51
|
Division modes and physical asymmetry in cerebral cortex progenitors. Curr Opin Neurobiol 2016; 42:75-83. [PMID: 27978481 DOI: 10.1016/j.conb.2016.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
Neural stem cells go through a sequence of timely regulated gene expression and pattern of division mode to generate diverse neurons during brain development. During vertebrate cerebral cortex development, neural stem cells begin with proliferative symmetric divisions, subsequently undergo neurogenic asymmetric divisions, and finally gliogenic divisions. In this review, we explore the relationship between stem cell versus neural fate specification and the division mode. Specifically, we discuss recent findings on the mechanisms of asymmetric divisions, division mode, and developmental progression of neural progenitor identity.
Collapse
|
52
|
Tonchev AB, Tuoc TC, Rosenthal EH, Studer M, Stoykova A. Zbtb20 modulates the sequential generation of neuronal layers in developing cortex. Mol Brain 2016; 9:65. [PMID: 27282384 PMCID: PMC4901408 DOI: 10.1186/s13041-016-0242-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background During corticogenesis, genetic programs encoded in progenitor cells at different developmental stages and inherited in postmitotic neurons specify distinct layer and area identities. Transcription factor Zbtb20 has been shown to play a role for hippocampal development but whether it is implicated in mammalian neocortical morphogenesis remains unknown. Results Here, we report that during embyogenesis transcription factor Zbtb20 has a dynamic spatio-temporal expression pattern in mitotic cortical progenitors through which it modulates the sequential generation of cortical neuronal layer identities. Zbtb20 knock out mice exhibited enhanced populations of early born L6-L4 neuronal subtypes and a dramatic reduction of the late born L3/L2 neurons. This defect was due to a temporal misbalance in the production of earlier versus later born neurons, leading to a progressive diminishing of the progenitor pool for the generation of L3-L2 neurons. Zbtb20 implements these temporal effects in part by binding to promoter of the orphan nuclear receptor CoupTF1/Nr2f1. In addition to its effects exerted in cortical progenitors, the postmitotic expression of Zbtb20 in L3/L2 neurons starting at birth may contribute to their proper differentiation and migration. Conclusions Our findings reveal Zbtb20 as a novel temporal regulator for the generation of layer-specific neuronal identities. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0242-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anton B Tonchev
- Molecular Developmental Neurobiology Laboratory, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Gottingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Göttingen, Germany. .,Department of Anatomy, Histology and Embryology, Medical University-Varna, Varna, Bulgaria.
| | - Tran Cong Tuoc
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Göttingen, Germany.,Molecular Neurobiology Group, Institute of Neuroanatomy, University of Goettingen Medical Center, Goettingen, Germany
| | - Eva H Rosenthal
- Molecular Developmental Neurobiology Laboratory, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Gottingen, Germany
| | - Michèle Studer
- University Nice Sophia Antipolis, iBV, UMR 7277, F-06108, Nice, France.,Inserm, iBV, U1091, F-06108, Nice, France
| | - Anastassia Stoykova
- Molecular Developmental Neurobiology Laboratory, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Gottingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Göttingen, Germany. .,Department of Anatomy, Histology and Embryology, Medical University-Varna, Varna, Bulgaria.
| |
Collapse
|
53
|
Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun 2016; 7:11349. [PMID: 27094546 PMCID: PMC4842982 DOI: 10.1038/ncomms11349] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.
Collapse
|
54
|
Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells Int 2016; 2016:9745315. [PMID: 27069486 PMCID: PMC4812498 DOI: 10.1155/2016/9745315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
The cerebral cortex is essential for our higher cognitive functions and emotional reasoning. Arguably, this brain structure is the distinguishing feature of our species, and yet our remarkable cognitive capacity has seemingly come at a cost to the regenerative capacity of the human brain. Indeed, the capacity for regeneration and neurogenesis of the brains of vertebrates has declined over the course of evolution, from fish to rodents to primates. Nevertheless, recent evidence supporting the existence of neural stem cells (NSCs) in the adult human brain raises new questions about the biological significance of adult neurogenesis in relation to ageing and the possibility that such endogenous sources of NSCs might provide therapeutic options for the treatment of brain injury and disease. Here, we highlight recent insights and perspectives on NSCs within both the developing and adult cerebral cortex. Our review of NSCs during development focuses upon the diversity and therapeutic potential of these cells for use in cellular transplantation and in the modeling of neurodevelopmental disorders. Finally, we describe the cellular and molecular characteristics of NSCs within the adult brain and strategies to harness the therapeutic potential of these cell populations in the treatment of brain injury and disease.
Collapse
|
55
|
Ding B, Cave JW, Dobner PR, Mullikin-Kilpatrick D, Bartzokis M, Zhu H, Chow CW, Gronostajski RM, Kilpatrick DL. Reciprocal autoregulation by NFI occupancy and ETV1 promotes the developmental expression of dendrite-synapse genes in cerebellar granule neurons. Mol Biol Cell 2016; 27:1488-99. [PMID: 26941328 PMCID: PMC4850036 DOI: 10.1091/mbc.e15-07-0476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/25/2016] [Indexed: 12/30/2022] Open
Abstract
Temporal control of dendritogenesis is poorly understood. Mutual feedback between NFIA temporal occupancy and ETV1 drives the timing of gene expression associated with dendrite formation in maturing neurons. A sequential timing model is proposed in which ETV1 autoregulation precedes activation of downstream NFIA/ETV1 coregulated genes. Nuclear Factor One (NFI) transcription factors regulate temporal gene expression required for dendritogenesis and synaptogenesis via delayed occupancy of target promoters in developing cerebellar granule neurons (CGNs). Mechanisms that promote NFI temporal occupancy have not been previously defined. We show here that the transcription factor ETV1 directly binds to and is required for expression and NFI occupancy of a cohort of NFI-dependent genes in CGNs maturing in vivo. Expression of ETV1 is low in early postnatal cerebellum and increases with maturation, mirroring NFI temporal occupancy of coregulated target genes. Precocious expression of ETV1 in mouse CGNs accelerated onset of expression and NFI temporal occupancy of late target genes and enhanced Map2(+) neurite outgrowth. ETV1 also activated expression and NFI occupancy of the Etv1 gene itself, and this autoregulatory loop preceded ETV1 binding and activation of other coregulated target genes in vivo. These findings suggest a potential model in which ETV1 activates NFI temporal binding to a subset of late-expressed genes in a stepwise manner by initial positive feedback regulation of the Etv1 gene itself followed by activation of downstream coregulated targets as ETV1 expression increases. Sequential transcription factor autoregulation and subsequent binding to downstream promoters may provide an intrinsic developmental timer for dendrite/synapse gene expression.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - John W Cave
- Burke Medical Research Institute, White Plains, NY 10605 Weill Cornell Medical College, Brain and Mind Research Institute, New York, NY 10065
| | - Paul R Dobner
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - Debra Mullikin-Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - Marina Bartzokis
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hong Zhu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Neuroscience and Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
56
|
|
57
|
Toma K, Wang TC, Hanashima C. Encoding and decoding time in neural development. Dev Growth Differ 2016; 58:59-72. [PMID: 26748623 PMCID: PMC11520978 DOI: 10.1111/dgd.12257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 02/04/2023]
Abstract
The development of a multicellular organism involves time-dependent changes in molecular and cellular states; therefore 'time' is an indispensable mathematical parameter of ontogenesis. Regardless of their inextricable relationship, there is a limited number of events for which the output of developmental phenomena primarily uses temporal cues that are generated through multilevel interactions between molecules, cells, and tissues. In this review, we focus on neural stem cells, which serve as a faithful decoder of temporal cues to transmit biological information and generate specific output in the developing nervous system. We further explore the identity of the temporal information that is encoded in neural development, and how this information is decoded into various cellular fate decisions.
Collapse
Affiliation(s)
- Kenichi Toma
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Tien-Cheng Wang
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
58
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
59
|
Lennartsson A, Arner E, Fagiolini M, Saxena A, Andersson R, Takahashi H, Noro Y, Sng J, Sandelin A, Hensch TK, Carninci P. Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors. Epigenetics Chromatin 2015; 8:55. [PMID: 26673794 PMCID: PMC4678690 DOI: 10.1186/s13072-015-0043-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The capacity for plasticity in the adult brain is limited by the anatomical traces laid down during early postnatal life. Removing certain molecular brakes, such as histone deacetylases (HDACs), has proven to be effective in recapitulating juvenile plasticity in the mature visual cortex (V1). We investigated the chromatin structure and transcriptional control by genome-wide sequencing of DNase I hypersensitive sites (DHSS) and cap analysis of gene expression (CAGE) libraries after HDAC inhibition by valproic acid (VPA) in adult V1. RESULTS We found that VPA reliably reactivates the critical period plasticity and induces a dramatic change of chromatin organization in V1 yielding significantly greater accessibility distant from promoters, including at enhancer regions. VPA also induces nucleosome eviction specifically from retrotransposon (in particular SINE) elements. The transiently accessible SINE elements overlap with transcription factor-binding sites of the Fox family. Mapping of transcription start site activity using CAGE revealed transcription of epigenetic and neural plasticity-regulating genes following VPA treatment, which may help to re-program the genomic landscape and reactivate plasticity in the adult cortex. CONCLUSIONS Treatment with HDAC inhibitors increases accessibility to enhancers and repetitive elements underlying brain-specific gene expression and reactivation of visual cortical plasticity.
Collapse
Affiliation(s)
- Andreas Lennartsson
- />Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Stockholm, Sweden
- />Genome Science Lab, RIKEN, Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Erik Arner
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Michela Fagiolini
- />Lab for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
- />F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Alka Saxena
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Robin Andersson
- />Department of Biology and BRIC, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Hazuki Takahashi
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yukihiko Noro
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Judy Sng
- />Lab for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
- />F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- />Department of Pharmacology, National University of Singapore, 10 Medical Drive 05-34, Singapore, Singapore
| | - Albin Sandelin
- />Department of Biology and BRIC, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Takao K. Hensch
- />Lab for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
- />F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- />Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Piero Carninci
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
60
|
Pancrazi L, Di Benedetto G, Colombaioni L, Della Sala G, Testa G, Olimpico F, Reyes A, Zeviani M, Pozzan T, Costa M. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics. Proc Natl Acad Sci U S A 2015; 112:13910-5. [PMID: 26508630 PMCID: PMC4653140 DOI: 10.1073/pnas.1515190112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions.
Collapse
Affiliation(s)
| | - Giulietta Di Benedetto
- Institute of Neuroscience, Italian National Research Council, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Laura Colombaioni
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy
| | - Grazia Della Sala
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | | | - Francesco Olimpico
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy
| | - Aurelio Reyes
- Mitochondrial Biology Unit, Medical Research Council, Cambridge CB20XY, United Kingdom
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Cambridge CB20XY, United Kingdom
| | - Tullio Pozzan
- Institute of Neuroscience, Italian National Research Council, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Mario Costa
- Scuola Normale Superiore, 56126 Pisa, Italy; Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
61
|
Draganova K, Zemke M, Zurkirchen L, Valenta T, Cantù C, Okoniewski M, Schmid MT, Hoffmans R, Götz M, Basler K, Sommer L. Wnt/β-catenin signaling regulates sequential fate decisions of murine cortical precursor cells. Stem Cells 2015; 33:170-82. [PMID: 25182747 DOI: 10.1002/stem.1820] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
The fate of neural progenitor cells (NPCs) is determined by a complex interplay of intrinsic programs and extrinsic signals, very few of which are known. β-Catenin transduces extracellular Wnt signals, but also maintains adherens junctions integrity. Here, we identify for the first time the contribution of β-catenin transcriptional activity as opposed to its adhesion role in the development of the cerebral cortex by combining a novel β-catenin mutant allele with conditional inactivation approaches. Wnt/β-catenin signaling ablation leads to premature NPC differentiation, but, in addition, to a change in progenitor cell cycle kinetics and an increase in basally dividing progenitors. Interestingly, Wnt/β-catenin signaling affects the sequential fate switch of progenitors, leading to a shortened neurogenic period with decreased number of both deep and upper-layer neurons and later, to precocious astrogenesis. Indeed, a genome-wide analysis highlighted the premature activation of a corticogenesis differentiation program in the Wnt/β-catenin signaling-ablated cortex. Thus, β-catenin signaling controls the expression of a set of genes that appear to act downstream of canonical Wnt signaling to regulate the stage-specific production of appropriate progenitor numbers, neuronal subpopulations, and astroglia in the forebrain.
Collapse
|
62
|
Toma K, Hanashima C. Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci 2015; 9:274. [PMID: 26321900 PMCID: PMC4531338 DOI: 10.3389/fnins.2015.00274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Information processing in the cerebral cortex requires the activation of diverse neurons across layers and columns, which are established through the coordinated production of distinct neuronal subtypes and their placement along the three-dimensional axis. Over recent years, our knowledge of the regulatory mechanisms of the specification and integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this review, we address how the unique cytoarchitecture of the neocortex is established from a limited number of progenitors featuring neuronal identity transitions during development. We further illuminate the molecular mechanisms of the subtype-specific integration of these neurons into the cerebral cortex along the radial and tangential axis, and we discuss these key features to exemplify how neocortical circuit formation accomplishes economical connectivity while maintaining plasticity and evolvability to adapt to environmental changes.
Collapse
Affiliation(s)
- Kenichi Toma
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan ; Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| |
Collapse
|
63
|
Guibinga GH. MicroRNAs: tools of mechanistic insights and biological therapeutics discovery for the rare neurogenetic syndrome Lesch-Nyhan disease (LND). ADVANCES IN GENETICS 2015; 90:103-131. [PMID: 26296934 DOI: 10.1016/bs.adgen.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that modulate the translation of mRNA. They have emerged over the past few years as indispensable entities in the transcriptional regulation of genes. Their discovery has added additional layers of complexity to regulatory networks that control cellular homeostasis. Also, their dysregulated pattern of expression is now well demonstrated in myriad diseases and pathogenic processes. In the current review, we highlight the role of miRNAs in Lesch-Nyhan disease (LND), a rare neurogenetic syndrome caused by mutations in the purine metabolic gene encoding the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. We describe how experimental and biocomputational approaches have helped to unravel genetic and signaling pathways that provide mechanistic understanding of some of the molecular and cellular basis of this ill-defined neurogenetic disorder. Through miRNA-based target predictions, we have identified signaling pathways that may be of significance in guiding biological therapeutic discovery for this incurable neurological disorder. We also propose a model to explain how a gene such as HPRT, mostly known for its housekeeping metabolic functions, can have pleiotropic effects on disparate genes and signal transduction pathways. Our hypothetical model suggests that HPRT mRNA transcripts may be acting as competitive endogenous RNAs (ceRNAs) intertwined in multiregulatory cross talk between key neural transcripts and miRNAs. Overall, this approach of using miRNA-based genomic approaches to elucidate the molecular and cellular basis of LND and guide biological target identification might be applicable to other ill-defined rare inborn-error metabolic diseases.
Collapse
Affiliation(s)
- Ghiabe-Henri Guibinga
- Division of Genetics, Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
64
|
Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav 2015; 47:191-201. [PMID: 25900226 PMCID: PMC4475437 DOI: 10.1016/j.yebeh.2015.03.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
There is an increasing recognition of clinical overlap in patients presenting with epilepsy and autism spectrum disorder (ASD), and a great deal of new information regarding the genetic causes of both disorders is available. Several biological pathways appear to be involved in both disease processes, including gene transcription regulation, cellular growth, synaptic channel function, and maintenance of synaptic structure. We review several genetic disorders where ASD and epilepsy frequently co-occur, and we discuss the screening tools available for practicing neurologists and epileptologists to help determine which patients should be referred for formal ASD diagnostic evaluation. Finally, we make recommendations regarding the workflow of genetic diagnostic testing available for children with both ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".
Collapse
Affiliation(s)
- Bo Hoon Lee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Tristram Smith
- Division of Neurodevelopmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex R Paciorkowski
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
65
|
The timing of upper-layer neurogenesis is conferred by sequential derepression and negative feedback from deep-layer neurons. J Neurosci 2014; 34:13259-76. [PMID: 25253869 DOI: 10.1523/jneurosci.2334-14.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevailing view of upper-layer (UL) neurogenesis in the cerebral cortex is that progenitor cells undergo successive rounds of asymmetric cell division that restrict the competence and production of UL neurons later in development. However, the recent discovery of UL fate-committed early progenitors raises an alternative perspective concerning their ontogeny. To investigate the emergence of UL progenitors, we manipulated the timing and extent of cortical neurogenesis in vivo in mice. We demonstrated that UL competence is tightly linked to deep-layer (DL) neurogenesis and that this sequence is determined primarily through derepression of Fezf2 by Foxg1 within a closed transcriptional cascade. We further demonstrated that the sequential acquisition of UL competence requires negative feedback, which is propagated from postmitotic DL neurons. Thus, neocortical progenitors integrate intrinsic and extrinsic cues to generate UL neurons through a system that controls the sequence of DL and UL neurogenesis and to scale the production of intracortical projection neurons based on the availability of their subcortical projection neuron counterparts during cortical development and evolution.
Collapse
|
66
|
Terrone G, Bienvenu T, Germanaud D, Barthez-Carpentier MA, Diebold B, Delanoe C, Passemard S, Auvin S. A case of Lennox-Gastaut syndrome in a patient with FOXG1-related disorder. Epilepsia 2014; 55:e116-9. [PMID: 25266269 DOI: 10.1111/epi.12800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 01/20/2023]
Abstract
Lennox-Gastaut syndrome (LGS) is a drug-resistant epileptic encephalopathy of childhood with a heterogeneous etiology. Recently, genome-wide association studies have led to the identification of new de novo mutations associated with this epileptic syndrome. Herein, we report an 8-year-old child with intellectual disability, severe postnatal microcephaly, Rett-like features, and LGS, carrying a de novo missense mutation in the forkhead box G1 (FOXG1) gene. This gene is responsible for FOXG1 syndrome, characterized by severe postnatal microcephaly, moderate postnatal growth deficiency, mental retardation with poor social interaction, stereotyped behavior and dyskinesias, absent language, sleep disorders, and epilepsy. Nonspecific epilepsy syndromes have been associated with this genetic disorder. Thus, we hypothesize that FOXG1 might be a new candidate gene in the etiology of LGS and suggest screening for this gene in cases of LGS with concomitant microcephaly and clinical features overlapping with Rett syndrome.
Collapse
Affiliation(s)
- Gaetano Terrone
- AP-HP, Pediatric Neurology Department, Hospital Robert Debré, Paris, France; Inserm, U1141, Paris, France; Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Kumamoto T, Hanashima C. Neuronal subtype specification in establishing mammalian neocortical circuits. Neurosci Res 2014; 86:37-49. [PMID: 25019611 DOI: 10.1016/j.neures.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
68
|
Arai Y, Pierani A. Development and evolution of cortical fields. Neurosci Res 2014; 86:66-76. [PMID: 24983875 DOI: 10.1016/j.neures.2014.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
The neocortex is the brain structure that has been subjected to a major size expansion, in its relative size, during mammalian evolution. It arises from the cortical primordium through coordinated growth of neural progenitor cells along both the tangential and radial axes and their patterning providing spatial coordinates. Functional neocortical areas are ultimately consolidated by environmental influences such as peripheral sensory inputs. Throughout neocortical evolution, cortical areas have become more sophisticated and numerous. This increase in number is possibly involved in the complexification of neocortical function in primates. Whereas extensive divergence of functional cortical fields is observed during evolution, the fundamental mechanisms supporting the allocation of cortical areas and their wiring are conserved, suggesting the presence of core genetic mechanisms operating in different species. We will discuss some of the basic molecular mechanisms including morphogen-dependent ones involved in the precise orchestration of neurogenesis in different cortical areas, elucidated from studies in rodents. Attention will be paid to the role of Cajal-Retzius neurons, which were recently proposed to be migrating signaling units also involved in arealization, will be addressed. We will further review recent works on molecular mechanisms of cortical patterning resulting from comparative analyses between different species during evolution.
Collapse
Affiliation(s)
- Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France.
| | - Alessandra Pierani
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| |
Collapse
|
69
|
Vieland VJ, Walters KA, Azaro M, Brzustowicz LM, Lehner T. The value of regenotyping older linkage data sets with denser marker panels. Hum Hered 2014; 78:9-16. [PMID: 24969307 DOI: 10.1159/000360003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Linkage analysis can help determine regions of interest in whole-genome sequence studies. However, many linkage studies rely on older microsatellite (MSAT) panels. We set out to determine whether results would change if we regenotyped families using a dense map of SNPs. METHODS We selected 47 Hispanic-American families from the NIMH Repository and Genomics Resource (NRGR) schizophrenia data repository. We regenotyped all individuals with DNA available from the NRGR on the Affymetrix Lat Array. After optimizing SNP selection for inclusion on the linkage map, we compared information content (IC) and linkage results using MSAT, SNP and MSAT+SNP maps. RESULTS As expected, SNP provided a higher average IC (0.78, SD 0.03) than MSAT (0.51, SD 0.10) in a direct 'apples-to-apples' comparison using only individuals genotyped on both platforms; while MSAT+SNP provided only a slightly higher IC (0.82, SD 0.03). However, when utilizing all available individuals, including those who had genotypes available on only one platform, the IC was substantially increased using MSAT+SNP (0.76, SD 0.05) compared to SNP (0.61, SD 0.02). Linkage results changed appreciably between MSAT and MSAT+SNP in terms of magnitude, rank ordering and localization of peaks. CONCLUSIONS Regenotyping older family data can substantially alter the conclusions of linkage analyses.
Collapse
Affiliation(s)
- Veronica J Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
70
|
Seltzer LE, Paciorkowski AR. Genetic disorders associated with postnatal microcephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:140-55. [PMID: 24839169 DOI: 10.1002/ajmg.c.31400] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several genetic disorders are characterized by normal head size at birth, followed by deceleration in head growth resulting in postnatal microcephaly. Among these are classic disorders such as Angelman syndrome and MECP2-related disorder (formerly Rett syndrome), as well as more recently described clinical entities associated with mutations in CASK, CDKL5, CREBBP, and EP300 (Rubinstein-Taybi syndrome), FOXG1, SLC9A6 (Christianson syndrome), and TCF4 (Pitt-Hopkins syndrome). These disorders can be identified clinically by phenotyping across multiple neurodevelopmental and neurobehavioral realms, and enough data are available to recognize these postnatal microcephaly disorders as separate diagnostic entities in their own right. A second diagnostic grouping, comprised of Warburg MICRO syndrome, Cockayne syndrome, and Cerebral-oculo-facial skeletal syndrome, share similar features of somatic growth failure, ophthalmologic, and dysmorphologic features. Many postnatal microcephaly syndromes are caused by mutations in genes important in the regulation of gene expression in the developing forebrain and hindbrain, although important synaptic structural genes also play a role. This is an emerging group of disorders with a fascinating combination of brain malformations, specific epilepsies, movement disorders, and other complex neurobehavioral abnormalities.
Collapse
|
71
|
Nomura T, Murakami Y, Gotoh H, Ono K. Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes. Neurosci Res 2014; 86:25-36. [PMID: 24671134 DOI: 10.1016/j.neures.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/24/2022]
Abstract
There is huge divergence in the size and complexity of vertebrate brains. Notably, mammals and birds have bigger brains than other vertebrates, largely because these animal groups established larger dorsal telencephali. Fossil evidence suggests that this anatomical trait could have evolved independently. However, recent comparative developmental analyses demonstrate surprising commonalities in neuronal subtypes among species, although this interpretation is highly controversial. In this review, we introduce intriguing evidence regarding brain evolution collected from recent studies in paleontology and developmental biology, and we discuss possible evolutionary changes in the cortical developmental programs that led to the encephalization and structural complexity of amniote brains. New research concepts and approaches will shed light on the origin and evolutionary processes of amniote brains, particularly the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan
| |
Collapse
|
72
|
Hippenmeyer S. Molecular pathways controlling the sequential steps of cortical projection neuron migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:1-24. [PMID: 24243097 DOI: 10.1007/978-94-007-7687-6_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordinated migration of newly-born neurons to their target territories is essential for correct neuronal circuit assembly in the developing brain. Although a cohort of signaling pathways has been implicated in the regulation of cortical projection neuron migration, the precise molecular mechanisms and how a balanced interplay of cell-autonomous and non-autonomous functions of candidate signaling molecules controls the discrete steps in the migration process, are just being revealed. In this chapter, I will focally review recent advances that improved our understanding of the cell-autonomous and possible cell-nonautonomous functions of the evolutionarily conserved LIS1/NDEL1-complex in regulating the sequential steps of cortical projection neuron migration. I will then elaborate on the emerging concept that the Reelin signaling pathway, acts exactly at precise stages in the course of cortical projection neuron migration. Lastly, I will discuss how finely tuned transcriptional programs and downstream effectors govern particular aspects in driving radial migration at discrete stages and how they regulate the precise positioning of cortical projection neurons in the developing cerebral cortex.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400, Klosterneuburg, Austria,
| |
Collapse
|