51
|
Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus 2012; 1:96-108. [PMID: 21327108 DOI: 10.4161/nucl.1.1.10680] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023] Open
Abstract
The Cajal body (CB) is an evolutionarily conserved nuclear subcompartment, enriched in components of the RNA processing machinery. The composition and dynamics of CBs in cells of living organisms is not well understood. Here we establish the zebrafish embryo as a model system to investigate the properties of CBs during rapid growth and cell division, taking advantage of the ease of live-cell imaging. We show that zebrafish embryo CBs contain coilin and multiple components of the pre-mRNA splicing machinery. Histone mRNA 3' end processing factors, present in CBs in some systems, were instead concentrated in a distinct nuclear body. CBs were present in embryos before and after activation of zygotic gene expression, indicating a maternal contribution of CB components. During the first 24 hours of development, embryonic cells displayed up to 30 CBs per nucleus; these dispersed prior to mitosis and reassembled within minutes upon daughter cell nucleus formation. Following zygotic genome activation, snRNP biogenesis was required for CB assembly and maintenance, suggesting a self-assembly process that determines CB numbers in embryos. Differentiation into muscle, neurons and epidermis was associated with the achievement of a steady state number of 2 CBs per nucleus. We propose that CB number is regulated during development to respond to the demands of gene expression in a rapidly growing embryo.
Collapse
|
52
|
Welzel F, Kaehler C, Isau M, Hallen L, Lehrach H, Krobitsch S. FOX-2 dependent splicing of ataxin-2 transcript is affected by ataxin-1 overexpression. PLoS One 2012; 7:e37985. [PMID: 22666429 PMCID: PMC3364202 DOI: 10.1371/journal.pone.0037985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/27/2012] [Indexed: 12/03/2022] Open
Abstract
Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1.
Collapse
Affiliation(s)
- Franziska Welzel
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Christian Kaehler
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Melanie Isau
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Linda Hallen
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sylvia Krobitsch
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
53
|
Voz ML, Coppieters W, Manfroid I, Baudhuin A, Von Berg V, Charlier C, Meyer D, Driever W, Martial JA, Peers B. Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS One 2012; 7:e34671. [PMID: 22496837 PMCID: PMC3319596 DOI: 10.1371/journal.pone.0034671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/06/2012] [Indexed: 02/03/2023] Open
Abstract
Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish.
Collapse
Affiliation(s)
- Marianne L Voz
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Sart Tilman, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Blanco FJ, Bernabéu C. The Splicing Factor SRSF1 as a Marker for Endothelial Senescence. Front Physiol 2012; 3:54. [PMID: 22470345 PMCID: PMC3314196 DOI: 10.3389/fphys.2012.00054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 01/03/2023] Open
Abstract
Aging is the major risk factor per se for the development of cardiovascular diseases. The senescence of the endothelial cells (ECs) that line the lumen of blood vessels is the cellular basis for these age-dependent vascular pathologies, including atherosclerosis and hypertension. During their lifespan, ECs may reach a stage of senescence by two different pathways; a replicative one derived from their preprogrammed finite number of cell divisions; and one induced by stress stimuli. Also, certain physiological stimuli, such as transforming growth factor-β, are able to modulate cellular senescence. Currently, the cellular aging process is being widely studied to identify novel molecular markers whose changes correlate with senescence. This review focuses on the regulation of alternative splicing mediated by the serine-arginine splicing factor 1 (SRSF1, or ASF/SF2) during endothelial senescence, a process that is associated with a differential subcellular localization of SRSF1, which typically exhibits a scattered distribution throughout the cytoplasm. Based on its senescence-dependent involvement in alternative splicing, we postulate that SRSF1 is a key marker of EC senescence, regulating the expression of alternative isoforms of target genes such as endoglin (ENG), vascular endothelial growth factor A (VEGFA), tissue factor (T3), or lamin A (LMNA) that integrate in a common molecular senescence program.
Collapse
Affiliation(s)
- Francisco Javier Blanco
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid, Spain
| | | |
Collapse
|
55
|
Hozumi S, Hirabayashi R, Yoshizawa A, Ogata M, Ishitani T, Tsutsumi M, Kuroiwa A, Itoh M, Kikuchi Y. DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish. PLoS One 2012; 7:e33675. [PMID: 22442707 PMCID: PMC3307747 DOI: 10.1371/journal.pone.0033675] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/14/2012] [Indexed: 01/12/2023] Open
Abstract
Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing.
Collapse
Affiliation(s)
- Shunya Hozumi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Hirabayashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Akio Yoshizawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Mitsuko Ogata
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tohru Ishitani
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Makiko Tsutsumi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Motoyuki Itoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
56
|
Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network. Dev Biol 2011; 363:128-37. [PMID: 22222761 DOI: 10.1016/j.ydbio.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.
Collapse
|
57
|
Blanco FJ, Bernabeu C. Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence. Aging Cell 2011; 10:896-907. [PMID: 21668763 DOI: 10.1111/j.1474-9726.2011.00727.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing involving intron retention plays a key role in the regulation of gene expression. We previously reported that the alternatively spliced short isoform of endoglin (S-endoglin) is induced during the aging or senescence of endothelial cells by a mechanism of intron retention. In this work, we demonstrate that the alternative splicing factor or splicing factor-2 (ASF/SF2) is involved in the synthesis of endoglin. Overexpression of ASF/SF2 in endothelial cells switched the balance between the two endoglin isoforms, favoring the synthesis of S-endoglin. Using a minigene reporter vector and RNA immunoprecipitation experiments, it was shown that ASF/SF2 interacts with the nucleotide sequence of the endoglin minigene, suggesting the direct involvement of ASF/SF2. Accordingly, the sequence recognized by ASF/SF2 in the endoglin gene was identified inside the retained intron near the consensus branch point. Finally, the ASF/SF2 subcellular localization during endothelial senescence showed a preferential scattered distribution throughout the cytoplasm, where it interferes with the activity of the minor spliceosome, leading to an increased expression of S-endoglin mRNA. In summary, we report for the first time the molecular mechanisms by which ASF/SF2 regulates the alternative splicing of endoglin in senescent endothelial cells, as well as the involvement of ASF/SF2 in the minor spliceosome.
Collapse
MESH Headings
- Alternative Splicing
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Blotting, Western
- Cellular Senescence
- Conserved Sequence
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Endoglin
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Immunoprecipitation/methods
- Introns
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Francisco J Blanco
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Raras, c/Ramiro de Maeztu 9, Madrid, Spain.
| | | |
Collapse
|
58
|
Xiao PJ, Peng ZY, Huang L, Li Y, Chen XH. Dephosphorylated NSSR1 is induced by androgen in mouse epididymis and phosphorylated NSSR1 is increased during sperm maturation. PLoS One 2011; 6:e25667. [PMID: 21980524 PMCID: PMC3183062 DOI: 10.1371/journal.pone.0025667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization.
Collapse
Affiliation(s)
- Ping-Jie Xiao
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zheng-Yu Peng
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Huang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ya Li
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xian-Hua Chen
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
59
|
Makhortova NR, Hayhurst M, Cerqueira A, Sinor-Anderson AD, Zhao WN, Heiser PW, Arvanites AC, Davidow LS, Waldon ZO, Steen JA, Lam K, Ngo HD, Rubin LL. A screen for regulators of survival of motor neuron protein levels. Nat Chem Biol 2011; 7:544-52. [PMID: 21685895 PMCID: PMC3236614 DOI: 10.1038/nchembio.595] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 01/15/2023]
Abstract
The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.
Collapse
Affiliation(s)
- Nina R. Makhortova
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Monica Hayhurst
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Antonio Cerqueira
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Amy D. Sinor-Anderson
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Wen-Ning Zhao
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Patrick W. Heiser
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Anthony C. Arvanites
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Lance S. Davidow
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Zachary O. Waldon
- Children’s Hospital Boston, F.M. Kirby Neurobiology Center, 300 Longwood Ave, CLS12032, Boston, MA 02115
| | - Judith A. Steen
- Children’s Hospital Boston, F.M. Kirby Neurobiology Center, 300 Longwood Ave, CLS12032, Boston, MA 02115
| | - Kelvin Lam
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Hien D. Ngo
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
60
|
Rösel TD, Hung LH, Medenbach J, Donde K, Starke S, Benes V, Rätsch G, Bindereif A. RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation. EMBO J 2011; 30:1965-76. [PMID: 21468032 DOI: 10.1038/emboj.2011.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/10/2011] [Indexed: 11/09/2022] Open
Abstract
Precise 5' splice-site recognition is essential for both constitutive and regulated pre-mRNA splicing. The U1 small nuclear ribonucleoprotein particle (snRNP)-specific protein U1C is involved in this first step of spliceosome assembly and important for stabilizing early splicing complexes. We used an embryonically lethal U1C mutant zebrafish, hi1371, to investigate the potential genomewide role of U1C for splicing regulation. U1C mutant embryos contain overall stable, but U1C-deficient U1 snRNPs. Surprisingly, genomewide RNA-Seq analysis of mutant versus wild-type embryos revealed a large set of specific target genes that changed their alternative splicing patterns in the absence of U1C. Injection of ZfU1C cRNA into mutant embryos and in vivo splicing experiments in HeLa cells after siRNA-mediated U1C knockdown confirmed the U1C dependency and specificity, as well as the functional conservation of the effects observed. In addition, sequence motif analysis of the U1C-dependent 5' splice sites uncovered an association with downstream intronic U-rich elements. In sum, our findings provide evidence for a new role of a general snRNP protein, U1C, as a mediator of alternative splicing regulation.
Collapse
Affiliation(s)
- Tanja Dorothe Rösel
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Speijer D. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity. Bioessays 2011; 33:344-9. [PMID: 21381061 DOI: 10.1002/bies.201100010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory chain complexity. The theory originated as a welcome explanation of isolated small scale cellular idiosyncrasies and as a reaction to 'overselectionism'. Here I contend, that in its extended form, it has major conceptual problems, can not explain observed patterns of complex processes, is too easily dismissive of alternative selectionist models, underestimates the creative force of complexity as such, and--if seen as a major evolutionary mechanism for all organisms--could stifle further thought regarding the evolution of highly complex biological processes.
Collapse
Affiliation(s)
- Dave Speijer
- Academic Medical Center (AMC), Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
62
|
Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 2010; 468:664-8. [PMID: 20881964 PMCID: PMC2996489 DOI: 10.1038/nature09479] [Citation(s) in RCA: 509] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/09/2010] [Indexed: 11/10/2022]
Abstract
In eukaryotes, U1 small nuclear ribonucleoprotein (snRNP) forms spliceosomes in equal stoichiometry with U2, U4, U5 and U6 snRNPs; however, its abundance in human far exceeds that of the other snRNPs. Here we used antisense morpholino oligonucleotide to U1 snRNA to achieve functional U1 snRNP knockdown in HeLa cells, and identified accumulated unspliced pre-mRNAs by genomic tiling microarrays. In addition to inhibiting splicing, U1 snRNP knockdown caused premature cleavage and polyadenylation in numerous pre-mRNAs at cryptic polyadenylation signals, frequently in introns near (<5 kilobases) the start of the transcript. This did not occur when splicing was inhibited with U2 snRNA antisense morpholino oligonucleotide or the U2-snRNP-inactivating drug spliceostatin A unless U1 antisense morpholino oligonucleotide was also included. We further show that U1 snRNA-pre-mRNA base pairing was required to suppress premature cleavage and polyadenylation from nearby cryptic polyadenylation signals located in introns. These findings reveal a critical splicing-independent function for U1 snRNP in protecting the transcriptome, which we propose explains its overabundance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gideon Dreyfuss
- Howard Hughes Medical Institute Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
63
|
Kim WY, Jung HJ, Kwak KJ, Kim MK, Oh SH, Han YS, Kang H. The Arabidopsis U12-type spliceosomal protein U11/U12-31K is involved in U12 intron splicing via RNA chaperone activity and affects plant development. THE PLANT CELL 2010; 22:3951-62. [PMID: 21148817 PMCID: PMC3027169 DOI: 10.1105/tpc.110.079103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
U12 introns are removed from precursor-mRNA by a U12 intron-specific spliceosome that contains U11 and U12 small nuclear ribonucleoproteins. Although several proteins unique to the U12-type spliceosome have been identified, the manner by which they affect U12-dependent intron splicing as well as plant growth and development remain largely unknown. Here, we assessed the role of U11/U12-31K, a U12-type spliceosomal protein in Arabidopsis thaliana. T-DNA-tagged homozygote lines for U11/U12-31K could not be obtained, and heterozygote mutants were defective for seed maturation, indicating that U11/U12-31K is essential for the normal development of Arabidopsis. Knockdown of U11/U12-31K by artificial microRNA caused a defect in proper U12 intron splicing, resulting in abnormal stem growth and development of Arabidopsis. This defect in proper splicing was not restricted to specific U12-type introns, but most U12 intron splicing was influenced by U11/U12-31K. The stunted inflorescence stem growth was recovered by exogenously applied gibberellic acid (GA), but not by cytokinin, auxin, or brassinosteroid. GA metabolism-related genes were highly downregulated in U11/U12-31K knockdown plants. Importantly, U11/U12-31K was determined to harbor RNA chaperone activity. We propose that U11/U12-31K is an RNA chaperone that is indispensible for proper U12 intron splicing and for normal growth and development of plants.
Collapse
|
64
|
Gene expression profiling of U12-type spliceosome mutant Drosophila reveals widespread changes in metabolic pathways. PLoS One 2010; 5:e13215. [PMID: 20949011 PMCID: PMC2952598 DOI: 10.1371/journal.pone.0013215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/15/2010] [Indexed: 01/31/2023] Open
Abstract
Background The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly. Methodology/Principal Findings We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group. Conclusions/Significance U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.
Collapse
|
65
|
Henry JJ, Perry KJ, Fukui L, Alvi N. Differential localization of mRNAs during early development in the mollusc, Crepidula fornicata. Integr Comp Biol 2010; 50:720-33. [PMID: 21558235 DOI: 10.1093/icb/icq088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Certain mRNAs have been shown to be segregated in different cells in various metazoan embryos. These events represent aspects of autonomous mechanisms that establish particular embryonic cell fates and axial properties associated with asymmetric cell divisions. The spiralian lophotrochozoans (which include molluscs, annelids, nemerteans, gnathostomulids, dicyemid mesozoans, entoprocts, and platyhelminthes) exhibit a highly conserved pattern of early development that involves stereotypical, asymmetric cell divisions (termed "spiral cleavage"). Recently, it was demonstrated that various mRNAs are dynamically localized to the centrosomes in specific cells during early development in the gastropod mollusc, Ilyanassa obsoleta. During subsequent cell divisions, these messages become segregated in particular daughter cells, and it has been proposed that these events distinguish the developmental potential of these cells within the early embryo of I. obsoleta. The molecular mechanisms underlying these events, however, are still unknown. Here we show for the first time in another spiralian lophotrochozoan (the gastropod Crepidula fornicata) that similar patterns of mRNA localization take place during early development. To characterize the transcriptome of early development, and identify candidate genes for the expression analyses, high-throughput sequencing was carried out, via GS FLX Titanium 454 pyrosequencing. The annotated sequences have been made available as a resource for the scientific community (www.life.illinoi.edu/henry/crepidula_databases.html). Presumably, specific proteins associated with centrosomes may be important for these mRNA localization events. In silico sequence comparisons with known centriolar/centrosomal, ciliary/basal body proteomes shows that a large number of those proteins are represented in the collection of expressed sequence tags of C. fornicata annotated in this study. These data should be useful for future studies of the role of specific mRNAs in controlling cell fate and axial specification in the spiralian Lophotrochozoa, and for dissecting the underlying molecular mechanisms that accomplish these events.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana IL 61801, USA.
| | | | | | | |
Collapse
|
66
|
Etard C, Roostalu U, Strähle U. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. ACTA ACUST UNITED AC 2010; 189:527-39. [PMID: 20440001 PMCID: PMC2867308 DOI: 10.1083/jcb.200912125] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Apo2 proteins interact with chaperone Unc45b (but not Hsp90) and are required for correct zebrafish skeletal musculature and heart function. The chaperones Unc45b and Hsp90a are essential for folding of myosin in organisms ranging from worms to humans. We show here that zebrafish Unc45b, but not Hsp90a, binds to the putative cytidine deaminase Apobec2 (Apo2) in an interaction that requires the Unc45/Cro1p/She4p-related (UCS) and central domains of Unc45b. Morpholino oligonucleotide-mediated knockdown of the two related proteins Apo2a and Apo2b causes a dystrophic phenotype in the zebrafish skeletal musculature and impairs heart function. These phenotypic traits are shared with mutants of unc45b, but not with hsp90a mutants. Apo2a and -2b act nonredundantly and bind to each other in vitro, which suggests a heteromeric functional complex. Our results demonstrate that Unc45b and Apo2 proteins act in a Hsp90a-independent pathway that is required for integrity of the myosepta and myofiber attachment. Because the only known function of Unc45b is that of a chaperone, Apo2 proteins may be clients of Unc45b but other yet unidentified processes cannot be excluded.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe in the Helmholtz Association, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
67
|
Highly specific alternative splicing of transcripts encoding BK channels in the chicken's cochlea is a minor determinant of the tonotopic gradient. Mol Cell Biol 2010; 30:3646-60. [PMID: 20479127 DOI: 10.1128/mcb.00073-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The frequency sensitivity of auditory hair cells in the inner ear varies with their longitudinal position in the sensory epithelium. Among the factors that determine the differential cellular response to sound is the resonance of a hair cell's transmembrane electrical potential, whose frequency correlates with the kinetic properties of the high-conductance Ca(2+)-activated K(+) (BK) channels encoded by a Slo (kcnma1) gene. It has been proposed that the inclusion of specific alternative axons in the Slo transcripts along the cochlea underlies the gradient of BK-channel kinetics. By analyzing the complete sequences of chicken Slo gene (cSlo) cDNAs from the chicken's cochlea, we show that most transcripts lack alternative exons. Transcripts with more than one alternative exon constitute only 10% of the total. Although the fraction of transcripts containing alternative exons increases from the cochlear base to the apex, the combination of alternative exons is not regulated. There is also a clear increase in the expression of BK transcripts with long carboxyl termini toward the apex. When long and short BK transcripts are expressed in HEK-293 cells, the kinetics of single-channel currents differ only slightly, but they are substantially slowed when the channels are coexpressed with the auxiliary beta subunit that occurs more widely at the apex. These results argue that the tonotopic gradient is not established by the selective inclusion of highly specific cSlo exons. Instead, a gradient in the expression of beta subunits slows BK channels toward the low-frequency apex of the cochlea.
Collapse
|
68
|
Fernandéz-Taboada E, Moritz S, Zeuschner D, Stehling M, Schöler HR, Saló E, Gentile L. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 2010; 137:1055-65. [PMID: 20215344 DOI: 10.1242/dev.042564] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.
Collapse
|
69
|
Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol 2010; 17:403-9. [PMID: 20357773 DOI: 10.1038/nsmb.1783] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/29/2010] [Indexed: 01/01/2023]
Abstract
Spliceosomal small nuclear ribonucleoproteins (snRNPs), comprised of small nuclear RNAs (snRNAs) in complex with snRNP-specific proteins, are essential for pre-mRNA splicing. Coilin is not a snRNP protein but concentrates snRNPs and their assembly intermediates in Cajal bodies (CBs). Here we show that depletion of coilin in zebrafish embryos leads to CB dispersal, deficits in snRNP biogenesis and expression of spliced mRNA, as well as reduced cell proliferation followed by developmental arrest. Notably, injection of purified mature human snRNPs restored mRNA expression and viability. snRNAs were necessary but not sufficient for rescue, showing that only assembled snRNPs can bypass the requirement for coilin. Thus, coilin's essential function in embryos is to promote macromolecular assembly of snRNPs, likely by concentrating snRNP components in CBs to overcome rate-limiting assembly steps.
Collapse
|
70
|
Schubert P, Devine DV. De novo protein synthesis in mature platelets: a consideration for transfusion medicine. Vox Sang 2010; 99:112-22. [PMID: 20345520 DOI: 10.1111/j.1423-0410.2010.01333.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Platelet function in thrombosis and haemostasis is reasonably well understood at the molecular level with respect to the proteins involved in cellular structure, signalling networks and platelet interaction with clotting factors and other cells. However, the natural history of these proteins has only recently garnered the attention of platelet researchers. De novo protein synthesis in platelets was discovered 40 years ago; however, it was generally dismissed as merely an interesting minor phenomenon until studies over the past few years renewed interest in this aspect of platelet proteins. It is now accepted that anucleate platelets not only have the potential to synthesize proteins, but this capacity seems to be required to fulfil their function. With translational control as the primary mode of regulation, platelets are able to express biologically relevant gene products in a timely and signal-dependent manner. Platelet protein synthesis during storage of platelet concentrates is a nascent area of research. Protein synthesis does occur, although not for all proteins found in the platelet protein profile. Furthermore, mRNA appears to be well preserved under standard storage conditions. Although its significance is not yet understood, the ability to replace proteins may form a type of cellular repair mechanism during storage. Disruption by inappropriate storage conditions or processes that block protein synthesis such as pathogen reduction technologies may have direct effects on the ability of platelets to synthesize proteins during storage.
Collapse
Affiliation(s)
- P Schubert
- Canadian Blood Services and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
71
|
O'Leary DA, Sharif O, Anderson P, Tu B, Welch G, Zhou Y, Caldwell JS, Engels IH, Brinker A. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening. PLoS One 2009; 4:e8348. [PMID: 20020055 PMCID: PMC2791862 DOI: 10.1371/journal.pone.0008348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022] Open
Abstract
One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ∼10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.
Collapse
Affiliation(s)
- Debra A. O'Leary
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (DAO); (IHE)
| | - Orzala Sharif
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Paul Anderson
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Buu Tu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Genevieve Welch
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeremy S. Caldwell
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ingo H. Engels
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail: (DAO); (IHE)
| | - Achim Brinker
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| |
Collapse
|
72
|
Ardehali MB, Lis JT. Tracking rates of transcription and splicing in vivo. Nat Struct Mol Biol 2009; 16:1123-4. [PMID: 19888309 DOI: 10.1038/nsmb1109-1123] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
73
|
Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16:1128-33. [PMID: 19820712 PMCID: PMC2783620 DOI: 10.1038/nsmb.1666] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/11/2009] [Indexed: 12/26/2022]
Abstract
Transcription and splicing must proceed over genomic distances of hundreds of kilobases in many human genes. However, the rates and mechanisms of these processes are poorly understood. We have used the compound 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB) that reversibly blocks gene transcription in vivo combined with quantitative RT-PCR to analyze the transcription and RNA processing of several long human genes. We found that the rate of RNA polymerase II transcription over long genomic distances is about 3.8 kb per minute and is nearly the same whether transcribing long introns or exon rich regions. We also determined that co-transcriptional pre-mRNA splicing of U2-dependent introns occurs within 5–10 minutes of synthesis irrespective of intron length between 1 kb and 240 kb. Similarly, U12-dependent introns were co-transcriptionally spliced within 10 minutes of synthesis confirming that these introns are spliced within the nuclear compartment. These results show that the expression of large genes is surprisingly rapid and efficient.
Collapse
|
74
|
Abstract
Although mammalian platelets are anucleated cells, a number of studies have shown that they retain a pool of messenger RNA (mRNA) carried over from the megakaryocyte during thrombopoiesis. Platelet mRNA was originally thought to be relatively unstable and short-lived within the youngest cells and has been used as a potential marker of platelet turnover. In this article we will discuss both theoretical and methodological issues related to the measurement of these younger, "reticulated platelets". A key question relating to platelet mRNA is also whether it has any functional relevance other than a marker of platelet immaturity. Evidence going back more than 30 years suggests that platelets can biosynthesize proteins. However, it is only very recently that the nature and specificity of platelet mRNA has been examined in any detail. Difficulties in obtaining pure platelet mRNA, free of contamination from other cells has added to the complexity of unravelling this story. However, there is now clear evidence that platelets contain small but significant levels of message for a variety of proteins. The platelet mRNA pool is much richer and more diverse than previously thought and recent data suggests that regulated synthesis of a selected number of proteins can be induced on platelet activation. The full complexity of the platelet genome is now just being revealed and may open the possibility for improved diagnosis and therapy of many haemostatic and thrombotic disorders.
Collapse
Affiliation(s)
- Paul Harrison
- Oxford Haemophilia and Thrombosis Centre, Churchill Hospital, Oxford, UK.
| | | |
Collapse
|
75
|
Marz M, Kirsten T, Stadler PF. Evolution of spliceosomal snRNA genes in metazoan animals. J Mol Evol 2009; 67:594-607. [PMID: 19030770 DOI: 10.1007/s00239-008-9149-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/14/2008] [Indexed: 11/28/2022]
Abstract
While studies of the evolutionary histories of protein families are commonplace, little is known on noncoding RNAs beyond microRNAs and some snoRNAs. Here we investigate in detail the evolutionary history of the nine spliceosomal snRNA families (U1, U2, U4, U5, U6, U11, U12, U4atac, and U6atac) across the completely or partially sequenced genomes of metazoan animals. Representatives of the five major spliceosomal snRNAs were found in all genomes. None of the minor splicesomal snRNAs were detected in nematodes or in the shotgun traces of Oikopleura dioica, while in all other animal genomes at most one of them is missing. Although snRNAs are present in multiple copies in most genomes, distinguishable paralogue groups are not stable over long evolutionary times, although they appear independently in several clades. In general, animal snRNA secondary structures are highly conserved, albeit, in particular, U11 and U12 in insects exhibit dramatic variations. An analysis of genomic context of snRNAs reveals that they behave like mobile elements, exhibiting very little syntenic conservation.
Collapse
Affiliation(s)
- Manuela Marz
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | |
Collapse
|
76
|
Abstract
In the late 1960s, numerous investigators independently demonstrated that platelets are capable of synthesizing proteins. Studies continued at a steady pace over the next 30 years and into the 21st century. Collectively, these investigations confirmed that platelets synthesize proteins and that the pattern of protein synthesis changes in response to cellular activation. More recent studies have characterized the mechanisms by which platelets synthesize proteins and have shown that protein synthesis alters the phenotype and functions of platelets. Here, we chronologically review our increased understanding of protein synthetic responses in platelets and discuss how the field may evolve over the next decade.
Collapse
Affiliation(s)
- A S Weyrich
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|
77
|
Yue C, Ponzio TA, Fields RL, Gainer H. Oxytocin and vasopressin gene expression and RNA splicing patterns in the rat supraoptic nucleus. Physiol Genomics 2008; 35:231-42. [PMID: 18765859 PMCID: PMC2585020 DOI: 10.1152/physiolgenomics.90218.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 08/28/2008] [Indexed: 11/22/2022] Open
Abstract
In this study, we test the hypothesis that there are differential splicing patterns between the expressed oxytocin (OT) and vasopressin (VP) genes in the rat supraoptic nucleus (SON). We quantify the low abundance, intron-containing heteronuclear RNAs (hnRNAs) and the higher abundance mRNAs in the SON using two-step, quantitative SYBR Green real-time reverse transcription (RT)-PCR and external standard curves constructed using synthetic 90 nt sense-strand oligonucleotides. The levels of OT and VP mRNA in the SON were found to be similar, approximately 10(8) copies/SON pair, whereas the copy numbers of VP hnRNAs containing intron 1 or 2 and the OT hnRNA containing intron 1 are much lower, i.e., approximately 10(2)-10(3) copies/rat SON pair. However, the estimated copy number of the intron 2-containing OT hnRNA is much larger, approximately 10(6) copies/SON pair. The relative distributions of all the OT and VP RNA species were invariant and independent of the physiological status of the rats (e.g., osmotically stimulated or lactating rats). Using intron-specific riboprobes against hnRNAs, we demonstrate by fluorescence in situ hybridization strong signals of OT hnRNA containing intron 2 predominantly in the cytoplasm, in contrast to the localization of the VP hnRNA found only in the nuclei. Taken together, these data support the view that the splicing patterns between OT and VP gene transcripts are different and show that there is a selective cytoplasmic retention of OT intron 2.
Collapse
Affiliation(s)
- Chunmei Yue
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
78
|
Friend K, Kolev NG, Shu MD, Steitz JA. Minor-class splicing occurs in the nucleus of the Xenopus oocyte. RNA (NEW YORK, N.Y.) 2008; 14:1459-62. [PMID: 18567814 PMCID: PMC2491479 DOI: 10.1261/rna.1119708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A small fraction of premessenger RNA introns in certain eukaryotes is excised by the minor spliceosome, which contains low-abundance small nuclear ribonucleoproteins (snRNPs). Recently, it was suggested that minor-class snRNPs are localized to and function in the cytoplasm of vertebrate cells. To test whether U12-type splicing occurs in the cytoplasm of Xenopus oocytes, we performed microinjections of the well-characterized P120 minor-class splicing substrate into the nucleus or into the cytoplasm. Our results demonstrate that accurate splicing of this U12-dependent intron occurs exclusively in the nuclear compartment of the oocyte, where U12 and U6atac snRNPs are primarily localized. We further demonstrate that splicing of both a major-class and a minor-class intron is inhibited after nuclear envelope breakdown during meiosis.
Collapse
|
79
|
Steitz JA, Dreyfuss G, Krainer AR, Lamond AI, Matera AG, Padgett RA. Where in the cell is the minor spliceosome? Proc Natl Acad Sci U S A 2008; 105:8485-6. [PMID: 18562285 PMCID: PMC2438384 DOI: 10.1073/pnas.0804024105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joan A Steitz
- Yale University and Howard Hughes Medical Institute, New Haven, CT 06536, USA.
| | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Minor spliceosome components are predominantly localized in the nucleus. Proc Natl Acad Sci U S A 2008; 105:8655-60. [PMID: 18559850 DOI: 10.1073/pnas.0803646105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, it has been reported that there is a differential subcellular distribution of components of the minor U12-dependent and major U2-dependent spliceosome, and further that the minor spliceosome functions in the cytoplasm. To study the subcellular localization of the snRNA components of both the major and minor spliceosomes, we performed in situ hybridizations with mouse tissues and human cells. In both cases, all spliceosomal snRNAs were nearly exclusively detected in the nucleus, and the minor U11 and U12 snRNAs were further shown to colocalize with U4 and U2, respectively, in human cells. Additionally, we examined the distribution of several spliceosomal snRNAs and proteins in nuclear and cytoplasmic fractions isolated from human cells. These studies revealed an identical subcellular distribution of components of both the U12- and U2-dependent spliceosomes. Thus, our data, combined with several earlier publications, establish that, like the major spliceosome, components of the U12-dependent spliceosome are localized predominantly in the nucleus.
Collapse
|
82
|
Hopper AK, Shaheen HH. A decade of surprises for tRNA nuclear-cytoplasmic dynamics. Trends Cell Biol 2008; 18:98-104. [PMID: 18262788 DOI: 10.1016/j.tcb.2008.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/30/2022]
Abstract
The biosynthesis of tRNA was previously thought to occur solely in the nucleus, with tRNA functioning only in the cytoplasm of eukaryotic cells. However, recent publications have reported that pre-tRNA splicing can occur in the cytoplasm, that aminoacylation can occur in the nucleus and that tRNA can travel in a retrograde direction from the cytoplasm to the nucleus. Moreover, the subcellular distribution of tRNA seems to serve unanticipated functions in diverse processes, including response to nutrient availability, DNA repair and HIV replication.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Room Riffe 800, Columbus, OH 43210, USA.
| | | |
Collapse
|
83
|
Cytoplasmic BK(Ca) channel intron-containing mRNAs contribute to the intrinsic excitability of hippocampal neurons. Proc Natl Acad Sci U S A 2008; 105:1901-6. [PMID: 18250327 DOI: 10.1073/pnas.0711796105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High single-channel conductance K+ channels, which respond jointly to membrane depolarization and micromolar concentrations of intracellular Ca2+ ions, arise from extensive cell-specific alternative splicing of pore-forming alpha-subunit mRNAs. Here, we report the discovery of an endogenous BK(Ca) channel alpha-subunit intron-containing mRNA in the cytoplasm of hippocampal neurons. This partially processed mRNA, which comprises approximately 10% of the total BK(Ca) channel alpha-subunit mRNAs, is distributed in a gradient throughout the somatodendritic space. We selectively reduced endogenous cytoplasmic levels of this intron-containing transcript by RNA interference without altering levels of the mature splice forms of the BK(Ca) channel mRNAs. In doing so, we could demonstrate that changes in a unique BK(Ca) channel alpha-subunit intron-containing splice variant mRNA can greatly impact the distribution of the BK(Ca) channel protein to dendritic spines and intrinsic firing properties of hippocampal neurons. These data suggest a new regulatory mechanism for modulating the membrane properties and ion channel gradients of hippocampal neurons.
Collapse
|
84
|
Robinson R. Minor spliceosome, major surprise: it's cytoplasmic. J Biophys Biochem Cytol 2007. [PMCID: PMC2140018 DOI: 10.1083/jcb.1796rr1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
85
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|