermore, the GI profile of SUT457 is distinct from that of its neighbouring genes suggesting a function independent to its genomic location. Accordingly, we show that ectopic expression of this lincRNA suppresses telomeric overhang accumulation in sut457Δ cells assigning a trans-acting role for SUT457 in telomere biology. CONCLUSIONS Overall, our work proposes that systematic application of this genetic approach could determine the functional significance of individual lncRNAs in yeast and other complex organisms.
Collapse
Affiliation(s)
- Dimitris Kyriakou
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Emmanouil Stavrou
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | | | - Georgia Angelidou
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Vasilis J Promponas
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus.
| |
Collapse
|
60
|
Wan LCK, Maisonneuve P, Szilard RK, Lambert JP, Ng TF, Manczyk N, Huang H, Laister R, Caudy AA, Gingras AC, Durocher D, Sicheri F. Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Res 2016; 45:805-817. [PMID: 27903914 PMCID: PMC5314774 DOI: 10.1093/nar/gkw1181] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
The KEOPS/EKC complex is a tRNA modification complex involved in the biosynthesis of N6-threonylcarbamoyladenosine (t6A), a universally conserved tRNA modification found on ANN-codon recognizing tRNAs. In archaea and eukaryotes, KEOPS is composed of OSGEP/Kae1, PRPK/Bud32, TPRKB/Cgi121 and LAGE3/Pcc1. In fungi, KEOPS contains an additional subunit, Gon7, whose orthologs outside of fungi, if existent, remain unidentified. In addition to displaying defective t6A biosynthesis, Saccharomyces cerevisiae strains harboring KEOPS mutations are compromised for telomere homeostasis, growth and transcriptional co-activation. To identify a Gon7 ortholog in multicellular eukaryotes as well as to uncover KEOPS-interacting proteins that may link t6A biosynthesis to the diverse set of KEOPS mutant phenotypes, we conducted a proteomic analysis of human KEOPS. This work identified 152 protein interactors, one of which, C14ORF142, interacted strongly with all four KEOPS subunits, suggesting that it may be a core component of human KEOPS. Further characterization of C14ORF142 revealed that it shared a number of biophysical and biochemical features with fungal Gon7, suggesting that C14ORF142 is the human ortholog of Gon7. In addition, our proteomic analysis identified specific interactors for different KEOPS subcomplexes, hinting that individual KEOPS subunits may have additional functions outside of t6A biosynthesis.
Collapse
Affiliation(s)
- Leo C K Wan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Timothy F Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Noah Manczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1,Canada
| | - Hao Huang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.,School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzen, 518055, China
| | - Rob Laister
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzen, 518055, China
| | - Amy A Caudy
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.,Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, ON, M5S 3E1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
61
|
Esser D, Hoffmann L, Pham TK, Bräsen C, Qiu W, Wright PC, Albers SV, Siebers B. Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiol Rev 2016; 40:625-47. [PMID: 27476079 PMCID: PMC5007285 DOI: 10.1093/femsre/fuw020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. The authors review the current knowledge about protein phosphorylation in Archaea and its impact on signaling in this organism group.
Collapse
Affiliation(s)
- Dominik Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Trong Khoa Pham
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Wen Qiu
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
62
|
Wan LCK, Pillon MC, Thevakumaran N, Sun Y, Chakrabartty A, Guarné A, Kurinov I, Durocher D, Sicheri F. Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis. Nucleic Acids Res 2016; 44:6971-80. [PMID: 27302132 PMCID: PMC5001605 DOI: 10.1093/nar/gkw542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/03/2016] [Indexed: 11/20/2022] Open
Abstract
KEOPS is an ancient protein complex required for the biosynthesis of N6-threonylcarbamoyladenosine (t6A), a universally conserved tRNA modification found on all ANN-codon recognizing tRNAs. KEOPS consist minimally of four essential subunits, namely the proteins Kae1, Bud32, Cgi121 and Pcc1, with yeast possessing the fifth essential subunit Gon7. Bud32, Cgi121, Pcc1 and Gon7 appear to have evolved to regulate the central t6A biosynthesis function of Kae1, but their precise function and mechanism of action remains unclear. Pcc1, in particular, binds directly to Kae1 and by virtue of its ability to form dimers in solution and in crystals, Pcc1 was inferred to function as a dimerization module for Kae1 and therefore KEOPS. We now present a 3.4 Å crystal structure of a dimeric Kae1–Pcc1 complex providing direct evidence that Pcc1 can bind and dimerize Kae1. Further biophysical analysis of a complete archaeal KEOPS complex reveals that Pcc1 facilitates KEOPS dimerization in vitro. Interestingly, while Pcc1-mediated dimerization of KEOPS is required to support the growth of yeast, it is dispensable for t6A biosynthesis by archaeal KEOPS in vitro, raising the question of how precisely Pcc1-mediated dimerization impacts cellular biology.
Collapse
Affiliation(s)
- Leo C K Wan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Neroshan Thevakumaran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yulong Sun
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada
| | - Avi Chakrabartty
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, NE-CAT, Building 436E, Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
63
|
Cai W, Yang H. The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Div 2016; 11:7. [PMID: 27222660 PMCID: PMC4878042 DOI: 10.1186/s13008-016-0020-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Cullin-RING E3 ubiquitin ligase complexes play a central role in targeting cellular proteins for ubiquitination-dependent protein turnover through 26S proteasome. Cullin-2 is a member of the Cullin family, and it serves as a scaffold protein for Elongin B and C, Rbx1 and various substrate recognition receptors to form E3 ubiquitin ligases. Main body of the abstract First, the composition, structure and the regulation of Cullin-2 based E3 ubiquitin ligases were introduced. Then the targets, the biological functions of complexes that use VHL, Lrr-1, Fem1b, Prame, Zyg-11, BAF250, Rack1 as substrate targeting subunits were described, and their involvement in diseases was discussed. A small molecule inhibitor of Cullins as a potential anti-cancer drug was introduced. Furthermore, proteins with VHL box that might bind to Cullin-2 were described. Finally, how different viral proteins form E3 ubiquitin ligase complexes with Cullin-2 to counter host viral defense were explained. Conclusions Cullin-2 based E3 ubiquitin ligases, using many different substrate recognition receptors, recognize a number of substrates and regulate their protein stability. These complexes play critical roles in biological processes and diseases such as cancer, germline differentiation and viral defense. Through the better understanding of their biology, we can devise and develop new therapeutic strategies to treat cancers, inherited diseases and viral infections.
Collapse
Affiliation(s)
- Weijia Cai
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Haifeng Yang
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
64
|
Thiaville PC, Legendre R, Rojas-Benítez D, Baudin-Baillieu A, Hatin I, Chalancon G, Glavic A, Namy O, de Crécy-Lagard V. Global translational impacts of the loss of the tRNA modification t 6A in yeast. MICROBIAL CELL 2016; 3:29-45. [PMID: 26798630 PMCID: PMC4717488 DOI: 10.15698/mic2016.01.473] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The universal tRNA modification t6A is found at position 37 of nearly
all tRNAs decoding ANN codons. The absence of t6A37 leads
to severe growth defects in baker’s yeast, phenotypes similar to those caused by
defects in mcm5s2U34 synthesis. Mutants in
mcm5s2U34 can be suppressed by
overexpression of tRNALysUUU, but we show t6A
phenotypes could not be suppressed by expressing any individual ANN decoding
tRNA, and t6A and mcm5s2U are not determinants
for each other’s formation. Our results suggest that t6A deficiency,
like mcm5s2U deficiency, leads to protein folding defects,
and show that the absence of t6A led to stress sensitivities (heat,
ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally,
L-homoserine suppressed the slow growth phenotype seen in
t6A-deficient strains, and proteins aggregates and Advanced Glycation
End-products (AGEs) were increased in the mutants. The global consequences on
translation caused by t6A absence were examined by ribosome
profiling. Interestingly, the absence of t6A did not lead to global
translation defects, but did increase translation initiation at upstream non-AUG
codons and increased frame-shifting in specific genes. Analysis of codon
occupancy rates suggests that one of the major roles of t6A is to
homogenize the process of elongation by slowing the elongation rate at codons
decoded by high abundance tRNAs and I34:C3 pairs while
increasing the elongation rate of rare tRNAs and G34:U3
pairs. This work reveals that the consequences of t6A absence are
complex and multilayered and has set the stage to elucidate the molecular basis
of the observed phenotypes.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Rachel Legendre
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Diego Rojas-Benítez
- Centro de Regulación del Genoma. Facultad de Ciencias - Universidad de Chile, Santiago, Chile
| | - Agnès Baudin-Baillieu
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Isabelle Hatin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Guilhem Chalancon
- Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alvaro Glavic
- Centro de Regulación del Genoma. Facultad de Ciencias - Universidad de Chile, Santiago, Chile
| | - Olivier Namy
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
65
|
KAEA (SUDPRO), a member of the ubiquitous KEOPS/EKC protein complex, regulates the arginine catabolic pathway and the expression of several other genes in Aspergillus nidulans. Gene 2015. [DOI: 10.1016/j.gene.2015.07.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
66
|
Lin CJ, Smibert P, Zhao X, Hu JF, Ramroop J, Kellner SM, Benton MA, Govind S, Dedon PC, Sternglanz R, Lai EC. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis. RNA (NEW YORK, N.Y.) 2015; 21:2103-2118. [PMID: 26516084 PMCID: PMC4647464 DOI: 10.1261/rna.053934.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/14/2015] [Indexed: 06/03/2023]
Abstract
N(6)-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon-codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA Research School of Biological Sciences, The Australian National University, Acton ACT 2601, Australia
| | - Xiaoyu Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jennifer F Hu
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Johnny Ramroop
- Department of Biology, The City College of the City University of New York, New York 10031, USA The Graduate Center of the City University of New York, New York 10016, USA
| | - Stefanie M Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Matthew A Benton
- Research School of Biological Sciences, The Australian National University, Acton ACT 2601, Australia
| | - Shubha Govind
- Department of Biology, The City College of the City University of New York, New York 10031, USA The Graduate Center of the City University of New York, New York 10016, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Rolf Sternglanz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
67
|
Thiaville PC, Iwata-Reuyl D, de Crécy-Lagard V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t(6)A), a universal modification of tRNA. RNA Biol 2015; 11:1529-39. [PMID: 25629598 PMCID: PMC4615747 DOI: 10.4161/15476286.2014.992277] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tRNA modification field has a rich literature covering biochemical analysis going back more than 40 years, but many of the corresponding genes were only identified in the last decade. In recent years, comparative genomic-driven analysis has allowed for the identification of the genes and subsequent characterization of the enzymes responsible for N6-threonylcarbamoyladenosine (t6A). This universal modification, located in the anticodon stem-loop at position 37 adjacent to the anticodon of tRNAs, is found in nearly all tRNAs that decode ANN codons. The t6A biosynthesis enzymes and synthesis pathways have now been identified, revealing both a core set of enzymes and kingdom-specific variations. This review focuses on the elucidation of the pathway, diversity of the synthesis genes, and proposes a new nomenclature for t6A synthesis enzymes.
Collapse
Affiliation(s)
- Patrick C Thiaville
- a Genetics and Genomics Graduate Program ; University of Florida ; Gainesville , FL USA
| | | | | |
Collapse
|
68
|
Harris KA, Bobay BG, Sarachan KL, Sims AF, Bilbille Y, Deutsch C, Iwata-Reuyl D, Agris PF. NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions. J Biol Chem 2015; 290:20032-43. [PMID: 26060251 DOI: 10.1074/jbc.m114.631242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis.
Collapse
Affiliation(s)
- Kimberly A Harris
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| | - Benjamin G Bobay
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Kathryn L Sarachan
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| | - Alexis F Sims
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| | - Yann Bilbille
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Christopher Deutsch
- the Department of Chemistry, Portland State University, Portland, Oregon 97207
| | - Dirk Iwata-Reuyl
- the Department of Chemistry, Portland State University, Portland, Oregon 97207
| | - Paul F Agris
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| |
Collapse
|
69
|
Jose M, Tollis S, Nair D, Mitteau R, Velours C, Massoni-Laporte A, Royou A, Sibarita JB, McCusker D. A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis. Mol Biol Cell 2015; 26:2519-34. [PMID: 25947137 PMCID: PMC4571305 DOI: 10.1091/mbc.e14-11-1527] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
The mechanisms governing the spatial organization of endocytosis and exocytosis are ill defined. A quantitative imaging screen and high-density single-vesicle tracking are used to identify mutants that are defective in endocytic and exocytic vesicle organization. The screen identifies a role for the exocyst complex in connecting the two pathways. The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.
Collapse
Affiliation(s)
- Mini Jose
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sylvain Tollis
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université Bordeaux, F-33000 Bordeaux, France
| | - Romain Mitteau
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Christophe Velours
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Aurelie Massoni-Laporte
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Anne Royou
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université Bordeaux, F-33000 Bordeaux, France
| | - Derek McCusker
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
70
|
Zhang W, Collinet B, Graille M, Daugeron MC, Lazar N, Libri D, Durand D, van Tilbeurgh H. Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex. Nucleic Acids Res 2015; 43:3358-72. [PMID: 25735745 PMCID: PMC4381065 DOI: 10.1093/nar/gkv155] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 11/12/2022] Open
Abstract
The yeast KEOPS protein complex comprising Kae1, Bud32, Cgi121, Pcc1 and Gon7 is responsible for the essential tRNA threonylcarbamoyladenosine (t(6)A) modification. Deletion of genes coding for the KEOPS subunits also affects telomere elongation and transcriptional regulation. In the present work, the crystal structure of Bud32/Cgi121 in complex with ADP revealed that ADP is bound in the catalytic site of Bud32 in a canonical manner characteristic of Protein Kinase A (PKA) family proteins. We found that Gon7 forms a stable heterodimer with Pcc1 and report the crystal structure of the Pcc1-Gon7 heterodimer. Gon7 interacts with the same Pcc1 region engaged in the archaeal Pcc1 homodimer. We further show that yeast KEOPS, unlike its archaeal counterpart, exists as a heteropentamer in which Gon7, Pcc1, Kae1, Bud32 and Cgi121 also adopt a linear arrangement. We constructed a model of yeast KEOPS that provides structural insight into the role of Gon7. The model also revealed the presence of a highly positively charged crater surrounding the entrance of Kae1 that likely binds tRNA.
Collapse
Affiliation(s)
- Wenhua Zhang
- Institut de Biologie Intégrative de la Cellule, UMR 9198, CNRS, Université de Paris Sud XI, Bâtiment 430, 91405 Orsay, France
| | - Bruno Collinet
- Institut de Biologie Intégrative de la Cellule, UMR 9198, CNRS, Université de Paris Sud XI, Bâtiment 430, 91405 Orsay, France
- Sorbonne Universités, UPMC Univ Paris 06, UFR 927, Sciences de la vie, F-75005, Paris, France
| | - Marc Graille
- Institut de Biologie Intégrative de la Cellule, UMR 9198, CNRS, Université de Paris Sud XI, Bâtiment 430, 91405 Orsay, France
| | - Marie-Claire Daugeron
- Domenico Libri 33 Institut Jacques Monod, CNRS, UMR 7592, Université de Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Noureddine Lazar
- Institut de Biologie Intégrative de la Cellule, UMR 9198, CNRS, Université de Paris Sud XI, Bâtiment 430, 91405 Orsay, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS, UMR 7592, Université de Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, CNRS, Université de Paris Sud XI, Bâtiment 430, 91405 Orsay, France
| | - Herman van Tilbeurgh
- Institut de Biologie Intégrative de la Cellule, UMR 9198, CNRS, Université de Paris Sud XI, Bâtiment 430, 91405 Orsay, France
| |
Collapse
|
71
|
Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity. PLoS Genet 2015; 11:e1005071. [PMID: 25822194 PMCID: PMC4378880 DOI: 10.1371/journal.pgen.1005071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
DNA double strand break (DSB) is one of the major damages that cause genome instability and cellular aging. The homologous recombination (HR)-mediated repair of DSBs plays an essential role in assurance of genome stability and cell longevity. Telomeres resemble DSBs and are competent for HR. Here we show that in budding yeast Saccharomyces cerevisiae telomere recombination elicits genome instability and accelerates cellular aging. Inactivation of KEOPS subunit Cgi121 specifically inhibits telomere recombination, and significantly extends cell longevity in both telomerase-positive and pre-senescing telomerase-negative cells. Deletion of CGI121 in the short-lived yku80tel mutant restores lifespan to cgi121Δ level, supporting the function of Cgi121 in telomeric single-stranded DNA generation and thus in promotion of telomere recombination. Strikingly, inhibition of telomere recombination is able to further slow down the aging process in long-lived fob1Δ cells, in which rDNA recombination is restrained. Our study indicates that HR activity at telomeres interferes with telomerase to pose a negative impact on cellular longevity. Aging is a general biological process among the living organisms which is affected by environmental stimuli but also genetically controlled. Genome instability is one of the aging hallmarks and has long been implicated as one of the main causal factors in aging. DNA double strand breaks (DSBs) are the most deleterious DNA damages that cause genome instability. To counteract DNA damage of DSBs and maintain high level of genome integrity, cells have evolved powerful repair systems such as homologous recombination (HR). HR is crucial for DNA repair and genome integrity maintenance, and is generally believed to be essential for assurance of cell longevity. Telomeres, the physical ends of eukaryotic linear chromosomes, are preferentially elongated by telomerase, a specialized reverse transcriptase, in most cases. However, due to the resemblance of telomeres to DSBs, HR can not be eliminated but rather readily takes place on telomeres, even in the presence of telomerase. Here we show that HR at yeast telomeres elicits genome instability and accelerates cellular aging. Inactivation of the evolutionarily conserved KEOPS complex subunit Cgi121 specifically inhibits telomere HR and results in extremely long lifespan, indicating a dark side of HR in longevity regulation.
Collapse
|
72
|
Zhang W, Collinet B, Perrochia L, Durand D, van Tilbeurgh H. The ATP-mediated formation of the YgjD-YeaZ-YjeE complex is required for the biosynthesis of tRNA t6A in Escherichia coli. Nucleic Acids Res 2015; 43:1804-17. [PMID: 25578970 PMCID: PMC4330362 DOI: 10.1093/nar/gku1397] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The essential and universal N6-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs plays a pivotal role in translational fidelity through enhancement of the cognate codon recognition and stabilization of the codon–anticodon interaction. In Escherichia coli, the YgjD (TsaD), YeaZ (TsaB), YjeE (TsaE) and YrdC (TsaC) proteins are necessary and sufficient for the in vitro biosynthesis of t6A, using tRNA, ATP, L-threonine and bicarbonate as substrates. YrdC synthesizes the short-lived L-threonylcarbamoyladenylate (TCA), and YgjD, YeaZ and YjeE cooperate to transfer the L-threonylcarbamoyl-moiety from TCA onto adenosine at position 37 of substrate tRNA. We determined the crystal structure of the heterodimer YgjD–YeaZ at 2.3 Å, revealing the presence of an unexpected molecule of ADP bound at an atypical site situated at the YgjD–YeaZ interface. We further showed that the ATPase activity of YjeE is strongly activated by the YgjD–YeaZ heterodimer. We established by binding experiments and SAXS data analysis that YgjD–YeaZ and YjeE form a compact ternary complex only in presence of ATP. The formation of the ternary YgjD–YeaZ–YjeE complex is required for the in vitro biosynthesis of t6A but not its ATPase activity.
Collapse
Affiliation(s)
- Wenhua Zhang
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS, Bâtiment 430, Université de Paris-Sud, 91405 Orsay Cedex, France
| | - Bruno Collinet
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS, Bâtiment 430, Université de Paris-Sud, 91405 Orsay Cedex, France Sorbonne Universités, UPMC Univ Paris 06, UFR 927, Sciences de la vie, F-75005 Paris, France
| | - Ludovic Perrochia
- Institut de Génétique et de Microbiologie, Université Paris-Sud, UMR8621-CNRS, 91405 Orsay, France
| | - Dominique Durand
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS, Bâtiment 430, Université de Paris-Sud, 91405 Orsay Cedex, France
| | - Herman van Tilbeurgh
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS, Bâtiment 430, Université de Paris-Sud, 91405 Orsay Cedex, France
| |
Collapse
|
73
|
Identification of new players in cell division, DNA damage response, and morphogenesis through construction of Schizosaccharomyces pombe deletion strains. G3-GENES GENOMES GENETICS 2014; 5:361-70. [PMID: 25552606 PMCID: PMC4349090 DOI: 10.1534/g3.114.015701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe. Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe.
Collapse
|
74
|
Mallari JP, Oksman A, Vaupel B, Goldberg DE. Kinase-associated endopeptidase 1 (Kae1) participates in an atypical ribosome-associated complex in the apicoplast of Plasmodium falciparum. J Biol Chem 2014; 289:30025-39. [PMID: 25204654 DOI: 10.1074/jbc.m114.586735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universally conserved kinase-associated endopeptidase 1 (Kae1) protein family has established roles in N(6)-threonylcarbamoyl adenosine tRNA modification, transcriptional regulation, and telomere homeostasis. These functions are performed in complex with a conserved core of protein binding partners. Herein we describe the localization, essentiality, and protein-protein interactions for Kae1 in the human malaria parasite Plasmodium falciparum. We found that the parasite expresses one Kae1 protein in the cytoplasm and a second protein in the apicoplast, a chloroplast remnant organelle involved in fatty acid, heme, and isoprenoid biosynthesis. To analyze the protein interaction networks for both Kae1 pathways, we developed a new proteomic cross-validation approach. This strategy compares immunoprecipitation-MS data sets across different cellular compartments to enrich for biologically relevant protein interactions. Our results show that cytoplasmic Kae1 forms a complex with Bud32 and Cgi121 as in other organisms, whereas apicoplast Kae1 makes novel interactions with multiple proteins in the apicoplast. Quantitative RT-PCR and immunoprecipitation studies indicate that apicoplast Kae1 and its partners interact specifically with the apicoplast ribosomes and with proteins involved in ribosome function. Together, these data indicate an expanded, apicoplast-specific role for Kae1 in the parasite.
Collapse
Affiliation(s)
- Jeremy P Mallari
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Oksman
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Barbara Vaupel
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniel E Goldberg
- From the Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
75
|
Tominaga T, Kobayashi K, Ishii R, Ishitani R, Nureki O. Structure of Saccharomyces cerevisiae mitochondrial Qri7 in complex with AMP. Acta Crystallogr F Struct Biol Commun 2014; 70:1009-14. [PMID: 25084372 PMCID: PMC4118794 DOI: 10.1107/s2053230x14014046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
N(6)-Threonylcarbamoyladenosine (t(6)A) is a modified tRNA base required for accuracy in translation. Qri7 is localized in yeast mitochondria and is involved in t(6)A biosynthesis. In t(6)A biosynthesis, threonylcarbamoyl-adenylate (TCA) is synthesized from threonine, bicarbonate and ATP, and the threonyl-carbamoyl group is transferred to adenine 37 of tRNA by Qri7. Qri7 alone is sufficient to catalyze the second step of the reaction, whereas the Qri7 homologues YgjD (in bacteria) and Kae1 (in archaea and eukaryotes) function as parts of multi-protein complexes. In this study, the crystal structure of Qri7 complexed with AMP (a part of TCA) has been determined at 2.94 Å resolution in a new crystal form. The manner of AMP recognition is similar, with some minor variations, among the Qri7/Kae1/YgjD family proteins. The previously reported dimer formation was also observed in this new crystal form. Furthermore, a comparison with the structure of TobZ, which catalyzes a similar reaction to t(6)A biosynthesis, revealed the presence of a flexible loop that may be involved in tRNA binding.
Collapse
Affiliation(s)
- Takumi Tominaga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
76
|
Cross kingdom functional conservation of the core universally conserved threonylcarbamoyladenosine tRNA synthesis enzymes. EUKARYOTIC CELL 2014; 13:1222-31. [PMID: 25038083 DOI: 10.1128/ec.00147-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Threonylcarbamoyladenosine (t(6)A) is a universal modification located in the anticodon stem-loop of tRNAs. In yeast, both cytoplasmic and mitochondrial tRNAs are modified. The cytoplasmic t(6)A synthesis pathway was elucidated and requires Sua5p, Kae1p, and four other KEOPS complex proteins. Recent in vitro work suggested that the mitochondrial t(6)A machinery of Saccharomyces cerevisiae is composed of only two proteins, Sua5p and Qri7p, a member of the Kae1p/TsaD family (L. C. K. Wan et al., Nucleic Acids Res. 41:6332-6346, 2013, http://dx.doi.org/10.1093/nar/gkt322). Sua5p catalyzes the first step leading to the threonyl-carbamoyl-AMP intermediate (TC-AMP), while Qri7 transfers the threonyl-carbamoyl moiety from TC-AMP to tRNA to form t(6)A. Qri7p localizes to the mitochondria, but Sua5p was reported to be cytoplasmic. We show that Sua5p is targeted to both the cytoplasm and the mitochondria through the use of alternative start sites. The import of Sua5p into the mitochondria is required for this organelle to be functional, since the TC-AMP intermediate produced by Sua5p in the cytoplasm is not transported into the mitochondria in sufficient amounts. This minimal t(6)A pathway was characterized in vitro and, for the first time, in vivo by heterologous complementation studies in Escherichia coli. The data revealed a potential for TC-AMP channeling in the t(6)A pathway, as the coexpression of Qri7p and Sua5p is required to complement the essentiality of the E. coli tsaD mutant. Our results firmly established that Qri7p and Sua5p constitute the mitochondrial pathway for the biosynthesis of t(6)A and bring additional advancement in our understanding of the reaction mechanism.
Collapse
|
77
|
Rubinstein L, Ungar L, Harari Y, Babin V, Ben-Aroya S, Merenyi G, Marjavaara L, Chabes A, Kupiec M. Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups. Nucleic Acids Res 2014; 42:6314-25. [PMID: 24728996 PMCID: PMC4041441 DOI: 10.1093/nar/gku267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome-wide systematic screens in yeast have uncovered a large gene network (the telomere length maintenance network or TLM), encompassing more than 400 genes, which acts coordinatively to maintain telomere length. Identifying the genes was an important first stage; the next challenge is to decipher their mechanism of action and to organize then into functional groups or pathways. Here we present a new telomere-length measuring program, TelQuant, and a novel assay, telomere length kinetics assay, and use them to organize tlm mutants into functional classes. Our results show that a mutant defective for the relatively unknown MET7 gene has the same telomeric kinetics as mutants defective for the ribonucleotide reductase subunit Rnr1, in charge of the limiting step in dNTP synthesis, or for the Ku heterodimer, a well-established telomere complex. We confirm the epistatic relationship between the mutants and show that physical interactions exist between Rnr1 and Met7. We also show that Met7 and the Ku heterodimer affect dNTP formation, and play a role in non-homologous end joining. Thus, our telomere kinetics assay uncovers new functional groups, as well as complex genetic interactions between tlm mutants.
Collapse
Affiliation(s)
- Linda Rubinstein
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Vera Babin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Gabor Merenyi
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
78
|
|
79
|
Harari Y, Kupiec M. Genome-wide studies of telomere biology in budding yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:70-80. [PMID: 28357225 PMCID: PMC5349225 DOI: 10.15698/mic2014.01.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/16/2014] [Indexed: 11/13/2022]
Abstract
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the "end-replication problem", in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
80
|
Lewis KA, Pfaff DA, Earley JN, Altschuler SE, Wuttke DS. The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain. Nucleic Acids Res 2013; 42:475-84. [PMID: 24057216 PMCID: PMC3874162 DOI: 10.1093/nar/gkt843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cdc13, the telomere end-binding protein from Saccharomyces cerevisiae, is a multidomain protein that specifically binds telomeric single-stranded DNA (ssDNA) with exquisitely high affinity to coordinate telomere maintenance. Recent structural and genetic data have led to the proposal that Cdc13 is the paralog of RPA70 within a telomere-specific RPA complex. Our understanding of Cdc13 structure and biochemistry has been largely restricted to studies of individual domains, precluding analysis of how each domain influences the activity of the others. To better facilitate a comparison to RPA70, we evaluated the ssDNA binding of full-length S. cerevisiae Cdc13 to its minimal substrate, Tel11. We found that, unlike RPA70 and the other known telomere end-binding proteins, the core Cdc13 ssDNA-binding activity is wholly contained within a single tight-binding oligosaccharide/oligonucleotide/oligopeptide binding (OB)-fold. Because two OB-folds are implicated in dimerization, we also evaluated the relationship between dimerization and ssDNA-binding activity and found that the two activities are independent. We also find that Cdc13 binding exhibits positive cooperativity that is independent of dimerization. This study reveals that, while Cdc13 and RPA70 share similar domain topologies, the corresponding domains have evolved different and specialized functions.
Collapse
Affiliation(s)
- Karen A Lewis
- Department of Chemistry and Biochemistry, UCB 543, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
81
|
Hashimoto C, Hashimoto M, Honda H, Kato JI. Effects on IS1 transposition frequency of a mutation in the ygjD gene involved in an essential tRNA modification in Escherichia coli. FEMS Microbiol Lett 2013; 347:140-8. [PMID: 23909935 DOI: 10.1111/1574-6968.12227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/01/2022] Open
Abstract
The YgjD protein is essential for the synthesis of the universal tRNA modification, N(6) -threonylcarbamoyladenosine (t(6) A), which is necessary for the decoding of ANN codons. We isolated a suppressor (ygjDsup ) of the ygjD(ts) mutant by its permissive growth at high temperature in Escherichia coli. Resequencing of the ygjDsup mutant genome showed the presence of a complicated chromosome rearrangement, an inverse insertion of a large duplicated region (c. 450 kb) into a small deleted region. The temperature-resistant growth associated with ygjDsup was due to the presence of multicopy suppressor genes, yjeE and groL, of the ygjD(ts) mutation in the duplicated region. This DNA rearrangement was not simply mediated by IS1 transposition, but the duplicated region was flanked by IS1. We showed that the frequency of IS1 transposition was increased in ygjD(ts) mutants. The transposase of IS1 is coded for by the insB gene, and its translation occurs through a frameshift of a ribosome translating upstream of the insA gene. We showed that this frameshifting frequency was increased by the ygjD(ts) mutation. These results indicated that the mutation of the gene for tRNA modification, t(6) A, affected IS1 transposition.
Collapse
Affiliation(s)
- Chika Hashimoto
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
82
|
Perrochia L, Guetta D, Hecker A, Forterre P, Basta T. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res 2013; 41:9484-99. [PMID: 23945934 PMCID: PMC3814370 DOI: 10.1093/nar/gkt720] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N(6)-threonylcarbamoyladenosine (t(6)A) is a universal tRNA modification essential for normal cell growth and accurate translation. In Archaea and Eukarya, the universal protein Sua5 and the conserved KEOPS/EKC complex together catalyze t(6)A biosynthesis. The KEOPS/EKC complex is composed of Kae1, a universal metalloprotein belonging to the ASHKA superfamily of ATPases; Bud32, an atypical protein kinase and two small proteins, Cgi121 and Pcc1. In this study, we investigated the requirement and functional role of KEOPS/EKC subunits for biosynthesis of t(6)A. We demonstrated that Pcc1, Kae1 and Bud32 form a minimal functional unit, whereas Cgi121 acts as an allosteric regulator. We confirmed that Pcc1 promotes dimerization of the KEOPS/EKC complex and uncovered that together with Kae1, it forms the tRNA binding core of the complex. Kae1 binds l-threonyl-carbamoyl-AMP intermediate in a metal-dependent fashion and transfers the l-threonyl-carbamoyl moiety to substrate tRNA. Surprisingly, we found that Bud32 is regulated by Kae1 and does not function as a protein kinase but as a P-loop ATPase possibly involved in tRNA dissociation. Overall, our data support a mechanistic model in which the final step in the biosynthesis of t(6)A relies on a strictly catalytic component, Kae1, and three partner proteins necessary for dimerization, tRNA binding and regulation.
Collapse
Affiliation(s)
- Ludovic Perrochia
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France and Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres-Microorganismes, Labex ARBRE, FR EFABA, Faculté des Sciences, 54500 Vandoeuvre, France
| | | | | | | | | |
Collapse
|
83
|
Rojas-Benítez D, Ibar C, Glavic Á. The Drosophila EKC/KEOPS complex: roles in protein synthesis homeostasis and animal growth. Fly (Austin) 2013; 7:168-72. [PMID: 23823807 PMCID: PMC4049849 DOI: 10.4161/fly.25227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t6A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t6A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth.
Collapse
Affiliation(s)
- Diego Rojas-Benítez
- FONDAP Center for Genome Regulation; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| | | | | |
Collapse
|
84
|
Ibar C, Cataldo VF, Vásquez-Doorman C, Olguín P, Glavic A. Drosophila p53-related protein kinase is required for PI3K/TOR pathway-dependent growth. Development 2013; 140:1282-91. [PMID: 23444356 DOI: 10.1242/dev.086918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.
Collapse
Affiliation(s)
- Consuelo Ibar
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | | | | | | | | |
Collapse
|
85
|
Wan LCK, Mao DYL, Neculai D, Strecker J, Chiovitti D, Kurinov I, Poda G, Thevakumaran N, Yuan F, Szilard RK, Lissina E, Nislow C, Caudy AA, Durocher D, Sicheri F. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res 2013; 41:6332-46. [PMID: 23620299 PMCID: PMC3695523 DOI: 10.1093/nar/gkt322] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The universally conserved Kae1/Qri7/YgjD and Sua5/YrdC protein families have been implicated in growth, telomere homeostasis, transcription and the N6-threonylcarbamoylation (t6A) of tRNA, an essential modification required for translational fidelity by the ribosome. In bacteria, YgjD orthologues operate in concert with the bacterial-specific proteins YeaZ and YjeE, whereas in archaeal and eukaryotic systems, Kae1 operates as part of a larger macromolecular assembly called KEOPS with Bud32, Cgi121, Gon7 and Pcc1 subunits. Qri7 orthologues function in the mitochondria and may represent the most primitive member of the Kae1/Qri7/YgjD protein family. In accordance with previous findings, we confirm that Qri7 complements Kae1 function and uncover that Qri7 complements the function of all KEOPS subunits in growth, t6A biosynthesis and, to a partial degree, telomere maintenance. These observations suggest that Kae1 provides a core essential function that other subunits within KEOPS have evolved to support. Consistent with this inference, Qri7 alone is sufficient for t6A biosynthesis with Sua5 in vitro. In addition, the 2.9 Å crystal structure of Qri7 reveals a simple homodimer arrangement that is supplanted by the heterodimerization of YgjD with YeaZ in bacteria and heterodimerization of Kae1 with Pcc1 in KEOPS. The partial complementation of telomere maintenance by Qri7 hints that KEOPS has evolved novel functions in higher organisms.
Collapse
Affiliation(s)
- Leo C K Wan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Jacobs JJL. Loss of telomere protection: consequences and opportunities. Front Oncol 2013; 3:88. [PMID: 23596571 PMCID: PMC3625723 DOI: 10.3389/fonc.2013.00088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/02/2013] [Indexed: 01/22/2023] Open
Abstract
Telomeres are repetitive sequences at the natural ends of linear eukaryotic chromosomes that protect these from recognition as chromosome breaks. Their ability to do so critically depends on the binding of sufficient quantities of functional shelterin, a six-unit protein complex with specific and crucial roles in telomere maintenance and function. Insufficient telomere length, leading to insufficient concentration of shelterin at chromosome ends, or otherwise crippled shelterin function, causes telomere deprotection. While contributing to aging-related pathologies, loss of telomere protection can act as a barrier to tumorigenesis, as dysfunctional telomeres activate DNA-damage-like checkpoint responses that halt cell proliferation or trigger cell death. In addition, dysfunctional telomeres affect cancer development and progression by being a source of genomic instability. Reviewed here are the different approaches that are being undertaken to investigate the mammalian cellular response to telomere dysfunction and its consequences for cancer. Furthermore, it is discussed how current and future knowledge about the mechanisms underlying telomere damage responses might be applied for diagnostic purposes or therapeutic intervention.
Collapse
Affiliation(s)
- Jacqueline J L Jacobs
- Division of Molecular Oncology, The Netherlands Cancer Institute Amsterdam, Netherlands
| |
Collapse
|
87
|
Grandin N, Charbonneau M. RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae. DNA Repair (Amst) 2013; 12:212-26. [DOI: 10.1016/j.dnarep.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/23/2022]
|
88
|
Hu Y, Tang HB, Liu NN, Tong XJ, Dang W, Duan YM, Fu XH, Zhang Y, Peng J, Meng FL, Zhou JQ. Telomerase-null survivor screening identifies novel telomere recombination regulators. PLoS Genet 2013; 9:e1003208. [PMID: 23390378 PMCID: PMC3547846 DOI: 10.1371/journal.pgen.1003208] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 11/12/2012] [Indexed: 01/17/2023] Open
Abstract
Telomeres are protein–DNA structures found at the ends of linear chromosomes and are crucial for genome integrity. Telomeric DNA length is primarily maintained by the enzyme telomerase. Cells lacking telomerase will undergo senescence when telomeres become critically short. In Saccharomyces cerevisiae, a very small percentage of cells lacking telomerase can remain viable by lengthening telomeres via two distinct homologous recombination pathways. These “survivor” cells are classified as either Type I or Type II, with each class of survivor possessing distinct telomeric DNA structures and genetic requirements. To elucidate the regulatory pathways contributing to survivor generation, we knocked out the telomerase RNA gene TLC1 in 280 telomere-length-maintenance (TLM) gene mutants and examined telomere structures in post-senescent survivors. We uncovered new functional roles for 10 genes that affect the emerging ratio of Type I versus Type II survivors and 22 genes that are required for Type II survivor generation. We further verified that Pif1 helicase was required for Type I recombination and that the INO80 chromatin remodeling complex greatly affected the emerging frequency of Type I survivors. Finally, we found the Rad6-mediated ubiquitination pathway and the KEOPS complex were required for Type II recombination. Our data provide an independent line of evidence supporting the idea that these genes play important roles in telomere dynamics. Homologous recombination is a means for an organism or a cell to repair damaged DNA in its genome. Eukaryotic chromosomes have a linear configuration with two ends that are special DNA–protein structures called telomeres. Telomeres can be recognized by the cell as DNA double-strand breaks and subjected to repair by homologous recombination. In the baker's yeast Saccharomyces cerevisiae, cells that lack the enzyme telomerase, which is the primary factor responsible for telomeric DNA elongation, are able to escape senescence and cell death when telomeres undergo repair via homologous recombination. In this study, we have performed genetic screens to identify genes that affect telomeric DNA recombination. By examining the telomere structures in 280 mutants, each of which lacks both a telomere-length-maintenance gene and telomerase RNA gene, we identified 32 genes that were not previously known to be involved in telomere recombination. These genes have functions in a variety of cellular processes, and our work provides new insights into the regulation of telomere recombination in the absence of telomerase.
Collapse
Affiliation(s)
- Yan Hu
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong-Bo Tang
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ning-Ning Liu
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xia-Jing Tong
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Dang
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi-Min Duan
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hong Fu
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Peng
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
89
|
Perrochia L, Crozat E, Hecker A, Zhang W, Bareille J, Collinet B, van Tilbeurgh H, Forterre P, Basta T. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res 2012; 41:1953-64. [PMID: 23258706 PMCID: PMC3561968 DOI: 10.1093/nar/gks1287] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells.
Collapse
Affiliation(s)
- Ludovic Perrochia
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
91
|
Onodera T, Satoh K, Ohta T, Narumi I. Deinococcus radiodurans YgjD and YeaZ are involved in the repair of DNA cross-links. Extremophiles 2012; 17:171-9. [DOI: 10.1007/s00792-012-0506-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022]
|
92
|
Lauhon CT. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP. Biochemistry 2012; 51:8950-63. [PMID: 23072323 DOI: 10.1021/bi301233d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.
Collapse
Affiliation(s)
- Charles T Lauhon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.
| |
Collapse
|
93
|
Naor A, Thiaville PC, Altman-Price N, Cohen-Or I, Allers T, de Crécy-Lagard V, Gophna U. A genetic investigation of the KEOPS complex in halophilic Archaea. PLoS One 2012; 7:e43013. [PMID: 22927945 PMCID: PMC3426518 DOI: 10.1371/journal.pone.0043013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/17/2012] [Indexed: 12/01/2022] Open
Abstract
KEOPS is an important cellular complex conserved in Eukarya, with some subunits conserved in Archaea and Bacteria. This complex was recently found to play an essential role in formation of the tRNA modification threonylcarbamoyladenosine (t6A), and was previously associated with telomere length maintenance and transcription. KEOPS subunits are conserved in Archaea, especially in the Euryarchaea, where they had been studied in vitro. Here we attempted to delete the genes encoding the four conserved subunits of the KEOPS complex in the euryarchaeote Haloferax volcanii and study their phenotypes in vivo. The fused kae1-bud32 gene was shown to be essential as was cgi121, which is dispensable in yeast. In contrast, pcc1 (encoding the putative dimerizing unit of KEOPS) was not essential in H. volcanii. Deletion of pcc1 led to pleiotropic phenotypes, including decreased growth rate, reduced levels of t6A modification, and elevated levels of intra-cellular glycation products.
Collapse
Affiliation(s)
- Adit Naor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Patrick C. Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Neta Altman-Price
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Cohen-Or
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Thorsten Allers
- School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (VdC); (UG)
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (VdC); (UG)
| |
Collapse
|
94
|
The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME. PLoS One 2012; 7:e42822. [PMID: 22912744 PMCID: PMC3418287 DOI: 10.1371/journal.pone.0042822] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
The human tumour antigen PRAME (preferentially expressed antigen in melanoma) is frequently overexpressed during oncogenesis, and high PRAME levels are associated with poor clinical outcome in a variety of cancers. However, the molecular pathways in which PRAME is implicated are not well understood. We recently characterized PRAME as a BC-box subunit of a Cullin2-based E3 ubiquitin ligase. In this study, we mined the PRAME interactome to a deeper level and identified specific interactions with OSGEP and LAGE3, which are human orthologues of the ancient EKC/KEOPS complex. By characterizing biochemically the human EKC complex and its interactions with PRAME, we show that PRAME recruits a Cul2 ubiquitin ligase to EKC. Moreover, EKC subunits associate with PRAME target sites on chromatin. Our data reveal a novel link between the oncoprotein PRAME and the conserved EKC complex and support a role for both complexes in the same pathways.
Collapse
|
95
|
A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae. Genetics 2012; 191:79-93. [PMID: 22377634 DOI: 10.1534/genetics.111.137869] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The core assumption driving the use of conditional loss-of-function reagents such as temperature-sensitive mutations is that the resulting phenotype(s) are solely due to depletion of the mutant protein under nonpermissive conditions. However, prior published data, combined with observations presented here, challenge the generality of this assumption at least for telomere biology: for both wild-type yeast and strains bearing null mutations in telomere protein complexes, there is an additional phenotypic consequence when cells are grown above 34°. We propose that this synthetic phenotype is due to a naturally thermolabile activity that confers a telomere-specific defect, which we call the Tmp(-) phenotype. This prompted a re-examination of commonly used cdc13-ts and stn1-ts mutations, which indicates that these alleles are instead hypomorphic mutations that behave as apparent temperature-sensitive mutations due to the additive effects of the Tmp(-) phenotype. We therefore generated new cdc13-ts reagents, which are nonpermissive below 34°, to allow examination of cdc13-depleted phenotypes in the absence of this temperature-dependent defect. A return-to-viability experiment following prolonged incubation at 32°, 34°, and 36° with one of these new cdc13-ts alleles argues that the accelerated inviability previously observed at 36° in cdc13-1 rad9-Δ mutant strains is a consequence of the Tmp(-) phenotype. Although this study focused on telomere biology, viable null mutations that confer inviability at 36° have been identified for multiple cellular pathways. Thus, phenotypic analysis of other aspects of yeast biology may similarly be compromised at high temperatures by pathway-specific versions of the Tmp(-) phenotype.
Collapse
|
96
|
Deutsch C, El Yacoubi B, de Crécy-Lagard V, Iwata-Reuyl D. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J Biol Chem 2012; 287:13666-73. [PMID: 22378793 DOI: 10.1074/jbc.m112.344028] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anticodon stem-loop (ASL) of transfer RNAs (tRNAs) drives decoding by interacting directly with the mRNA through codon/anticodon pairing. Chemically complex nucleoside modifications found in the ASL at positions 34 or 37 are known to be required for accurate decoding. Although over 100 distinct modifications have been structurally characterized in tRNAs, only a few are universally conserved, among them threonylcarbamoyl adenosine (t(6)A), found at position 37 in the anticodon loop of a subset of tRNA. Structural studies predict an important role for t(6)A in translational fidelity, and in vivo work supports this prediction. Although pioneering work in the 1970s identified the fundamental substrates for t(6)A biosynthesis, the enzymes responsible for its biosynthesis have remained an enigma. We report here the discovery that in bacteria four proteins (YgjD, YrdC, YjeE, and YeaZ) are both necessary and sufficient for t(6)A biosynthesis in vitro. Notably, YrdC and YgjD are members of universally conserved families that were ranked among the top 10 proteins of unknown function in need of functional characterization, while YeaZ and YjeE are specific to bacteria. This latter observation, coupled with the essentiality of all four proteins in bacteria, establishes this pathway as a compelling new target for antimicrobial development.
Collapse
Affiliation(s)
- Christopher Deutsch
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | | | | | | |
Collapse
|
97
|
Harrington L. Haploinsufficiency and telomere length homeostasis. Mutat Res 2012; 730:37-42. [PMID: 22100521 DOI: 10.1016/j.mrfmmm.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 05/22/2023]
Abstract
In humans, autosomal dominant or X-linked disease can arise through a phenomenon termed haploinsufficiency, where one remaining wild-type allele is insufficient for function. In model organisms, the impact of heterozygosity can be tested directly with engineered mutant alleles or in a hemizygous state where the expression of one allele is abrogated completely. This review will focus on haploinsufficiency as it relates to telomerase and telomere length maintenance and, citing selected examples in various model organisms, it will discuss how the problem of gene dosage relates to telomere function in normal and diseased states.
Collapse
|
98
|
Kim DR, Gidvani RD, Ingalls BP, Duncker BP, McConkey BJ. Differential chromatin proteomics of the MMS-induced DNA damage response in yeast. Proteome Sci 2011; 9:62. [PMID: 21967861 PMCID: PMC3212819 DOI: 10.1186/1477-5956-9-62] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 10/04/2011] [Indexed: 01/07/2023] Open
Abstract
Background Protein enrichment by sub-cellular fractionation was combined with differential-in-gel-electrophoresis (DIGE) to address the detection of the low abundance chromatin proteins in the budding yeast proteome. Comparisons of whole-cell extracts and chromatin fractions were used to provide a measure of the degree of chromatin association for individual proteins, which could be compared across sample treatments. The method was applied to analyze the effect of the DNA damaging agent methyl methanesulfonate (MMS) on levels of chromatin-associated proteins. Results Up-regulation of several previously characterized DNA damage checkpoint-regulated proteins, such as Rnr4, Rpa1 and Rpa2, was observed. In addition, several novel DNA damage responsive proteins were identified and assessed for genotoxic sensitivity using either DAmP (decreased abundance by mRNA perturbation) or knockout strains, including Acf2, Arp3, Bmh1, Hsp31, Lsp1, Pst2, Rnr4, Rpa1, Rpa2, Ste4, Ycp4 and Yrb1. A strain in which the expression of the Ran-GTPase binding protein Yrb1 was reduced was found to be hypersensitive to genotoxic stress. Conclusion The described method was effective at unveiling chromatin-associated proteins that are less likely to be detected in the absence of fractionation. Several novel proteins with altered chromatin abundance were identified including Yrb1, pointing to a role for this nuclear import associated protein in DNA damage response.
Collapse
Affiliation(s)
- Dong Ryoung Kim
- Department of Biology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada.
| | | | | | | | | |
Collapse
|
99
|
Effects on transcription of mutations in ygjD, yeaZ, and yjeE genes, which are involved in a universal tRNA modification in Escherichia coli. J Bacteriol 2011; 193:6075-9. [PMID: 21873492 DOI: 10.1128/jb.05733-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli ygjD gene is critical for the universal tRNA modification N(6)-threonylcarbamoyladenosine, together with two other essential genes, yeaZ and yjeE. This study showed that the transcription of the thr and ilv operons in ygjD mutants was increased through the inhibition of transcription attenuation and that dnaG transcription was reduced.
Collapse
|
100
|
Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex. Genetics 2011; 188:871-82. [PMID: 21625000 DOI: 10.1534/genetics.111.128231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In diploid Saccharomyces cerevisiae cells, bud-site selection is determined by two cortical landmarks, Bud8p and Bud9p, at the distal and proximal poles, respectively. Their localizations depend on the multigenerational proteins Rax1p/Rax2p. Many genes involved in bud-site selection were identified previously by genome-wide screening of deletion mutants, which identified BUD32 that causes a random budding in diploid cells. Bud32p is an atypical kinase involved in a signaling cascade of Sch9p kinase, the yeast homolog of Akt/PKB, and a component of the EKC/KEOPS (endopeptidase-like, kinase, chromatin-associated/kinase, putative endopeptidase, and other proteins of small size) complex that functions in telomere maintenance and transcriptional regulation. However, its role in bipolar budding has remained unclear. In this report, we show that the Sch9p kinase cascade does not affect bipolar budding but that the EKC/KEOPS complex regulates the localization of Bud9p. The kinase activity of Bud32p, which is essential for the functions of the EKC/KEOPS complex but is not necessary for the Sch9p signaling cascade, is required for bipolar bud-site selection. BUD9 is necessary for random budding in each deletion mutant of EKC/KEOPS components, and RAX2 is genetically upstream of EKC/KEOPS genes for the regulation of bipolar budding. The asymmetric localization of Bud9p was dependent on the complex, but Bud8p and Rax2p were not. We concluded that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization downstream of Rax1p/Rax2p.
Collapse
|