51
|
Zebisch M, Jones EY. ZNRF3/RNF43--A direct linkage of extracellular recognition and E3 ligase activity to modulate cell surface signalling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:112-8. [PMID: 25937466 DOI: 10.1016/j.pbiomolbio.2015.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
The interactions of extracellular ligands with single membrane spanning receptors, such as kinases, typically serve to agonise or antagonise the intracellular activation of signalling pathways. Within the cell, E3 ligases can act to alter the localisation and activity of proteins involved in signalling systems. Structural and functional characterisation of two closely related single membrane spanning molecules, RNF43 and ZNRF3, has recently revealed the receptor-like functionalities of a ligand-binding ectodomain combined with the intracellular architecture and activity of an E3 ligase. This direct link provides a hereto novel mechanism for extracellular control of ubiquitin ligase activity that is used for the modulation of Wnt signalling, a pathway of major importance in embryogenesis, stem cell biology and cancer. In this review we discuss recent findings for the structure and interactions of the extracellular region of RNF43/ZNRF3 and draw parallels with the properties and function of signalling receptor ectodomains.
Collapse
Affiliation(s)
- Matthias Zebisch
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
52
|
Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol 2015; 309:C511-21. [PMID: 26289750 PMCID: PMC4609654 DOI: 10.1152/ajpcell.00117.2015] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.
Collapse
Affiliation(s)
| | - Pedro Antas
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Vivian S W Li
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
53
|
Zebisch M, Jones EY. Crystal structure of R-spondin 2 in complex with the ectodomains of its receptors LGR5 and ZNRF3. J Struct Biol 2015; 191:149-55. [PMID: 26123262 PMCID: PMC4533229 DOI: 10.1016/j.jsb.2015.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The four secreted R-spondin (Rspo1-4) proteins of vertebrates function as stem cell growth factors and potentiate canonical Wnt signalling. Rspo proteins act by cross-linking members of two cell surface receptor families, complexing the stem cell markers LGR4-6 with the Frizzled-specific E3 ubiquitin ligases ZNRF3/RNF43. The consequent internalisation of the ternary LGR-Rspo-E3 complex removes the E3 ligase activity, which otherwise targets the Wnt receptor Frizzled for degradation, and thus enhances Wnt signalling. Multiple combinations of LGR4-6, Rspo1-4 and ZNRF3/RNF43 are possible, implying the existence of generic interaction determinants, but also of specific differences in complex architecture and activity. We present here a high resolution crystal structure of an ectodomain variant of human LGR5 (hLGR5ecto) complexed with a signalling competent fragment of mouse Rspo2 (mRspo2Fu1-Fu2). The structure shows that the particularly potent Rspo2 ligand engages LGR5 in a fashion almost identical to that reported for hRSPO1. Comparison of our hLGR5ecto structure with previously published structures highlights a surprising plasticity of the LGR ectodomains, characterised by a nearly 9° or larger rotation of the N-terminal half of the horseshoe-like fold relative to the C-terminal half. We also report a low resolution hLGR5-mRspo2Fu1-Fu2-mZNRF3ecto ternary complex structure. This crystal structure confirms our previously suggested hypothesis, showing that Rspo proteins cross-link LGRs and ZNRF3 into a 2:2:2 complex, whereas a 1:1:1 complex is formed with RNF43.
Collapse
Affiliation(s)
- Matthias Zebisch
- Division of Structural Biology, Henry Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - E Yvonne Jones
- Division of Structural Biology, Henry Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
54
|
Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 2015; 58:522-33. [PMID: 25891077 DOI: 10.1016/j.molcel.2015.03.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 12/31/2022]
Abstract
Tumor suppressors ZNRF3 and RNF43 inhibit Wnt signaling through promoting degradation of Wnt coreceptors Frizzled (FZD) and LRP6, and this activity is counteracted by stem cell growth factor R-spondin. The mechanism by which ZNRF3 and RNF43 recognize Wnt receptors remains unclear. Here we uncover an unexpected role of Dishevelled (DVL), a positive Wnt regulator, in promoting Wnt receptor degradation. DVL knockout cells have significantly increased cell surface levels of FZD and LRP6. DVL is required for ZNRF3/RNF43-mediated ubiquitination and degradation of FZD. Physical interaction with DVL is essential for the Wnt inhibitory activity of ZNRF3/RNF43. Binding of FZD through the DEP domain of DVL is required for DVL-mediated downregulation of FZD. Fusion of the DEP domain to ZNRF3/RNF43 overcomes their DVL dependency to downregulate FZD. Our study reveals DVL as a dual function adaptor to recruit negative regulators ZNRF3/RNF43 to Wnt receptors to ensure proper control of pathway activity.
Collapse
|
55
|
Petrie EJ, Lagaida S, Sethi A, Bathgate RAD, Gooley PR. In a Class of Their Own - RXFP1 and RXFP2 are Unique Members of the LGR Family. Front Endocrinol (Lausanne) 2015; 6:137. [PMID: 26441827 PMCID: PMC4561518 DOI: 10.3389/fendo.2015.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023] Open
Abstract
The leucine-rich repeat-containing G protein-coupled receptors (LGRs) family consists of three groups: types A, B, and C and all contain a large extracellular domain (ECD) made up of the structural motif - the leucine-rich repeat (LRR). In the LGRs, the ECD binds the hormone or ligand, usually through the LRRs, that ultimately results in activation and signaling. Structures are available for the ECD of type A and B LGRs, but not the type C LGRs. This review discusses the structural features of LRR proteins, and describes the known structures of the type A and B LGRs and predictions that can be made for the type C LGRs. The mechanism of activation of the LGRs is discussed with a focus on the role of the low-density lipoprotein class A (LDLa) module, a unique feature of the type C LGRs. While the LDLa module is essential for activation of the type C LGRs, the molecular mechanism for this process is unknown. Experimental data for the potential interactions of the type C LGR ligands with the LRR domain, the transmembrane domain, and the LDLa module are summarized.
Collapse
Affiliation(s)
- Emma J. Petrie
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Samantha Lagaida
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Paul R. Gooley, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia,
| |
Collapse
|
56
|
Warner ML, Bell T, Pioszak AA. Engineering high-potency R-spondin adult stem cell growth factors. Mol Pharmacol 2014; 87:410-20. [PMID: 25504990 PMCID: PMC4352588 DOI: 10.1124/mol.114.095133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/12/2014] [Indexed: 01/05/2023] Open
Abstract
Secreted R-spondin proteins (RSPOs1-4) function as adult stem cell growth factors by potentiating Wnt signaling. Simultaneous binding of distinct regions of the RSPO Fu1-Fu2 domain module to the extracellular domains (ECDs) of the LGR4 G protein-coupled receptor and the ZNRF3 transmembrane E3 ubiquitin ligase regulates Wnt receptor availability. Here, we examine the molecular basis for the differing signaling strengths of RSPOs1-4 using purified RSPO Fu1-Fu2, LGR4 ECD, and ZNRF3 ECD proteins in Wnt signaling and receptor binding assays, and we engineer novel high-potency RSPOs. RSPO2/3/4 had similar signaling potencies that were stronger than that of RSPO1, whereas RSPO1/2/3 had similar efficacies that were greater than that of RSPO4. The RSPOs bound LGR4 with affinity rank order RSPO4 > RSPO2/3 > RSPO1 and ZNRF3 with affinity rank order RSPO2/3 > > RSPO1 > RSPO4. An RSPO2-4 chimera combining RSPO2 ZNRF3 binding with RSPO4 LGR4 binding was a "Superspondin" that exhibited enhanced ternary complex formation and 10-fold stronger signaling potency than RSPO2 and efficacy equivalent to RSPO2. An RSPO4-1 chimera combining RSPO4 ZNRF3 binding with RSPO1 LGR4 binding was a "Poorspondin" that exhibited signaling potency similar to RSPO1 and efficacy equivalent to RSPO4. Conferring increased ZNRF3 binding upon RSPO4 with amino acid substitutions L56F, I58L, and I63M enhanced its signaling potency and efficacy. Our results reveal the molecular basis for RSPOs1-4 activity differences and suggest that signaling potency is determined by ternary complex formation ability, whereas efficacy depends on ZNRF3 recruitment. High-potency RSPOs may be of value for regenerative medicine and/or therapeutic applications.
Collapse
Affiliation(s)
- Margaret L Warner
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tufica Bell
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
57
|
Xu JG, Huang C, Yang Z, Jin M, Fu P, Zhang N, Luo J, Li D, Liu M, Zhou Y, Zhu Y. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs). J Biol Chem 2014; 290:2455-65. [PMID: 25480784 DOI: 10.1074/jbc.m114.599134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs.
Collapse
Affiliation(s)
- Jin-Gen Xu
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Chunfeng Huang
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Zhengfeng Yang
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengmeng Jin
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Panhan Fu
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Ni Zhang
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Jian Luo
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Zhou
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Yongqun Zhu
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| |
Collapse
|
58
|
Malinauskas T, Jones EY. Extracellular modulators of Wnt signalling. Curr Opin Struct Biol 2014; 29:77-84. [PMID: 25460271 DOI: 10.1016/j.sbi.2014.10.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Wnt morphogens are secreted signalling proteins that play leading roles in embryogenesis and tissue homeostasis throughout life. Wnt signalling is controlled by multiple mechanisms, including posttranslational modification of Wnts, antagonist binding (to Wnts or their receptors), and regulation of the availability of Wnt receptors. Recent crystallographic, structure-guided biophysical and cell-based studies have advanced our understanding of how Wnt signalling is regulated at the cell surface. Structures include Wnt in complex with the cysteine-rich domain (CRD) of Frizzled, extracellular fragments of Wnt co-receptor LRP6, LRP6-binding antagonists Dickkopf and Sclerostin, antagonists 5T4/WAIF1 and Wnt inhibitory factor 1 (WIF-1), as well as Frizzled-ubiquitin ligases ZNRF3/RNF43 (in isolation and in complexes with Wnt signalling promoters R-spondins and LGR5). We review recent discoveries and remaining questions.
Collapse
Affiliation(s)
- Tomas Malinauskas
- Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
59
|
Yu J, Virshup D. Updating the Wnt pathways. Biosci Rep 2014; 34:e00142. [PMID: 25208913 PMCID: PMC4201215 DOI: 10.1042/bsr20140119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.
Collapse
Key Words
- adenomatous polyposis coli
- planar cell polarity (pcp)
- wnt
- apc, adenomatous polyposis coli
- bar, bin-amphiphysin-rvs
- cbp, creb (camp response element-binding)-binding protein
- cop, coat protein complex
- crd, cysteine-rich domain
- ctd, c-terminal domain
- ck1α, casein kinase 1 α
- er, endoplasmic reticulum fap, familial adenomatous polyposis
- fdh, focal dermal hypoplasia
- gsk3β, glycogen synthase kinase 3β
- lef, lymphoid enhancer-binding factor
- lrp, lipoprotein receptor-related protein
- ntd, n-terminal domain
- pcp, planar cell polarity
- porcn, protein porcupine
- ror2, receptor tyrosine kinase-like orphan receptor 2
- rspo, r-spondin
- sfrp, secreted frizzled-related protein
- snx-1, sorting nexin-1
- swim, wingless-interacting molecule
- tcf, t cell-specific factor
Collapse
Affiliation(s)
- Jia Yu
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - David M. Virshup
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- †Institute of Medical Biology, A*STAR, Singapore 138648, Singapore
- ‡Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- §Department of Pediatrics, Duke University, Durham, NC 27710, U.S.A
| |
Collapse
|
60
|
Koo BK, Clevers H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 2014; 147:289-302. [PMID: 24859206 DOI: 10.1053/j.gastro.2014.05.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
Since the discovery of LGR5 as a marker of intestinal stem cells, the field has developed explosively and led to many new avenues of research. The inner workings of the intestinal crypt stem cell niche are now well understood. The study of stem cell-enriched genes has uncovered some previously unknown aspects of the Wnt signaling pathway, the major driver of crypt dynamics. LGR5(+) stem cells can now be cultured over long periods in vitro as epithelial organoids or "mini-guts." This technology opens new possibilities of using cultured adult stem cells for drug development, disease modeling, gene therapy, and regenerative medicine. This review describes the rediscovery of crypt base columnar cells as LGR5(+) adult stem cells and summarizes subsequent progress, promises, unresolved issues, and challenges of the field.
Collapse
Affiliation(s)
- Bon-Kyoung Koo
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, England; Department of Genetics, University of Cambridge, Cambridge, England
| | - Hans Clevers
- Hubrecht Institute/KNAW, Utrecht, The Netherlands; University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
61
|
Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat Commun 2014; 4:2787. [PMID: 24225776 PMCID: PMC3905715 DOI: 10.1038/ncomms3787] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022] Open
Abstract
The four R-spondin (Rspo) proteins are secreted agonists of Wnt signalling in vertebrates, functioning in embryogenesis and adult stem cell biology. Through ubiquitination and degradation of Wnt receptors, the transmembrane E3 ubiquitin ligase ZNRF3 and related RNF43 antagonize Wnt signalling. Rspo ligands have been reported to inhibit the ligase activity through direct interaction with ZNRF3 and RNF43. Here we report multiple crystal structures of the ZNRF3 ectodomain (ZNRF3(ecto)), a signalling-competent Furin1-Furin2 (Fu1-Fu2) fragment of Rspo2 (Rspo2(Fu1-Fu2)), and Rspo2(Fu1-Fu2) in complex with ZNRF3(ecto), or RNF43(ecto). A prominent loop in Fu1 clamps into equivalent grooves in the ZNRF3(ecto) and RNF43(ecto) surface. Rspo binding enhances dimerization of ZNRF3(ecto) but not of RNF43(ecto). Comparison of the four Rspo proteins, mutants and chimeras in biophysical and cellular assays shows that their signalling potency depends on their ability to recruit ZNRF3 or RNF43 via Fu1 into a complex with LGR receptors, which interact with Rspo via Fu2.
Collapse
|
62
|
Abstract
Adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists. This review by de Lau et al. focuses on the complex physical and functional interactions of three recently discovered protein families that control stem cell activity by regulating surface expression of Wnt receptors: Lgr5 and its homologs, the E3 ligases Rnf43 and Znrf3, and the secreted R-spondin ligands. Lgr5 was originally discovered as a common Wnt target gene in adult intestinal crypts and colon cancer. It was subsequently identified as an exquisite marker of multiple Wnt-driven adult stem cell types. Lgr5 and its homologs, Lgr4 and Lgr6, constitute the receptors for R-spondins, potent Wnt signal enhancers and stem cell growth factors. The Lgr5/R-spondin complex acts by neutralizing Rnf43 and Znrf3, two transmembrane E3 ligases that remove Wnt receptors from the stem cell surface. Rnf43/Znrf3 are themselves encoded by Wnt target genes and constitute a negative Wnt feedback loop. Thus, adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists.
Collapse
Affiliation(s)
- Wim de Lau
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
63
|
Nakata S, Phillips E, Goidts V. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells. Cancer Manag Res 2014; 6:171-80. [PMID: 24711713 PMCID: PMC3969255 DOI: 10.2147/cmar.s57846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The concept of cancer stem cells has gained considerable interest in the last few decades, partly because of their potential implication in therapy resistance. However, the lack of specific cellular surface markers for these cells has impeded their isolation, making the characterization of this cellular subpopulation technically challenging. Recent studies have indicated that leucine-rich repeat-containing G-protein-coupled receptor 4 and 5 (LGR4 and LGR5) expression in multiple organs may represent a global marker of adult stem cells. This review aims to give an overview of LGR4 and LGR5 as cancer stem cell markers and their function in development.
Collapse
Affiliation(s)
- Susumu Nakata
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Emma Phillips
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
64
|
Kumar KK, Burgess AW, Gulbis JM. Structure and function of LGR5: an enigmatic G-protein coupled receptor marking stem cells. Protein Sci 2014; 23:551-65. [PMID: 24677446 DOI: 10.1002/pro.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/14/2023]
Abstract
G-protein coupled receptors (GPCRs) are an important class of membrane protein that transmit extracellular signals invoked by sensing molecules such as hormones and neurotransmitters. GPCR dysfunction is implicated in many diseases and hence these proteins are of great interest to academia and the pharmaceutical industry. Leucine-rich repeat-containing GPCRs contain a characteristic extracellular domain that is an important modulator of intracellular signaling. One member of this class is the leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), a stem cell marker in intestinal crypts, and mammary glands. LGR5 modulates Wnt signaling in the presence of the ligand R-spondin (RSPO). The mechanism of activation of LGR5 by RSPO is not understood, nor is the intracellular signaling mechanism known. Recently reported structures of the extracellular domain of LGR5 bound to RSPO reveal a horseshoe-shaped architecture made up of consecutive leucine-rich repeats, with RSPO bound on the concave surface. This review discusses the discovery of LGR5 and the impact it is having on our understanding of stem cell and cancer biology of the colon. In addition, it covers functional relationships suggested by sequence homology and structural analyses, as well as some intriguing conundrums with respect to the involvement of LGR5 in Wnt signaling.
Collapse
Affiliation(s)
- Kaavya Krishna Kumar
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | | | | |
Collapse
|
65
|
Wu C, Qiu S, Lu L, Zou J, Li WF, Wang O, Zhao H, Wang H, Tang J, Chen L, Xu T, Sun Z, Liao W, Luo G, Lu X. RSPO2-LGR5 signaling has tumour-suppressive activity in colorectal cancer. Nat Commun 2014; 5:3149. [PMID: 24476626 DOI: 10.1038/ncomms4149] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/19/2013] [Indexed: 12/23/2022] Open
Abstract
R-spondins are a family of secreted Wnt agonists. One of the family members, R-spondin 2 (RSPO2), has an important role in embryonic development, bone formation and myogenic differentiation; however, its role in human cancers remains largely unknown. Here we show that RSPO2 expression is downregulated in human colorectal cancers (CRCs) due to promoter hypermethylation, and that the RSPO2 reduction correlates with tumour differentiation, size and metastasis. Overexpression of RSPO2 suppresses CRC cell proliferation and tumorigenicity, whereas the depletion of RSPO2 enhances tumour cell growth. RSPO2 has an inhibitory effect on Wnt/β-catenin signaling in the CRC cells that show suppressed cell proliferation. In human CRC cells, the RSPO2-induced inhibition of Wnt signaling depends on leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5); RSPO2 interacts with LGR5 to stabilize the membrane-associated zinc and ring finger 3 (ZNRF3). Our data suggest that RSPO2 functions as a tumour suppressor in human CRCs, and these data reveal a RSPO2-induced, LGR5-dependent Wnt signaling-negative feedback loop that exerts a net growth-suppressive effect on CRC cells.
Collapse
Affiliation(s)
- Changjie Wu
- 1] Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China [2]
| | - Sunquan Qiu
- 1] Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China [2]
| | - Liting Lu
- 1] Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China [2]
| | - Jiawei Zou
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Wen-feng Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ouchen Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haina Zhao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Hongxiao Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiajia Tang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongsheng Sun
- 1] Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China [2] Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanqin Liao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Guangbin Luo
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Xincheng Lu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
66
|
Regulation of the follistatin gene by RSPO-LGR4 signaling via activation of the WNT/β-catenin pathway in skeletal myogenesis. Mol Cell Biol 2013; 34:752-64. [PMID: 24344199 DOI: 10.1128/mcb.01285-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WNT signaling plays multiple roles in skeletal myogenesis during gestation and postnatal stages. The R-spondin (RSPO) family of secreted proteins and their cognate receptors, members of leucine-rich repeat-containing G protein-coupled receptor (LGR) family, have emerged as new regulatory components of the WNT signaling pathway. We previously showed that RSPO2 promoted myogenic differentiation via activation of WNT/β-catenin signaling in mouse myoblast C2C12 cells in vitro. However, the molecular mechanism by which RSPO2 regulates myogenic differentiation is unknown. Herein, we show that depletion of the LGR4 receptor severely disrupts myogenic differentiation and significantly diminishes the response to RSPO2 in C2C12 cells, showing a requirement of LGR4 in RSPO signaling during myogenic differentiation. We identify the transforming growth factor β (TGF-β) antagonist follistatin (Fst) as a key mediator of RSPO-LGR4 signaling in myogenic differentiation. We further demonstrate that Fst is a direct target of the WNT/β-catenin pathway. Activation and inactivation of β-catenin induced and inhibited Fst expression, respectively, in both C2C12 cells and mouse embryos. Specific TCF/LEF1 binding sites within the promoter and intron 1 region of the Fst gene were required for RSPO2 and WNT/β-catenin-induced Fst expression. This study uncovers a molecular cross talk between WNT/β-catenin and TGF-β signaling pivotal in myogenic differentiation.
Collapse
|
67
|
Peng WC, de Lau W, Madoori PK, Forneris F, Granneman JCM, Clevers H, Gros P. Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling. PLoS One 2013; 8:e83110. [PMID: 24349440 PMCID: PMC3861454 DOI: 10.1371/journal.pone.0083110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023] Open
Abstract
Zinc RING finger 3 (ZNRF3) and its homolog RING finger 43 (RNF43) antagonize Wnt signaling in adult stem cells by ubiquitinating Frizzled receptors (FZD), which leads to endocytosis of the Wnt receptor. Conversely, binding of ZNRF3/RNF43 to LGR4-6 – R-spondin blocks Frizzled ubiquitination and enhances Wnt signaling. Here, we present crystal structures of the ZNRF3 ectodomain and its complex with R-spondin 1 (RSPO1). ZNRF3 binds RSPO1 and LGR5-RSPO1 with micromolar affinity via RSPO1 furin-like 1 (Fu1) domain. Anonychia-related mutations in RSPO4 support the importance of the observed interface. The ZNRF3-RSPO1 structure resembles that of LGR5-RSPO1-RNF43, though Fu2 of RSPO1 is variably oriented. The ZNRF3-binding site overlaps with trans-interactions observed in 2:2 LGR5-RSPO1 complexes, thus binding of ZNRF3/RNF43 would disrupt such an arrangement. Sequence conservation suggests a single ligand-binding site on ZNRF3, consistent with the proposed competing binding role of ZNRF3/RNF43 in Wnt signaling.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wim de Lau
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Pramod K Madoori
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Joke C M Granneman
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
68
|
Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2013; 15:19-33. [PMID: 24326621 DOI: 10.1038/nrm3721] [Citation(s) in RCA: 913] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small populations of adult stem cells are responsible for the remarkable ability of the epithelial lining of the intestine to be efficiently renewed and repaired throughout life. The recent discovery of specific markers for these stem cells, together with the development of new technologies to track endogenous stem cell activity in vivo and to exploit their ability to generate new epithelia ex vivo, has greatly improved our understanding of stem cell-driven homeostasis, regeneration and cancer in the intestine. These exciting new insights into the biology of intestinal stem cells have the potential to accelerate the development of stem cell-based therapies and ameliorate cancer treatments.
Collapse
|
69
|
Xie Y, Zamponi R, Charlat O, Ramones M, Swalley S, Jiang X, Rivera D, Tschantz W, Lu B, Quinn L, Dimitri C, Parker J, Jeffery D, Wilcox SK, Watrobka M, LeMotte P, Granda B, Porter JA, Myer VE, Loew A, Cong F. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. EMBO Rep 2013; 14:1120-6. [PMID: 24165923 DOI: 10.1038/embor.2013.167] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 02/07/2023] Open
Abstract
R-spondin proteins sensitize cells to Wnt signalling and act as potent stem cell growth factors. Various membrane proteins have been proposed as potential receptors of R-spondin, including LGR4/5, membrane E3 ubiquitin ligases ZNRF3/RNF43 and several others proteins. Here, we show that R-spondin interacts with ZNRF3/RNF43 and LGR4 through distinct motifs. Both LGR4 and ZNRF3 binding motifs are required for R-spondin-induced LGR4/ZNRF3 interaction, membrane clearance of ZNRF3 and activation of Wnt signalling. Importantly, Wnt-inhibitory activity of ZNRF3, but not of a ZNRF3 mutant with reduced affinity to R-spondin, can be strongly suppressed by R-spondin, suggesting that R-spondin primarily functions by binding and inhibiting ZNRF3. Together, our results support a dual receptor model of R-spondin action, where LGR4/5 serve as the engagement receptor whereas ZNRF3/RNF43 function as the effector receptor.
Collapse
Affiliation(s)
- Yang Xie
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Moad HE, Pioszak AA. Reconstitution of R-spondin:LGR4:ZNRF3 adult stem cell growth factor signaling complexes with recombinant proteins produced in Escherichia coli. Biochemistry 2013; 52:7295-304. [PMID: 24050775 DOI: 10.1021/bi401090h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
R-Spondins are secreted glycoproteins (RSPO1-RSPO4) that have proliferative effects on adult stem cells by potentiating Wnt signaling. RSPO actions are mediated by the leucine-rich repeat (LRR)-containing seven-transmembrane receptors LGR4-LGR6 and the transmembrane E3 ubiquitin ligases ZNRF3 and RNF43. Here, we present a methodology for the bacterial expression and purification of the signaling competent, cysteine-rich Fu1-Fu2 domains of the four human RSPOs, a fragment of the human LGR4 extracellular domain (ECD) containing LRR1-14, and the human ZNRF3 ECD. In a cell-based signaling assay, the nonglycosylated RSPOs enhanced low-dose Wnt3a signaling with potencies comparable to those of mammalian cell-produced RSPOs and RSPO2 and -3 were more potent than RSPO1 and -4. LGR4 LRR1-14 and ZNRF3 ECD inhibited RSPO2-enhanced Wnt3a signaling. The RSPOs bound LGR4 LRR1-14 with nanomolar affinities that decreased in the following order in a time-resolved fluorescence resonance energy transfer (TR-FRET) assay: RSPO4 > RSPO2 > RSPO3 > RSPO1. RSPO-receptor interactions were further characterized with a native gel electrophoretic mobility shift assay, which corroborated the RSPO-LGR4 TR-FRET results and indicated that RSPOs weakly bound ZNRF3 with affinities that decreased in the following order: RSPO2 > RSPO3 > RSPO1. RSPO4:ZNRF3 complexes were not detected. Lastly, ternary RSPO:LGR4:ZNRF3 complexes were detected for RSPO2 and -3. Our results indicate that RSPO and LGR4 N-glycans are dispensable for function, demonstrate RSPO-mediated ternary complex formation, and suggest that the stronger signaling potencies of RSPO2 and -3 result from their strong binding of both receptors. Our unique protein production methodology may provide a cost-effective source of recombinant RSPOs for regenerative medicine applications.
Collapse
Affiliation(s)
- Heather E Moad
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | | |
Collapse
|