51
|
PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 2019; 41:526-537. [PMID: 30737086 PMCID: PMC6441871 DOI: 10.1016/j.ebiom.2019.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Skin atrophy is a major adverse effect of topical glucocorticoids. We recently reported that REDD1 (regulated in development and DNA damage 1) and FKBP51 (FK506 binding protein 5), negative regulators of mTOR/Akt signaling, are induced by glucocorticoids in mouse and human skin and are central drivers of steroid skin atrophy. Thus, we hypothesized that REDD1/FKBP51 inhibitors could protect skin against catabolic effects of glucocorticoids. Methods Using drug repurposing approach, we screened LINCS library (http://lincsproject.org/LINCS/) to identify repressors of REDD1/FKBP51 expression. Candidate compounds were tested for their ability to inhibit glucocorticoid-induced REDD1/FKBP51 expression in human primary/immortalized keratinocytes and in mouse skin. Reporter gene expression, microarray, and chromatin immunoprecipitation were employed to evaluate effect of these inhibitors on the glucocorticoid receptor (GR) signaling. Findings Bioinformatics analysis unexpectedly identified phosphoinositide-3-kinase (PI3K)/mTOR/Akt inhibitors as a pharmacological class of REDD1/FKBP51 repressors. Selected PI3K/mTOR/Akt inhibitors-Wortmannin (WM), LY294002, AZD8055, and two others indeed blocked REDD1/FKBP51expression in human keratinocytes. PI3K/mTOR/Akt inhibitors also modified global effect of glucocorticoids on trascriptome, shifting it towards therapeutically important transrepression; negatively impacted GR phosphorylation; nuclear translocation; and GR loading on REDD1/FKBP51 gene promoters. Further, topical application of LY294002 together with glucocorticoid fluocinolone acetonide (FA) protected mice against FA-induced proliferative block and skin atrophy but did not alter the anti-inflammatory activity of FA in ear edema test. Interpretation Our results built a strong foundation for development of safer GR-targeted therapies for inflammatory skin diseases using combination of glucocorticoids with PI3K/mTOR/Akt inhibitors. Fund Work is supported by NIH grants R01GM112945, R01AI125366, and HESI-THRIVE foundation.
Collapse
|
52
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
53
|
Parrado C, Philips N, Gilaberte Y, Juarranz A, González S. Oral Photoprotection: Effective Agents and Potential Candidates. Front Med (Lausanne) 2018; 5:188. [PMID: 29998107 PMCID: PMC6028556 DOI: 10.3389/fmed.2018.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Electromagnetic radiation in the ultraviolet, visible, and infrared ranges produces biologic effects in humans. Where some of these effects are beneficial, others are harmful to the skin, particularly those stemming from ultraviolet radiation (UVR). Pharmacological photoprotection can be topical or systemic. Systemic photoprotection is often administered orally, complementing topical protection. New and classic oral agents (e.g., essential micronutrients as vitamins, minerals, polyphenols, carotenoids) are endowed with photoprotective and anti-photocarcinogenic properties. These substances bear the potential to increase systemic protection against the effects of electromagnetic radiation in the UV, visible, and infrared ranges. Protective mechanisms vary and include anti-oxidant, anti-inflammatory, and immunomodulatory effects. As such, they provide protection against UVR and prevent photo-induced carcinogenesis and aging. In this review, we present state of the art approaches regarding the photoprotective effects of vitamins and vitamin derivatives, dietary botanical, and non-botanical agents. A growing body of data supports the beneficial effects of oral photoprotection on the health of the skin. More studies will likely confirm and expand the positive impact of oral dietary botanicals as complementary measures for photoprotection.
Collapse
Affiliation(s)
- Concepción Parrado
- Department of Histology and Pathology, University of Málaga, Málaga, Spain
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ, United States
| | - Yolanda Gilaberte
- Dermatology Service, Hospital Miguel Servet, Zaragoza, Spain.,Dermatology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Angeles Juarranz
- Biology Department, Instituto Ramón y Cajal de Investigación Sanitaria, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador González
- Medicine and Medical Specialties Department, Instituto Ramón y Cajal de Investigación Sanitaria, Alcalá University Madrid, Madrid, Spain
| |
Collapse
|
54
|
Lascala A, Martino C, Parafati M, Salerno R, Oliverio M, Pellegrino D, Mollace V, Janda E. Analysis of proautophagic activities of Citrus flavonoids in liver cells reveals the superiority of a natural polyphenol mixture over pure flavones. J Nutr Biochem 2018; 58:119-130. [PMID: 29890411 DOI: 10.1016/j.jnutbio.2018.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/21/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
Autophagy dysfunction has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Natural compounds present in bergamot polyphenol fraction (BPF) prevent NAFLD and induce autophagy in rat livers. Here, we employed HepG2 cells expressing DsRed-LC3-GFP, a highly sensitive model system to screen for proautophagic compounds present in BPF. BPF induced autophagy in a time- and dose-dependent fashion and the effect was amplified in cells loaded with palmitic acid. Autophagy was mediated by the hydrophobic fraction of acid-hydrolyzed BPF (A-BPF), containing six flavanone and flavone aglycones as identified by liquid chromatography-high-resolution mass spectrometry. Among them, naringenin, hesperitin, eriodictyol and diosmetin were weak inducers of autophagy. Apigenin showed the strongest and dose-dependent proautophagic activity at early time points (6 h). Luteolin induced a biphasic autophagic response, strong at low doses and inhibitory at higher doses. Both flavones were toxic in HepG2 cells and in differentiated human liver progenitors HepaRG upon longer treatments (24 h). In contrast, BPF and A-BPF did not show any toxicity, but induced a persistent increase in autophagic flux. A mixture of six synthetic aglycones mimicking A-BPF was sufficient to induce a similar autophagic response, but it was mildly cytotoxic. Thus, while six main BPF flavonoids fully account for its proautophagic activity, their combined effect is not sufficient to abrogate cytotoxicity of individual compounds. This suggests that a natural polyphenol phytocomplex, such as BPF, is a safer and more effective strategy for the treatment of NAFLD than the use of pure flavonoids.
Collapse
Affiliation(s)
- Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Concetta Martino
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Raffaele Salerno
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy.
| |
Collapse
|
55
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
56
|
Feng J, Liao Y, Xu X, Yi Q, He L, Tang L. hnRNP A1 promotes keratinocyte cell survival post UVB radiation through PI3K/Akt/mTOR pathway. Exp Cell Res 2018; 362:394-399. [PMID: 29229447 DOI: 10.1016/j.yexcr.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
hnRNP A1 acts as a critical splicing factor in regulating many alternative splicing events in various physiological and pathophysiological progressions. hnRNP A1 is capable of regulating UVB-induced hdm2 gene alternative splicing according to our previous study. However, the biological function and underlying molecular mechanism of hnRNP A1 in cell survival and cell cycle in response to UVB irradiation are still unclear. In this study, silencing hnRNP A1 expression by siRNA transfection led to decreased cell survival after UVB treatment, while promoting hnRNP A1 by lentiviruse vector resulted in increased cell survival. hnRNP A1 remarkably enhanced PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of Akt, mTOR and P70S6 protein. Inhibition of PI3K/Akt signaling by LY294002 suppressed the expression of hnRNP A1. While mTOR signaling inhibitors, rapamycin and AZD8055, did not influence hnRNP A1 expression in HaCaT cells, suggesting that hnRNP A1 may be an upstream mediator of mTOR signaling. Furthermore, hnRNP A1 could alleviate UVB-provoked cell cycle arrest at G0/G1 phase and promoted cell cycle progression at G2/M phase. Our results indicate that hnRNP A1 promotes cell survival and cell cycle progression following UVB radiation.
Collapse
Affiliation(s)
- Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China; Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yi Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China; Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Yi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China; Department of Physiology, College of preclinical medicine,Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ling He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
57
|
Chen P, Xu S, Qu J. Lycopene Protects Keratinocytes Against UVB Radiation-Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway. J Cell Biochem 2018; 119:366-377. [PMID: 28585698 DOI: 10.1002/jcb.26189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/05/2017] [Indexed: 04/04/2025]
Abstract
Lycopene, one of the most potent anti-oxidants, has been reported to exhibit potent anti-proliferative properties in a wide range of cancer cells through modulation of the cell cycle and apoptosis. Forkhead box O3 (FOXO3a) plays a pivotal role in modulating the expression of genes involved in cell death. Herein, we investigated the role of FOXO3a signaling in the anti-cancer effects of lycopene. Results showed that lycopene pretreatment attenuated UVB-induced cell hyper-proliferation and promoted apoptosis, accompanied by decreased cyclin-dependent kinase 2 (CDK2) and CDK4 complex in both human keratinocytes and SKH-1 hairless mice. FOXO3a is phosphorylated in response to UVB irradiation and sequestered in the cytoplasm, while lycopene pretreatment rescued this sensitization. Gene ablation of FOXO3a attenuated lycopene-induced decrease in cell hyper-proliferation, CDK2, and CDK4 complex, indicating a critical role of FOXO3a in the lycopene-induced anti-proliferative effect of keratinocytes during UVB irradiation. Transfection with FOXO3a siRNA inhibited the lycopene-induced increase in cell apoptosis, BAX and cleaved PARP expression. Moreover, loss of AKT induced further accelerated lycopene-induced FOXO3a dephosphorylation, while loss of mechanistic target of rapamycin complex 2 (mTORC2) by transfection with RICTOR siRNA induced levels of AKT phosphorylation comparable to those obtained with lycopene. In contrast, overexpression of AKT or mTORC2 decreased the effects of lycopene on the expression of FOXO3a as well as AKT phosphorylation, suggesting that lycopene depends on the negative modulation of mTORC2/AKT signaling. Taken together, our findings demonstrate that the mTORC2/AKT/FOXO3a axis plays a critical role in the anti-proliferative and pro-apoptotic effects of lycopene in UVB-induced photocarcinogenesis. J. Cell. Biochem. 119: 366-377, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmacy, Affiliated Hospital of Shandong Medical College, Linyi, 276000, Shandong Province, China
| | - Shina Xu
- Department of Pharmacy, Affiliated Hospital of Shandong Medical College, Linyi, 276000, Shandong Province, China
| | - Jinlong Qu
- Department of Dermatology, Linyi Central Hospital, Yishui County, Linyi, 276400, Shandong Province, China
| |
Collapse
|
58
|
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. CURRENT PHARMACOLOGY REPORTS 2017; 3:423-446. [PMID: 29399439 PMCID: PMC5791748 DOI: 10.1007/s40495-017-0113-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4', 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin's anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aditi Goel
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Karishma Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
59
|
Mao XY, Jin MZ, Chen JF, Zhou HH, Jin WL. Live or let die: Neuroprotective and anti-cancer effects of nutraceutical antioxidants. Pharmacol Ther 2017; 183:137-151. [PMID: 29055715 DOI: 10.1016/j.pharmthera.2017.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diet sources are closely involved in the pathogenesis of diverse neuropsychiatric disorders and cancers, in addition to inherited factors. Currently, natural products or nutraceuticals (commonly called medical foods) are increasingly employed for adjunctive therapy of these patients. However, the potential molecular mechanisms of the nutrient efficacy remain elusive. In this review, we summarized the neuroprotective and anti-cancer mechanisms of nutraceuticals. It was concluded that the nutraceuticals exerted neuroprotection and suppressed tumor growth possibly through the differential modulations of redox homeostasis. In addition, the balance between reactive oxygen species (ROS) production and ROS elimination was manipulated by multiple molecular mechanisms, including cell signaling pathways, inflammation, transcriptional regulation and epigenetic modulation, which were involved in the therapeutic potential of nutraceutical antioxidants against neurological diseases and cancers. We specifically proposed that ROS scavenging was integral in the neuroprotective potential of nutraceuticals, while alternation of ROS level (either increase or decrease) or disruption of redox homeostasis (ROS addiction) constituted the anti-cancer property of these compounds. We also hypothesized that ROS-associated ferroptosis, a novel type of lipid ROS-dependent regulatory cell death, was likely to be a critical mechanism for the nutraceutical antioxidants. Targeting ferroptosis is advantageous to develop new nutraceuticals with more effective and lower adverse reactions for curing patients with neuropsychiatric diseases or carcinomas.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jin-Fei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, PR China.
| |
Collapse
|
60
|
Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7:50. [PMID: 29034071 PMCID: PMC5629766 DOI: 10.1186/s13578-017-0179-x] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
Apigenin is a common dietary flavonoid that is abundantly present in many fruits, vegetables and Chinese medicinal herbs and serves multiple physiological functions, such as strong anti-inflammatory, antioxidant, antibacterial and antiviral activities and blood pressure reduction. Therefore, apigenin has been used as a traditional medicine for centuries. Recently, apigenin has been widely investigated for its anti-cancer activities and low toxicity. Apigenin was reported to suppress various human cancers in vitro and in vivo by multiple biological effects, such as triggering cell apoptosis and autophagy, inducing cell cycle arrest, suppressing cell migration and invasion, and stimulating an immune response. In this review, we focus on the most recent advances in the anti-cancer effects of apigenin and their underlying mechanisms, and we summarize the signaling pathways modulated by apigenin, including the PI3K/AKT, MAPK/ERK, JAK/STAT, NF-κB and Wnt/β-catenin pathways. We also discuss combinatorial strategies to enhance the anti-cancer effect of apigenin on various cancers and its use as an adjuvant chemotherapeutic agent to overcome cancer drug resistance or to alleviate other adverse effects of chemotherapy. The functions of apigenin against cancer stem cells are also summarized and discussed. These data demonstrate that apigenin is a promising reagent for cancer therapy. Apigenin appears to have the potential to be developed either as a dietary supplement or as an adjuvant chemotherapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Xiaohui Yan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Miao Qi
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Pengfei Li
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Yihong Zhan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| |
Collapse
|
61
|
Shan S, Shi J, Yang P, Jia B, Wu H, Zhang X, Li Z. Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8136-8144. [PMID: 28829588 DOI: 10.1021/acs.jafc.7b02757] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Apigenin (AP), as an anticancer agent, has been widely explored. However, the molecular targets of apigenin on tumor metabolism are unclear. Herein, we found that AP could block cellular glycolysis through restraining the tumor-specific pyruvate kinase M2 (PKM2) activity and expression and further significantly induce anti-colon cancer effects. The IC50 values of AP against HCT116, HT29, and DLD1 cells were 27.9 ± 2.45, 48.2 ± 3.01 and 89.5 ± 4.89 μM, respectively. Fluorescence spectra and solid-phase AP extraction assays proved that AP could directly bind to PKM2 and markedly inhibit PKM2 activity in vitro and in HCT116 cells. Interestingly, in the presence of d-fructose-1,6-diphosphate (FBP), the inhibitory effect of AP on PKM2 was not reversed, which suggests that AP is a new allosteric inhibitor of PKM2. RT-PCR and Western blot assays showed that AP could ensure a low PKM2/PKM1 ratio in HCT116 cells via blocking the β-catenin/c-Myc/PTBP1 signal pathway. Hence, PKM2 represents a novel potential target of AP against colon cancer.
Collapse
Affiliation(s)
- Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
- Department of Biology, Taiyuan Normal University , Taiyuan 030619, China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Peng Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Bin Jia
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
- School of Basic Medical Science, Shanxi Medical University , Taiyuan 030006, China
| | - Haili Wu
- School of Life Science and Technology, Shanxi University , Taiyuan 030006, China
| | - Xiaoli Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
- School of Life Science and Technology, Shanxi University , Taiyuan 030006, China
| |
Collapse
|
62
|
Byun S, Lee E, Lee KW. Therapeutic Implications of Autophagy Inducers in Immunological Disorders, Infection, and Cancer. Int J Mol Sci 2017; 18:ijms18091959. [PMID: 28895911 PMCID: PMC5618608 DOI: 10.3390/ijms18091959] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an essential catabolic program that forms part of the stress response and enables cells to break down their own intracellular components within lysosomes for recycling. Accumulating evidence suggests that autophagy plays vital roles in determining pathological outcomes of immune responses and tumorigenesis. Autophagy regulates innate and adaptive immunity affecting the pathologies of infectious, inflammatory, and autoimmune diseases. In cancer, autophagy appears to play distinct roles depending on the context of the malignancy by either promoting or suppressing key determinants of cancer cell survival. This review covers recent developments in the understanding of autophagy and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Eunjung Lee
- Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16495, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
63
|
Meng S, Zhu Y, Li JF, Wang X, Liang Z, Li SQ, Xu X, Chen H, Liu B, Zheng XY, Xie LP. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget 2017; 8:19834-19842. [PMID: 28423637 PMCID: PMC5386726 DOI: 10.18632/oncotarget.15771] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/22/2017] [Indexed: 12/28/2022] Open
Abstract
Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Zhen Liang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Shi-Qi Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiang-Yi Zheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| |
Collapse
|
64
|
Liu Y, Xu H, An M. mTORC1 regulates apoptosis and cell proliferation in pterygium via targeting autophagy and FGFR3. Sci Rep 2017; 7:7339. [PMID: 28779179 PMCID: PMC5544690 DOI: 10.1038/s41598-017-07844-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/30/2017] [Indexed: 11/09/2022] Open
Abstract
Pterygium is one of the most common ocular surface diseases. During the initiation of pterygium, resting epithelial cells are activated and exhibit aberrant apoptosis and cell proliferation. Mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth, cell proliferation, protein synthesis, autophagy and transcription. However, the effect of mTORC1 activation in epithelial cells on pterygium development has not yet been reported. Additionally, the roles of mTORC1 in aberrant apoptosis and cell proliferation during the initiation of pterygium, and the underlying mechanisms, are not known. Herein, we evaluated mTOR signalling in pterygium growth and development. The results revealed that mTOR signalling, especially mTORC1 signaling, is highly activated, and aberrant apoptosis and cell proliferation were observed in pterygium. mTORC1 activation inhibits apoptosis in pterygium by regulating Beclin 1-dependent autophagy via targeting Bcl-2. mTORC1 also negatively regulates fibroblast growth factor receptor 3 (FGFR3) through inhibition of p73, thereby stimulating cell proliferation in pterygium. These data demonstrate that mTORC1 signalling is highly activated in pterygium and provide new insights into the pathogenesis and progression of pterygium. Hence, mTORC1 may be a novel therapeutic target for the treatment of pterygium.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Ophthalmology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hanchun Xu
- Department of Ophthalmology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
65
|
Higgins S, Miller KA, Wojcik KY, Ahadiat O, Escobedo LA, Wysong A, Cockburn M. Phytochemicals and Naturally Occurring Substances in the Chemoprevention of Skin Cancer. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Park EJ, Kim YM, Chang KC. Hemin Reduces HMGB1 Release by UVB in an AMPK/HO-1-dependent Pathway in Human Keratinocytes HaCaT Cells. Arch Med Res 2017; 48:423-431. [DOI: 10.1016/j.arcmed.2017.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
|
67
|
Martinez RM, Pinho-Ribeiro FA, Vale DL, Steffen VS, Vicentini FT, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:139-146. [DOI: 10.1016/j.jphotobiol.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
68
|
Stump TA, Santee BN, Williams LP, Kunze RA, Heinze CE, Huseman ED, Gryka RJ, Simpson DS, Amos S. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells. ACTA ACUST UNITED AC 2017; 69:907-916. [PMID: 28349530 DOI: 10.1111/jphp.12718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Glioblastoma (GBM) is highly proliferative, infiltrative, malignant and the most deadly form of brain tumour. The epidermal growth factor receptor (EGFR) is overexpressed, amplified and mutated in GBM and has been shown to play key and important roles in the proliferation, growth and survival of this tumour. The goal of our study was to investigate the antiproliferative, apoptotic and molecular effects of apigenin in GBM. METHODS Proliferation and viability tests were carried out using the trypan blue exclusion, MTT and lactate dehydrogenase (LDH) assays. Flow cytometry was used to examine the effects of apigenin on the cell cycle check-points. In addition, we determined the effects of apigenin on EGFR-mediated signalling pathways by Western blot analyses. KEY FINDINGS Our results showed that apigenin reduced cell viability and proliferation in a dose- and time-dependent manner while increasing cytotoxicity in GBM cells. Treatment with apigenin-induced is poly ADP-ribose polymerase (PARP) cleavage and caused cell cycle arrest at the G2M checkpoint. Furthermore, our data revealed that apigenin inhibited EGFR-mediated phosphorylation of mitogen-activated protein kinase (MAPK), AKT and mammalian target of rapamycin (mTOR) signalling pathways and attenuated the expression of Bcl-xL. CONCLUSION Our results demonstrated that apigenin has potent inhibitory effects on pathways involved in GBM proliferation and survival and could potentially be used as a therapeutic agent for GBM.
Collapse
Affiliation(s)
- Trevor A Stump
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Brittany N Santee
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Lauren P Williams
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Rachel A Kunze
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Chelsae E Heinze
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Eric D Huseman
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Rebecca J Gryka
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Denise S Simpson
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| | - Samson Amos
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, Cedarville University, Cedarville, OH, USA
| |
Collapse
|
69
|
Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5930639. [PMID: 28400912 PMCID: PMC5376460 DOI: 10.1155/2017/5930639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.
Collapse
|
70
|
Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice. PLoS One 2017; 12:e0174042. [PMID: 28301572 PMCID: PMC5354422 DOI: 10.1371/journal.pone.0174042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging.
Collapse
|
71
|
Sung B, Chung HY, Kim ND. Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy. J Cancer Prev 2016; 21:216-226. [PMID: 28053955 PMCID: PMC5207605 DOI: 10.15430/jcp.2016.21.4.216] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
Apigenin (4′,5,7-trihydroxyflavone) is a flavonoid commonly found in many fruits and vegetables such as parsley, chamomile, celery, and kumquats. In the last few decades, recognition of apigenin as a cancer chemopreventive agent has increased. Significant progress has been made in studying the chemopreventive aspects of apigenin both in vitro and in vivo. Several studies have demonstrated that the anticarcinogenic properties of apigenin occur through regulation of cellular response to oxidative stress and DNA damage, suppression of inflammation and angiogenesis, retardation of cell proliferation, and induction of autophagy and apoptosis. One of the most well-recognized mechanisms of apigenin is the capability to promote cell cycle arrest and induction of apoptosis through the p53-related pathway. A further role of apigenin in chemoprevention is the induction of autophagy in several human cancer cell lines. In this review, we discuss the details of apigenin, apoptosis, autophagy, and the role of apigenin in cancer chemoprevention via the induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Korea
| |
Collapse
|
72
|
Mou K, Liu W, Han D, Li P. HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death. J Dermatol Sci 2016; 85:162-169. [PMID: 28012822 DOI: 10.1016/j.jdermsci.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The primary cause of skin cancer is ultraviolet (UV) light from the sun. Keratinocytes are the predominant cell type in the epidermis and form a barrier against environmental damage, especially from UV light irradiation. Autophagy is a self-digestion mechanism for energy homeostasis at critical times during development and as a response to stress. High-mobility group protein 1 (HMGB1) is a highly conserved nuclear protein that is associated with cell autophagy. OBJECTIVE We investigated the role of HMGB1 in keratinocytes exposed to UV irradiation and its regulation of keratinocyte autophagy. METHODS Specimens of UV-exposed human skin were assayed immunohistochemically for HMGB1. HaCaT immortalized human keratinocytes were used to investigate the mechanism of HMGB1 translocation induced by UV irradiation. Levels of cytosolic reactive oxygen species (ROS) were determined by H2DCF assay, apoptosis was assayed by flow cytometry and western-blot after lentivirus-mediated shRNA targeting of HMGB1 in keratinocytes by UV irradiation. Phosphorylated-Erk1/2 expression was assayed by western blotting. RESULTS HMGB1 and its receptor (receptor for advanced glycation end products, RAGE) were both expressed by HaCaT cells, and HMGB1 was transferred from the nucleus to the cytoplasm after UV irradiation in both HaCaT and human skin keratinocytes. Knockdown of HMGB1 expression by lentivirus-mediated shRNA limited UV-induced autophagy and led to increased apoptosis of HaCaT cells. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. UV irradiation led to phosphorylation of Erk1/2 in HaCaT cells. Inhibition of RAGE and Erk1/2 limited HaCaT cell autophagy. CONCLUSION Autocrine HMGB1 modulated HaCaT autophagy via a RAGE/HMGB1/extracellular signal-regulated Erk1/2-dependent pathway to protect keratinocytes from apoptosis during UV irradiation.
Collapse
Affiliation(s)
- Kuanhou Mou
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Wei Liu
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Dan Han
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Pan Li
- Center for Translational Medicine, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
73
|
Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int J Mol Sci 2016; 17:E2063. [PMID: 27941683 PMCID: PMC5187863 DOI: 10.3390/ijms17122063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO₂/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO₂/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
74
|
Zeng L, Zhang G, Lin S, Gong D. Inhibitory Mechanism of Apigenin on α-Glucosidase and Synergy Analysis of Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6939-6949. [PMID: 27581205 DOI: 10.1021/acs.jafc.6b02314] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inhibition of α-glucosidase activity may suppress postprandial hyperglycemia. The inhibition kinetic analysis showed that apigenin reversibly inhibited α-glucosidase activity with an IC50 value of (10.5 ± 0.05) × 10(-6) mol L(-1), and the inhibition was in a noncompetitive manner through a monophasic kinetic process. The fluorescence quenching and conformational changes determined by fluorescence and circular dichroism were due to the formation of an α-glucosidase-apigenin complex, and the binding was mainly driven by hydrophobic interactions and hydrogen bonding. The molecular simulation showed that apigenin bound to a site close to the active site of α-glucosidase, which may induce the channel closure to prevent the access of substrate, eventually leading to the inhibition of α-glucosidase. Isobolographic analysis of the interaction between myricetin and apigenin or morin showed that both of them exhibited synergistic effects at low concentrations and tended to exhibit additive or antagonistic interaction at high concentrations.
Collapse
Affiliation(s)
- Li Zeng
- State Key Laboratory of Food Science, Technology, Nanchang University , Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science, Technology, Nanchang University , Nanchang 330047, China
| | - Suyun Lin
- State Key Laboratory of Food Science, Technology, Nanchang University , Nanchang 330047, China
| | - Deming Gong
- School of Biological Sciences, The University of Auckland , Auckland 1142, New Zealand
| |
Collapse
|