51
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
52
|
MinE conformational switching confers robustness on self-organized Min protein patterns. Proc Natl Acad Sci U S A 2018; 115:4553-4558. [PMID: 29666276 PMCID: PMC5939084 DOI: 10.1073/pnas.1719801115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many fundamental cellular processes are spatially regulated by self-organized protein patterns, which are often based on nucleotide-binding proteins that switch their nucleotide state upon interaction with a second, activating protein. For reliable function, these protein patterns must be robust against parameter changes, although the basis for such robustness is generally elusive. Here we take a combined theoretical and experimental approach to the Escherichia coli Min system, a paradigmatic system for protein self-organization. By mathematical modeling and in vitro reconstitution of mutant proteins, we demonstrate that the robustness of pattern formation is dramatically enhanced by an interlinked functional switching of both proteins, rather than one. Such interlinked functional switching could be a generic means of obtaining robustness in biological pattern-forming systems. Protein patterning is vital for many fundamental cellular processes. This raises two intriguing questions: Can such intrinsically complex processes be reduced to certain core principles and, if so, what roles do the molecular details play in individual systems? A prototypical example for protein patterning is the bacterial Min system, in which self-organized pole-to-pole oscillations of MinCDE proteins guide the cell division machinery to midcell. These oscillations are based on cycling of the ATPase MinD and its activating protein MinE between the membrane and the cytoplasm. Recent biochemical evidence suggests that MinE undergoes a reversible, MinD-dependent conformational switch from a latent to a reactive state. However, the functional relevance of this switch for the Min network and pattern formation remains unclear. By combining mathematical modeling and in vitro reconstitution of mutant proteins, we dissect the two aspects of MinE’s switch, persistent membrane binding and a change in MinE’s affinity for MinD. Our study shows that the MinD-dependent change in MinE’s binding affinity for MinD is essential for patterns to emerge over a broad and physiological range of protein concentrations. Mechanistically, our results suggest that conformational switching of an ATPase-activating protein can lead to the spatial separation of its distinct functional states and thereby confer robustness on an intracellular protein network with vital roles in bacterial cell division.
Collapse
|
53
|
Giese W, Milicic G, Schröder A, Klipp E. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction. PLoS Comput Biol 2018; 14:e1006075. [PMID: 29630597 PMCID: PMC5908195 DOI: 10.1371/journal.pcbi.1006075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/19/2018] [Accepted: 03/07/2018] [Indexed: 02/06/2023] Open
Abstract
The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus.
Collapse
Affiliation(s)
- Wolfgang Giese
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gregor Milicic
- Department of Mathematics, University of Salzburg, Salzburg, Austria
| | - Andreas Schröder
- Department of Mathematics, University of Salzburg, Salzburg, Austria
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
54
|
Rank M, Mitra A, Reese L, Diez S, Frey E. Limited Resources Induce Bistability in Microtubule Length Regulation. PHYSICAL REVIEW LETTERS 2018; 120:148101. [PMID: 29694156 DOI: 10.1103/physrevlett.120.148101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The availability of protein is an important factor for the determination of the size of the mitotic spindle. Involved in spindle-size regulation is kinesin-8, a molecular motor and microtubule (MT) depolymerase, which is known to tightly control MT length. Here, we propose and analyze a theoretical model in which kinesin-induced MT depolymerization competes with spontaneous polymerization while supplies of both tubulin and kinesin are limited. In contrast to previous studies where resources were unconstrained, we find that, for a wide range of concentrations, MT length regulation is bistable. We test our predictions by conducting in vitro experiments and find that the bistable behavior manifests in a bimodal MT length distribution.
Collapse
Affiliation(s)
- Matthias Rank
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
| | - Aniruddha Mitra
- B CUBE-Center for Molecular Bioengineering and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Louis Reese
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
| |
Collapse
|
55
|
Mizuuchi K, Vecchiarelli AG. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging. Phys Biol 2018; 15:031001. [PMID: 29188788 DOI: 10.1088/1478-3975/aa9e5e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers-static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two 'simple' proteins can form the remarkable spectrum of patterns.
Collapse
Affiliation(s)
- Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States of America
| | | |
Collapse
|
56
|
Miyagi A, Ramm B, Schwille P, Scheuring S. High-Speed Atomic Force Microscopy Reveals the Inner Workings of the MinDE Protein Oscillator. NANO LETTERS 2018; 18:288-296. [PMID: 29210266 DOI: 10.1021/acs.nanolett.7b04128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The MinDE protein system from E. coli has recently been identified as a minimal biological oscillator, based on two proteins only: The ATPase MinD and the ATPase activating protein MinE. In E. coli, the system works as the molecular ruler to place the divisome at midcell for cell division. Despite its compositional simplicity, the molecular mechanism leading to protein patterns and oscillations is still insufficiently understood. Here we used high-speed atomic force microscopy to analyze the mechanism of MinDE membrane association/dissociation dynamics on isolated membrane patches, down to the level of individual point oscillators. This nanoscale analysis shows that MinD association to and dissociation from the membrane are both highly cooperative but mechanistically different processes. We propose that they represent the two directions of a single allosteric switch leading to MinD filament formation and depolymerization. Association/dissociation are separated by rather long apparently silent periods. The membrane-associated period is characterized by MinD filament multivalent binding, avidity, while the dissociated period is defined by seeding of individual MinD. Analyzing association/dissociation kinetics with varying MinD and MinE concentrations and dependent on membrane patch size allowed us to disentangle the essential dynamic variables of the MinDE oscillation cycle.
Collapse
Affiliation(s)
- Atsushi Miyagi
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy , 13009 Marseille, France
| | - Beatrice Ramm
- Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy , 13009 Marseille, France
| |
Collapse
|
57
|
Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S, Frey E, Søgaard-Andersen L. The PomXYZ Proteins Self-Organize on the Bacterial Nucleoid to Stimulate Cell Division. Dev Cell 2017; 41:299-314.e13. [PMID: 28486132 DOI: 10.1016/j.devcel.2017.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Abstract
Cell division site positioning is precisely regulated to generate correctly sized and shaped daughters. We uncover the strategy used by the social bacterium Myxococcus xanthus to position the FtsZ cytokinetic ring at midcell. PomX, PomY, and the nucleoid-binding ParA/MinD ATPase PomZ self-assemble forming a large nucleoid-associated complex that localizes at the division site before FtsZ to directly guide and stimulate division. PomXYZ localization is generated through self-organized biased random motion on the nucleoid toward midcell and constrained motion at midcell. Experiments and theory show that PomXYZ motion is produced by diffusive PomZ fluxes on the nucleoid into the complex. Flux differences scale with the intracellular asymmetry of the complex and are converted into a local PomZ concentration gradient across the complex with translocation toward the higher PomZ concentration. At midcell, fluxes equalize resulting in constrained motion. Flux-based mechanisms may represent a general paradigm for positioning of macromolecular structures in bacteria.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Sabrina Huneke-Vogt
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany.
| |
Collapse
|
58
|
Forrow A, Woodhouse FG, Dunkel J. Mode Selection in Compressible Active Flow Networks. PHYSICAL REVIEW LETTERS 2017; 119:028102. [PMID: 28753360 DOI: 10.1103/physrevlett.119.028102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 06/07/2023]
Abstract
Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. Here, we introduce and explore an analytically tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems, we find that active friction selects discrete states with a limited number of oscillation modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy networks and find good agreement with a Bayesian state estimation based on a hidden Markov model applied to simulated time series data. Our results suggest that the macroscopic response of active network structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well suited to study topological sound modes and spectral band gaps in active matter.
Collapse
Affiliation(s)
- Aden Forrow
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Francis G Woodhouse
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
59
|
Kretschmer S, Zieske K, Schwille P. Large-scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE's membrane targeting sequence. PLoS One 2017. [PMID: 28622374 PMCID: PMC5473585 DOI: 10.1371/journal.pone.0179582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The E. coli MinDE oscillator is a paradigm for protein self-organization and gradient formation. Previously, we reconstituted Min protein wave patterns on flat membranes as well as gradient-forming pole-to-pole oscillations in cell-shaped PDMS microcompartments. These oscillations appeared to require direct membrane interaction of the ATPase activating protein MinE. However, it remained unclear how exactly Min protein dynamics are regulated by MinE membrane binding. Here, we dissect the role of MinE’s membrane targeting sequence (MTS) by reconstituting various MinE mutants in 2D and 3D geometries. We demonstrate that the MTS defines the lower limit of the concentration-dependent wavelength of Min protein patterns while restraining MinE’s ability to stimulate MinD’s ATPase activity. Strikingly, a markedly reduced length scale—obtainable even by single mutations—is associated with a rich variety of multistable dynamic modes in cell-shaped compartments. This dramatic remodeling in response to biochemical changes reveals a remarkable trade-off between robustness and versatility of the Min oscillator.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- Graduate School of Quantitative Biosciences, Ludwig-Maximilians-Universität, München, Germany
| | - Katja Zieske
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
60
|
A Design Principle for an Autonomous Post-translational Pattern Formation. Cell Rep 2017; 19:863-874. [DOI: 10.1016/j.celrep.2017.03.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/22/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
|
61
|
Abstract
Cytokinesis in E. coli is organized by a cytoskeletal element designated the Z ring. The Z ring is formed at midcell by the coalescence of FtsZ filaments tethered to the membrane by interaction of FtsZ's conserved C-terminal peptide (CCTP) with two membrane-associated proteins, FtsA and ZipA. Although interaction between an FtsZ monomer and either of these proteins is of low affinity, high affinity is achieved through avidity - polymerization linked CCTPs interacting with the membrane tethers. The placement of the Z ring at midcell is ensured by antagonists of FtsZ polymerization that are positioned within the cell and target FtsZ filaments through the CCTP. The placement of the ring is reinforced by a protein network that extends from the terminus (Ter) region of the chromosome to the Z ring. Once the Z ring is established, additional proteins are recruited through interaction with FtsA, to form the divisome. The assembled divisome is then activated by FtsN to carry out septal peptidoglycan synthesis, with a dynamic Z ring serving as a guide for septum formation. As the septum forms, the cell wall is split by spatially regulated hydrolases and the outer membrane invaginates in step with the aid of a transenvelope complex to yield progeny cells.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- University of Kansas Medical Center, Kansas City, KS, USA.
| | - Shishen Du
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
62
|
Caspi Y, Dekker C. Mapping out Min protein patterns in fully confined fluidic chambers. eLife 2016; 5. [PMID: 27885986 PMCID: PMC5217063 DOI: 10.7554/elife.19271] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems. DOI:http://dx.doi.org/10.7554/eLife.19271.001 Some proteins can spontaneously organize themselves into ordered patterns within living cells. One widely studied pattern is made in a rod-shaped bacterium called Escherichia coli by a group of proteins called the Min proteins. The pattern formed by the Min proteins allows an E. coli cell to produce two equally sized daughter cells when it divides by ensuring that the division machinery correctly assembles at the center of the parent cell. These proteins move back and forth between the two ends of the parent cell so that the levels of Min proteins are highest at the ends and lowest in the middle. Since the Min proteins act to inhibit the assembly of the cell division machinery, this machinery only assembles in locations where the level of Min proteins is at its lowest, that is, at the middle of the cell. When Min proteins are purified and placed within an artificial compartment that contains a source of chemical energy and is covered by a membrane similar to the membranes that surround cells, they spontaneously form traveling waves on top of the membrane in many directions along to surface. It is not clear how these waves relate to the oscillations seen in E. coli. Caspi and Dekker now analyze the behavior of purified Min proteins inside chambers of various sizes that are fully enclosed by a membrane. The results show that in narrow chambers, Min proteins move back and forth (i.e. oscillate) from one side to the other. However, in wider containers the wave motion is more common. In containers of medium width the Min proteins rotate in a spiral fashion. Caspi and Dekker propose that the spiral rotations are the underlying pattern formed by Min proteins and that the back and forth motion is caused by spirals being cut short. In other words, if a spiral cannot form because the compartment is too small then the back and forth motion emerges. Similarly, Caspi and Dekker propose that the waves emerge in larger containers when multiple spirals come together. These findings suggest that the different patterns that Min proteins form in bacterial cells and artificial compartments arise from different underlying mechanisms. The next step will be to investigate other differences in how the patterns of Min proteins form in E. coli and in artificial compartments. DOI:http://dx.doi.org/10.7554/eLife.19271.002
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
63
|
Zieske K, Chwastek G, Schwille P. Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets. Angew Chem Int Ed Engl 2016; 55:13455-13459. [PMID: 27465495 PMCID: PMC5113663 DOI: 10.1002/anie.201606069] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 11/25/2022]
Abstract
The Min proteins from E.coli position the bacterial cell-division machinery through pole-to-pole oscillations. In vitro, Min protein self-organization can be reconstituted in the presence of a lipid membrane as a catalytic surface. However, Min dynamics have so far not been reconstituted in fully membrane-enclosed volumes. Microdroplets interfaced by lipid monolayers were employed as a simple 3D mimic of cellular compartments to reconstitute Min protein oscillations. We demonstrate that lipid monolayers are sufficient to fulfil the catalytic role of the membrane and thus represent a facile platform to investigate Min protein regulated dynamics of the cell-division protein FtsZ-mts. In particular, we show that droplet containers reveal distinct Min oscillation modes, and reveal a dependence of FtsZ-mts structures on compartment size. Finally, co-reconstitution of Min proteins and FtsZ-mts in droplets yields antagonistic localization, thus demonstrating that droplets indeed support the analysis of complex bacterial self-organization in confined volumes.
Collapse
Affiliation(s)
- Katja Zieske
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Grzegorz Chwastek
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
| |
Collapse
|
64
|
Zieske K, Chwastek G, Schwille P. Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Katja Zieske
- Cellular and Molecular Biophysics; Max Planck Institute of Biochemistry; 82152 Martinsried Germany
- Developmental Biology; Stanford University; Stanford CA 94305 USA
| | - Grzegorz Chwastek
- Cellular and Molecular Biophysics; Max Planck Institute of Biochemistry; 82152 Martinsried Germany
| | - Petra Schwille
- Cellular and Molecular Biophysics; Max Planck Institute of Biochemistry; 82152 Martinsried Germany
| |
Collapse
|
65
|
Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C. Multistability and dynamic transitions of intracellular Min protein patterns. Mol Syst Biol 2016; 12:873. [PMID: 27279643 PMCID: PMC4923923 DOI: 10.15252/msb.20156724] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 11/09/2022] Open
Abstract
Cells owe their internal organization to self-organized protein patterns, which originate and adapt to growth and external stimuli via a process that is as complex as it is little understood. Here, we study the emergence, stability, and state transitions of multistable Min protein oscillation patterns in live Escherichia coli bacteria during growth up to defined large dimensions. De novo formation of patterns from homogenous starting conditions is observed and studied both experimentally and in simulations. A new theoretical approach is developed for probing pattern stability under perturbations. Quantitative experiments and simulations show that, once established, Min oscillations tolerate a large degree of intracellular heterogeneity, allowing distinctly different patterns to persist in different cells with the same geometry. Min patterns maintain their axes for hours in experiments, despite imperfections, expansion, and changes in cell shape during continuous cell growth. Transitions between multistable Min patterns are found to be rare events induced by strong intracellular perturbations. The instances of multistability studied here are the combined outcome of boundary growth and strongly nonlinear kinetics, which are characteristic of the reaction-diffusion patterns that pervade biology at many scales.
Collapse
Affiliation(s)
- Fabai Wu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jacob Halatek
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Matthias Reiter
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Enzo Kingma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
66
|
Möbius W, Laan L. Physical and Mathematical Modeling in Experimental Papers. Cell 2016; 163:1577-83. [PMID: 26687351 DOI: 10.1016/j.cell.2015.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 11/15/2022]
Abstract
An increasing number of publications include modeling. Often, such studies help us to gain a deeper insight into the phenomena studied and break down barriers between experimental and theoretical communities. However, combining experimental and theoretical work is challenging for authors, reviewers, and readers. To help maximize the usefulness and impact of combined theoretical and experimental research, this Primer describes the purpose, usefulness, and different types of models and addresses the practical aspect of integrated publications by outlining characteristics of good modeling, presentation, and fruitful collaborations.
Collapse
Affiliation(s)
- Wolfram Möbius
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, the Netherlands.
| |
Collapse
|
67
|
|
68
|
Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc Natl Acad Sci U S A 2016; 113:E1479-88. [PMID: 26884160 DOI: 10.1073/pnas.1600644113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified "burst" patterns--radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator.
Collapse
|
69
|
Abstract
Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.
Collapse
|
70
|
Giese W, Eigel M, Westerheide S, Engwer C, Klipp E. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys Biol 2015; 12:066014. [DOI: 10.1088/1478-3975/12/6/066014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
71
|
Aquino G, Wingreen NS, Endres RG. Know the Single-Receptor Sensing Limit? Think Again. JOURNAL OF STATISTICAL PHYSICS 2015; 162:1353-1364. [PMID: 26941467 PMCID: PMC4761375 DOI: 10.1007/s10955-015-1412-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/29/2015] [Indexed: 05/28/2023]
Abstract
How cells reliably infer information about their environment is a fundamentally important question. While sensing and signaling generally start with cell-surface receptors, the degree of accuracy with which a cell can measure external ligand concentration with even the simplest device-a single receptor-is surprisingly hard to pin down. Recent studies provide conflicting results for the fundamental physical limits. Comparison is made difficult as different studies either suggest different readout mechanisms of the ligand-receptor occupancy, or differ on how ligand diffusion is implemented. Here we critically analyse these studies and present a unifying perspective on the limits of sensing, with wide-ranging biological implications.
Collapse
Affiliation(s)
- Gerardo Aquino
- />Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, London, United Kingdom
| | - Ned S. Wingreen
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Robert G. Endres
- />Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, London, United Kingdom
| |
Collapse
|
72
|
Schulte JB, Zeto RW, Roundy D. Theoretical Prediction of Disrupted Min Oscillation in Flattened Escherichia coli. PLoS One 2015; 10:e0139813. [PMID: 26457805 PMCID: PMC4601790 DOI: 10.1371/journal.pone.0139813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
The dynamics of the Min-protein system help Escherichia coli regulate the process of cell division by identifying the center of the cell. While this system exhibits robust bipolar oscillations in wild-type cell shapes, recent experiments have shown that when the cells are mechanically deformed into wide, flattened out, irregular shapes, the spatial regularity of these oscillations breaks down. We employ widely used stochastic and deterministic models of the Min system to simulate cells with flattened shapes. The deterministic model predicts strong bipolar oscillations, in contradiction with the experimentally observed behavior, while the stochastic model, which is based on the same reaction-diffusion equations, predicts more spatially irregular oscillations. We further report simulations of flattened but more symmetric shapes, which suggest that the flattening and lateral expansion may contribute as much to the irregular oscillation behavior as the asymmetry of the cell shapes.
Collapse
Affiliation(s)
- Jeff B. Schulte
- Dept. of Physics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Rene W. Zeto
- Dept. of Physics, Oregon State University, Corvallis, Oregon, United States of America
| | - David Roundy
- Dept. of Physics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
73
|
Xiong L, Lan G. An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division. PLoS Comput Biol 2015; 11:e1004351. [PMID: 26317492 PMCID: PMC4552557 DOI: 10.1371/journal.pcbi.1004351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/27/2015] [Indexed: 02/02/2023] Open
Abstract
Sustained molecular oscillations are ubiquitous in biology. The obtained oscillatory patterns provide vital functions as timekeepers, pacemakers and spacemarkers. Models based on control theory have been introduced to explain how specific oscillatory behaviors stem from protein interaction feedbacks, whereas the energy dissipation through the oscillating processes and its role in the regulatory function remain unexplored. Here we developed a general framework to assess an oscillator’s regulation performance at different dissipation levels. Using the Escherichia coli MinCDE oscillator as a model system, we showed that a sufficient amount of energy dissipation is needed to switch on the oscillation, which is tightly coupled to the system’s regulatory performance. Once the dissipation level is beyond this threshold, unlike stationary regulators’ monotonic performance-to-cost relation, excess dissipation at certain steps in the oscillating process damages the oscillator’s regulatory performance. We further discovered that the chemical free energy from ATP hydrolysis has to be strategically assigned to the MinE-aided MinD release and the MinD immobilization steps for optimal performance, and a higher energy budget improves the robustness of the oscillator. These results unfold a novel mode by which living systems trade energy for regulatory function. This paper presents a unique dissipation mode of converting biochemical free energy in ATP to regulatory function through the MinCDE bio-oscillator that marks the mid-cell position for symmetric bacterial cell division. Through assessing the oscillator’s performance-to-cost relation, we demonstrate that some dissipation threshold needs to be satisfied to switch on the oscillation, but the oscillator’s performance can be damaged by excess free energy dissipation, which is distinct from the known monotonic tradeoff relation of stationary regulators. An optimal dissipation strategy has been unveiled: the ATP free energy must be precisely allocated to specific reaction steps for accurate mid-cell recognition, which also coincides with the dynamic requirements for robust oscillation to occur. These discoveries identify an optimizable operation scheme of free energy consumption in biological systems and provide deep insights into the evolution of dynamic regulatory networks.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Physics, George Washington University, Washington, D.C., United States of America
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
74
|
Wu F, van Schie BG, Keymer JE, Dekker C. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. NATURE NANOTECHNOLOGY 2015; 10:719-26. [PMID: 26098227 PMCID: PMC4966624 DOI: 10.1038/nnano.2015.126] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be 'sculpted' into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm(3), Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.
Collapse
Affiliation(s)
| | | | | | - Cees Dekker
- Correspondence should be addressed to Cees Dekker ()
| |
Collapse
|
75
|
Walsh JC, Angstmann CN, Duggin IG, Curmi PMG. Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells. PLoS One 2015; 10:e0128148. [PMID: 26018614 PMCID: PMC4446092 DOI: 10.1371/journal.pone.0128148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022] Open
Abstract
Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane-bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo.
Collapse
Affiliation(s)
- James C. Walsh
- School of Physics, University of New South Wales, Sydney NSW 2052, Australia
- The ithree institute, University of Technology, Sydney NSW 2007, Australia
| | | | - Iain G. Duggin
- The ithree institute, University of Technology, Sydney NSW 2007, Australia
| | - Paul M. G. Curmi
- School of Physics, University of New South Wales, Sydney NSW 2052, Australia
- * E-mail:
| |
Collapse
|
76
|
Männik J, Bailey MW. Spatial coordination between chromosomes and cell division proteins in Escherichia coli. Front Microbiol 2015; 6:306. [PMID: 25926826 PMCID: PMC4396457 DOI: 10.3389/fmicb.2015.00306] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/27/2015] [Indexed: 11/13/2022] Open
Abstract
To successfully propagate, cells need to coordinate chromosomal replication and segregation with cell division to prevent formation of DNA-less cells and cells with damaged DNA. Here, we review molecular systems in Escherichia coli that are known to be involved in positioning the divisome and chromosome relative to each other. Interestingly, this well-studied micro-organism has several partially redundant mechanisms to achieve this task; none of which are essential. Some of these systems determine the localization of the divisome relative to chromosomes such as SlmA-dependent nucleoid occlusion, some localize the chromosome relative to the divisome such as DNA translocation by FtsK, and some are likely to act on both systems such as the Min system and newly described Ter linkage. Moreover, there is evidence that E. coli harbors other divisome-chromosome coordination systems in addition to those known. The review also discusses the minimal requirements of coordination between chromosomes and cell division proteins needed for cell viability. Arguments are presented that cells can propagate without any dedicated coordination between their chromosomes and cell division machinery at the expense of lowered fitness.
Collapse
Affiliation(s)
- Jaan Männik
- Department of Physics and Astronomy, University of Tennessee , Knoxville, TN, USA ; Department of Biochemistry and Molecular and Cellular Biology, University of Tennessee , Knoxville, TN, USA
| | - Matthew W Bailey
- Department of Physics and Astronomy, University of Tennessee , Knoxville, TN, USA
| |
Collapse
|
77
|
Mika JT, Schavemaker PE, Krasnikov V, Poolman B. Impact of osmotic stress on protein diffusion inLactococcus lactis. Mol Microbiol 2014; 94:857-70. [DOI: 10.1111/mmi.12800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Jacek T. Mika
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Chemistry; Katholieke Universiteit Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Paul E. Schavemaker
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor Krasnikov
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Bert Poolman
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
78
|
Abstract
A great deal of research over the last several years has focused on how the inherent randomness in movements and reactivity of biomolecules can give rise to unexpected large-scale differences in the behavior of otherwise identical cells. Our own research has approached this problem from two vantage points - a microscopic kinetic view of the individual molecules (nucleic acids, proteins, etc.) diffusing and interacting in a crowded cellular environment; and a broader systems-level view of how enzyme variability can give rise to well-defined metabolic phenotypes. The former led to the development of the Lattice Microbes software - a GPU-accelerated stochastic simulator for reaction-diffusion processes in models of whole cells; the latter to the development of a method we call population flux balance analysis (FBA). The first part of this article reviews the Lattice Microbes methodology, and two recent technical advances that extend the capabilities of Lattice Microbes to enable simulations of larger organisms and colonies. The second part of this article focuses on our recent population FBA study of Escherichia coli, which predicted variability in the usage of different metabolic pathways resulting from heterogeneity in protein expression. Finally, we discuss exciting early work using a new hybrid methodology that integrates FBA with spatially resolved kinetic simulations to study how cells compete and cooperate within dense colonies and consortia.
Collapse
Affiliation(s)
- John A Cole
- Department of Physics, University of Illinois, Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801 (USA)
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, IL 61801 (USA)
| |
Collapse
|
79
|
Zieske K, Schweizer J, Schwille P. Surface topology assisted alignment of Min protein waves. FEBS Lett 2014; 588:2545-9. [PMID: 24937143 DOI: 10.1016/j.febslet.2014.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/16/2022]
Abstract
Self-organization of proteins into large-scale structures is of pivotal importance for the organization of cells. The Min protein system of the bacterium Escherichia coli is a prime example of how pattern formation occurs via reaction-diffusion. We have previously demonstrated how Min protein patterns are influenced by compartment geometry. Here we probe the influence of membrane surface topology, as an additional regulatory element. Using microstructured membrane-clad soft polymer substrates, Min protein patterns can be aligned. We demonstrate that Min pattern alignment starts early during pattern formation and show that macroscopic millimeter-sized areas of protein patterns of well-defined orientation can be generated.
Collapse
Affiliation(s)
- Katja Zieske
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jakob Schweizer
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
80
|
Hoffmann M, Schwarz US. Oscillations of Min-proteins in micropatterned environments: a three-dimensional particle-based stochastic simulation approach. SOFT MATTER 2014; 10:2388-2396. [PMID: 24622920 DOI: 10.1039/c3sm52251b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Min-proteins from E. coli and other bacteria are the best characterized pattern forming system in cells and their spatiotemporal oscillations have been successfully reconstituted in vitro. Different mathematical and computational models have been used to better understand these oscillations. Here we use particle-based stochastic simulations to study Min-oscillations in patterned environments. We simulate a rectangular box of length 10 μm and width 5 μm that is filled with grid or checkerboard patterns of different patch sizes and distances. For this geometry, we find different stable oscillation patterns, typically pole-to-pole oscillations along the minor axis and striped oscillations along the major axis. The Min-oscillations can switch from one pattern to the other, either effected by changes in pattern geometry or stochastically. By automatic analysis of large-scale computer simulations, we show quantitatively how the perturbing effect of increased patch distance can be rescued by increased patch size. We also show that striped oscillations occur robustly in arbitrarily shaped filamentous E. coli cells. Our results highlight the robustness and variability of Min-oscillations, put limits on the effect of putative division sites, and provide a powerful computational framework for future studies of protein self-organization in patterned environments.
Collapse
Affiliation(s)
- Max Hoffmann
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | | |
Collapse
|
81
|
Abstract
It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles - the ends of rod-shaped cells - constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole 'recognition' can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|
82
|
Klünder B, Freisinger T, Wedlich-Söldner R, Frey E. GDI-mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling. PLoS Comput Biol 2013; 9:e1003396. [PMID: 24348237 PMCID: PMC3861033 DOI: 10.1371/journal.pcbi.1003396] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 01/19/2023] Open
Abstract
Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast Saccharomyces cerevisiae under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding of yeast polarization we establish a detailed mechanistic model of GDI-mediated polarization. We show that GDI-mediated polarization provides precise spatial and temporal control of Cdc42 signaling and give experimental evidence for our findings. Cell cycle induced changes of Cdc42 regulation enhance positive feedback loops of active Cdc42 production, and thereby allow simultaneous switch-like regulation of focused polarity and Cdc42 activation. This regulation drives the direct formation of a unique polarity cluster with characteristic narrowing dynamics, as opposed to the previously proposed competition between transient clusters. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms. Cell polarization is a fundamental cellular process that defines a single orientation axis within prokaryotic or eukaryotic cells and is a prerequisite for developmental processes such as cell migration, proliferation or differentiation. In the yeast Saccharomyces cerevisiae cell polarization determines the position of a new growth or bud site. Although many studies have focused on identifying polarity regulators and their interactions, the fundamental mechanisms and features of cell polarity still remain controversial. Here, we develop a detailed mathematical model of diffusion-driven cell polarization, which we verify experimentally. We show that this polarization mechanism provides precise spatial and temporal control of signals, which determine the place of a new growth site. Changes induced by the cell cycle allow simultaneous switch-like regulation of polarization and activation of the GTPase Cdc42, the central polarity regulator which initiates formation of a new bud. This regulation drives direct formation of a unique Cdc42 cluster with characteristic narrowing dynamics and robustly narrow spatial focus. Hence, our analysis reveals fundamental design principles that allow cell polarization to reliably initiate developmental processes at a specific time and place. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms.
Collapse
Affiliation(s)
- Ben Klünder
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Tina Freisinger
- Max Planck Institute of Biochemistry, Cellular Dynamics and Cell Patterning, Martinsried, Germany
| | - Roland Wedlich-Söldner
- Max Planck Institute of Biochemistry, Cellular Dynamics and Cell Patterning, Martinsried, Germany
- * E-mail: (RWS); (EF)
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail: (RWS); (EF)
| |
Collapse
|
83
|
Bonny M, Fischer-Friedrich E, Loose M, Schwille P, Kruse K. Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLoS Comput Biol 2013; 9:e1003347. [PMID: 24339757 PMCID: PMC3854456 DOI: 10.1371/journal.pcbi.1003347] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/03/2013] [Indexed: 11/23/2022] Open
Abstract
The rod-shaped bacterium Escherichia coli selects the cell center as site of division with the help of the proteins MinC, MinD, and MinE. This protein system collectively oscillates between the two cell poles by alternately binding to the membrane in one of the two cell halves. This dynamic behavior, which emerges from the interaction of the ATPase MinD and its activator MinE on the cell membrane, has become a paradigm for protein self-organization. Recently, it has been found that not only the binding of MinD to the membrane, but also interactions of MinE with the membrane contribute to Min-protein self-organization. Here, we show that by accounting for this finding in a computational model, we can comprehensively describe all observed Min-protein patterns in vivo and in vitro. Furthermore, by varying the system's geometry, our computations predict patterns that have not yet been reported. We confirm these predictions experimentally. Cellular protein structures have long been suggested to form by protein self-organization. A particularly clear example is provided by the proteins MinC, MinD, and MinE selecting the center as site of cell division in the rod-shaped bacterium Escherichia coli. Based on binding of MinD to the cytoplasmic membrane and an antagonistic action of MinE, which induces the release of MinD into the cytoplasm, these proteins oscillate from pole to pole, where they inhibit cell division. Supporting the idea of self-organization being the cause of the Min oscillations, purified Min proteins were found to spontaneously form traveling waves on supported lipid bilayers. A comprehensive understanding of the Min patterns formed under various conditions remains elusive. We have performed a computational analysis of Min-protein dynamics taking into account the recently discovered persistent action of MinE. We show that this property allows to reproduce all observed Min-protein patterns in a unified framework. Furthermore, our analysis predicts new structures, which we observed experimentally. Our study highlights that mechanisms underlying the spontaneous formation of protein patterns under purified in vitro conditions can also generate patterns inside complex intracellular environments.
Collapse
Affiliation(s)
- Mike Bonny
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
| | - Elisabeth Fischer-Friedrich
- Max-Planck-Institut für Zellbiologie und Genetik, Dresden, Germany
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany
| | - Martin Loose
- Department of Systems Biology, Harvard Medical School, Boston, Massachussetts, United States of America
| | | | - Karsten Kruse
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
84
|
Zieske K, Schwille P. Rekonstitution der Pol-zu-Pol-Oszillationen von Min-Proteinen in mikrotechnisch hergestellten Polydimethylsiloxan-Kammern. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
85
|
Zieske K, Schwille P. Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angew Chem Int Ed Engl 2012. [PMID: 23184489 DOI: 10.1002/anie.201207078] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell division in bacteria is highly regulated in time and space. The use of micrometer-sized sample volumes and model membranes allows the pole-to-pole oscillations of spatial regulators for bacterial cell division to be reconstituted in a synthetic minimal system.
Collapse
Affiliation(s)
- Katja Zieske
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
86
|
Endres RG. Intracellular chemical gradients: morphing principle in bacteria. BMC BIOPHYSICS 2012; 5:18. [PMID: 22954369 PMCID: PMC3443414 DOI: 10.1186/2046-1682-5-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 11/23/2022]
Abstract
Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012) postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.
Collapse
Affiliation(s)
- Robert G Endres
- Division of Molecular Biosciences & Centre for Systems Biology and Bioinformatics, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|