51
|
Palma A, Pugliese GM, Murfuni I, Marabitti V, Malacaria E, Rinalducci S, Minoprio A, Sanchez M, Mazzei F, Zolla L, Franchitto A, Pichierri P. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress. Nucleic Acids Res 2019; 46:5109-5124. [PMID: 29850896 PMCID: PMC6007509 DOI: 10.1093/nar/gky280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.
Collapse
Affiliation(s)
- Anita Palma
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Giusj Monia Pugliese
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Ivana Murfuni
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Veronica Marabitti
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Rinalducci
- Proteomics, Metabolomics and Interactomics Lab, Department of Ecology and Biology, Università della Tuscia, Viale dell'Università snc, 01100 Viterbo, Italy
| | - Anna Minoprio
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- Core Facilities Center - Section of Cytometry, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Filomena Mazzei
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Lello Zolla
- Proteomics, Metabolomics and Interactomics Lab, Department of Ecology and Biology, Università della Tuscia, Viale dell'Università snc, 01100 Viterbo, Italy
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
52
|
Lin YF, Shih HY, Shang ZF, Kuo CT, Guo J, Du C, Lee H, Chen BPC. PIDD mediates the association of DNA-PKcs and ATR at stalled replication forks to facilitate the ATR signaling pathway. Nucleic Acids Res 2019; 46:1847-1859. [PMID: 29309644 PMCID: PMC5829747 DOI: 10.1093/nar/gkx1298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), consisting of the DNA binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs, has been well characterized in the non-homologous end-joining mechanism for DNA double strand break (DSB) repair and radiation resistance. Besides playing a role in DSB repair, DNA-PKcs is required for the cellular response to replication stress and participates in the ATR-Chk1 signaling pathway. However, the mechanism through which DNA-PKcs is recruited to stalled replication forks is still unclear. Here, we report that the apoptosis mediator p53-induced protein with a death domain (PIDD) is required to promote DNA-PKcs activity in response to replication stress. PIDD is known to interact with PCNA upon UV-induced replication stress. Our results demonstrate that PIDD is required to recruit DNA-PKcs to stalled replication forks through direct binding to DNA-PKcs at the N’ terminal region. Disruption of the interaction between DNA-PKcs and PIDD not only compromises the ATR association and regulation of DNA-PKcs, but also the ATR signaling pathway, intra-S-phase checkpoint and cellular resistance to replication stress. Taken together, our results indicate that PIDD, but not the Ku heterodimer, mediates the DNA-PKcs activity at stalled replication forks and facilitates the ATR signaling pathway in the cellular response to replication stress.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Hung-Ying Shih
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Zeng-Fu Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ching-Te Kuo
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Jiaming Guo
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunying Du
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
53
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
54
|
Rickman K, Smogorzewska A. Advances in understanding DNA processing and protection at stalled replication forks. J Cell Biol 2019; 218:1096-1107. [PMID: 30670471 PMCID: PMC6446843 DOI: 10.1083/jcb.201809012] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022] Open
Abstract
The replisome, the molecular machine dedicated to copying DNA, encounters a variety of obstacles during S phase. Without a proper response to this replication stress, the genome becomes unstable, leading to disease, including cancer. The immediate response is localized to the stalled replisome and includes protection of the nascent DNA. A number of recent studies have provided insight into the factors recruited to and responsible for protecting stalled replication forks. In response to replication stress, the SNF2 family of DNA translocases has emerged as being responsible for remodeling replication forks in vivo. The protection of stalled replication forks requires the cooperation of RAD51, BRCA1, BRCA2, and many other DNA damage response proteins. In the absence of these fork protection factors, fork remodeling renders them vulnerable to degradation by nucleases and helicases, ultimately compromising genome integrity. In this review, we focus on the recent progress in understanding the protection, processing, and remodeling of stalled replication forks in mammalian cells.
Collapse
Affiliation(s)
- Kimberly Rickman
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| |
Collapse
|
55
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
56
|
Verma P, Dilley RL, Zhang T, Gyparaki MT, Li Y, Greenberg RA. RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes Dev 2019; 33:221-235. [PMID: 30692206 PMCID: PMC6362809 DOI: 10.1101/gad.319723.118] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022]
Abstract
Approximately 15% of cancers use homologous recombination for alternative lengthening of telomeres (ALT). How the initiating genomic lesions invoke homology-directed telomere synthesis remains enigmatic. Here, we show that distinct dependencies exist for telomere synthesis in response to replication stress or DNA double-strand breaks (DSBs). RAD52 deficiency reduced spontaneous telomeric DNA synthesis and replication stress-associated recombination in G2, concomitant with telomere shortening and damage. However, viability and proliferation remained unaffected, suggesting that alternative telomere recombination mechanisms compensate in the absence of RAD52. In agreement, RAD52 was dispensable for DSB-induced telomere synthesis. Moreover, a targeted CRISPR screen revealed that loss of the structure-specific endonuclease scaffold SLX4 reduced the proliferation of RAD52-null ALT cells. While SLX4 was dispensable for RAD52-mediated ALT telomere synthesis in G2, combined SLX4 and RAD52 loss resulted in elevated telomere loss, unresolved telomere recombination intermediates, and mitotic infidelity. These findings establish that RAD52 and SLX4 mediate distinct postreplicative DNA repair processes that maintain ALT telomere stability and cancer cell viability.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Dilley
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tianpeng Zhang
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Melina T Gyparaki
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yiwen Li
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
57
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
58
|
Fournier LA, Kumar A, Stirling PC. Chromatin as a Platform for Modulating the Replication Stress Response. Genes (Basel) 2018; 9:genes9120622. [PMID: 30544989 PMCID: PMC6316668 DOI: 10.3390/genes9120622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic DNA replication occurs in the context of chromatin. Recent years have seen major advances in our understanding of histone supply, histone recycling and nascent histone incorporation during replication. Furthermore, much is now known about the roles of histone remodellers and post-translational modifications in replication. It has also become clear that nucleosome dynamics during replication play critical roles in genome maintenance and that chromatin modifiers are important for preventing DNA replication stress. An understanding of how cells deploy specific nucleosome modifiers, chaperones and remodellers directly at sites of replication fork stalling has been building more slowly. Here we will specifically discuss recent advances in understanding how chromatin composition contribute to replication fork stability and restart.
Collapse
Affiliation(s)
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
59
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
60
|
Abstract
The SLX4/FANCP tumor suppressor has emerged as a key player in the maintenance of genome stability, making pivotal contributions to the repair of interstrand cross-links, homologous recombination, and in response to replication stress genome-wide as well as at specific loci such as common fragile sites and telomeres. SLX4 does so in part by acting as a scaffold that controls and coordinates the XPF-ERCC1, MUS81-EME1, and SLX1 structure-specific endonucleases in different DNA repair and recombination mechanisms. It also interacts with other important DNA repair and cell cycle control factors including MSH2, PLK1, TRF2, and TOPBP1 as well as with ubiquitin and SUMO. This review aims at providing an up-to-date and comprehensive view on the key functions that SLX4 fulfills to maintain genome stability as well as to highlight and discuss areas of uncertainty and emerging concepts.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| | - Pierre Henri Gaillard
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| |
Collapse
|
61
|
Manic G, Sistigu A, Corradi F, Musella M, De Maria R, Vitale I. Replication stress response in cancer stem cells as a target for chemotherapy. Semin Cancer Biol 2018; 53:31-41. [PMID: 30081229 DOI: 10.1016/j.semcancer.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are subpopulations of multipotent stem cells (SCs) responsible for the initiation, long-term clonal maintenance, growth and spreading of most human neoplasms. Reportedly, CSCs share a very robust DNA damage response (DDR) with embryonic and adult SCs, which allows them to survive endogenous and exogenous genotoxins. A range of experimental evidence indicates that CSCs have high but heterogeneous levels of replication stress (RS), arising from, and being boosted by, endogenous causes, such as specific genetic backgrounds (e.g., p53 deficiency) and/or aberrant karyotypes (e.g., supernumerary chromosomes). A multipronged RS response (RSR) is put in place by CSCs to limit and ensure tolerability to RS. The characteristics of such dedicated cascade have two opposite consequences, both relevant for cancer therapy. On the one hand, RSR efficiency often increases the reliance of CSCs on specific DDR components. On the other hand, the functional redundancy of pathways of the RSR can paradoxically promote the acquisition of resistance to RS- and/or DNA damage-inducing agents. Here, we provide an overview of the molecular mechanisms of the RSR in cancer cells and CSCs, focusing on the role of CHK1 and some emerging players, such as PARP1 and components of the homologous recombination repair, whose targeting can represent a long-term effective anti-CSC strategy.
Collapse
Affiliation(s)
- Gwenola Manic
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| | - Antonella Sistigu
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy
| | - Francesca Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Musella
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Molecular Medicine, University "La Sapienza", Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy.
| | - Ilio Vitale
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
62
|
Pasero P, Vindigni A. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet 2018; 51:477-499. [PMID: 29178820 DOI: 10.1146/annurev-genet-120116-024745] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a lifetime, a human being synthesizes approximately 2×1016 meters of DNA, a distance that corresponds to 130,000 times the distance between the Earth and the Sun. This daunting task is executed by thousands of replication forks, which progress along the chromosomes and frequently stall when they encounter DNA lesions, unusual DNA structures, RNA polymerases, or tightly-bound protein complexes. To complete DNA synthesis before the onset of mitosis, eukaryotic cells have evolved complex mechanisms to process and restart arrested forks through the coordinated action of multiple nucleases, topoisomerases, and helicases. In this review, we discuss recent advances in understanding the role and regulation of nucleases acting at stalled forks with a focus on the nucleolytic degradation of nascent DNA, a process commonly referred to as fork resection. We also discuss the effects of deregulated fork resection on genomic instability and on the unscheduled activation of the interferon response under replication stress conditions.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002, University of Montpellier, 34396 Montpellier, France;
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA;
| |
Collapse
|
63
|
Kurashima K, Sekimoto T, Oda T, Kawabata T, Hanaoka F, Yamashita T. Polη, a Y-family translesion synthesis polymerase, promotes cellular tolerance of Myc-induced replication stress. J Cell Sci 2018; 131:jcs.212183. [PMID: 29777036 DOI: 10.1242/jcs.212183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/10/2018] [Indexed: 12/30/2022] Open
Abstract
Growth of precancerous and cancer cells relies on their tolerance of oncogene-induced replication stress (RS). Translesion synthesis (TLS) plays an essential role in the cellular tolerance of various types of RS and bypasses replication barriers by employing specialized polymerases. However, limited information is available about the role of TLS polymerases in oncogene-induced RS. Here, we report that Polη, a Y-family TLS polymerase, promotes cellular tolerance of Myc-induced RS. Polη was recruited to Myc-induced RS sites, and Polη depletion enhanced the Myc-induced slowing and stalling of replication forks and the subsequent generation of double-strand breaks (DSBs). Overexpression of a catalytically dead Polη also promoted Myc-induced DSB formation. In the absence of Polη, Myc-induced DSB formation depended on MUS81-EME2 (the S-phase-specific endonuclease complex), and concomitant depletion of MUS81-EME2 and Polη enhanced RS and cell death in a synergistic manner. Collectively, these results indicate that Polη facilitates fork progression during Myc-induced RS, thereby helping cells tolerate the resultant deleterious effects. Additionally, the present study highlights the possibility of a synthetic sickness or lethality between Polη and MUS81-EME2 in cells experiencing Myc-induced RS.
Collapse
Affiliation(s)
- Kiminori Kurashima
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| | - Takayuki Sekimoto
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 852-8523 Nagasaki, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 171-8588 Tokyo, Japan
| | - Takayuki Yamashita
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| |
Collapse
|
64
|
Murray JM, Carr AM. Integrating DNA damage repair with the cell cycle. Curr Opin Cell Biol 2018; 52:120-125. [PMID: 29587168 DOI: 10.1016/j.ceb.2018.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
DNA is labile and constantly subject to damage. In addition to external mutagens, DNA is continuously damaged by the aqueous environment, cellular metabolites and is prone to strand breakage during replication. Cell duplication is orchestrated by the cell division cycle and specific DNA structures are processed differently depending on where in the cell cycle they are detected. This is often because a specific structure is physiological in one context, for example during DNA replication, while indicating a potentially pathological event in another, such as interphase or mitosis. Thus, contextualising the biochemical entity with respect to cell cycle progression provides information necessary to appropriately regulate DNA processing activities. We review the links between DNA repair and cell cycle context, drawing together recent advances.
Collapse
Affiliation(s)
- Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Susses, Falmer BN1 9RQ, United Kingdom
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Susses, Falmer BN1 9RQ, United Kingdom.
| |
Collapse
|
65
|
Watanabe T, Tanaka H, Horiuchi T. Complex repeat structure promotes hyper-amplification and amplicon evolution through rolling-circle replication. Nucleic Acids Res 2018; 46:5097-5108. [PMID: 29718479 PMCID: PMC6007334 DOI: 10.1093/nar/gky275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/04/2018] [Indexed: 11/30/2022] Open
Abstract
Inverted repeats (IRs) are abundant in genomes and frequently serve as substrates for chromosomal aberrations, including gene amplification. In the early stage of amplification, repeated cycles of chromosome breakage and rearrangement, called breakage-fusion-bridge (BFB), generate a large inverted structure, which evolves into highly-amplified, complex end products. However, it remains to be determined how IRs mediate chromosome rearrangements and promote subsequent hyper-amplification and amplicon evolutions. To dissect the complex processes, we constructed repetitive structures in a yeast chromosome and selected amplified cells using genetic markers with limited expression. The genomic architecture was associated with replication stress and produced extra-/intra-chromosomal amplification. Genetic analysis revealed structure-specific endonucleases, Mus81 and Rad27, and post-replication DNA repair protein, Rad18, suppress the amplification processes. Following BFB cycles, the intra-chromosomal products undergo intensive rearrangements, such as frequent inversions and deletions, indicative of rolling-circle replication. This study presents an integrated view linking BFB cycles to hyper-amplification driven by rolling-circle replication.
Collapse
Affiliation(s)
- Takaaki Watanabe
- Department of Molecular Life Science, Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.,National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Takashi Horiuchi
- Department of Molecular Life Science, Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.,National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
66
|
Federico MB, Campodónico P, Paviolo NS, Gottifredi V. Beyond interstrand crosslinks repair: contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA. Mutat Res 2018; 808:83-92. [PMID: 29031493 DOI: 10.1016/j.mrfmmm.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Biallelic mutations of FANCD2 and other components of the Fanconi Anemia (FA) pathway cause a disease characterized by bone marrow failure, cancer predisposition and a striking sensitivity to agents that induce crosslinks between the two complementary DNA strands (inter-strand crosslinks-ICL). Such genotoxins were used to characterize the contribution of the FA pathway to the genomic stability of cells, thus unravelling the biological relevance of ICL repair in the context of the disease. Notwithstanding this, whether the defect in ICL repair as the sole trigger for the multiple physiological alterations observed in FA patients is still under investigation. Remarkably, ICL-independent functions of FANCD2 and other components of the FA pathway were recently reported. FANCD2 contributes to the processing of very challenging double strand ends (DSEs: one ended Double Strand Breaks -DSBs- created during DNA replication). Other ICL-independent functions of FANCD2 include prevention of DNA breakage at stalled replication forks and facilitation of chromosome segregation at the end of M phase. The current understanding of replication-associated functions of FANCD2 and its relevance for the survival of genomically stable cells is herein discussed.
Collapse
Affiliation(s)
- Maria B Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Paola Campodónico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Natalia S Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
67
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
68
|
Sidorova J. A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance. Cell Stress 2017; 1:115-133. [PMID: 29355244 PMCID: PMC5771654 DOI: 10.15698/cst2017.12.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
Abstract
During the hours that human cells spend in the DNA synthesis (S) phase of the cell cycle, they may encounter adversities such as DNA damage or shortage of nucleotides. Under these stresses, replication forks in DNA may experience slowing, stalling, and breakage. Fork remodeling mechanisms, which stabilize slow or stalled replication forks and ensure their ability to continue or resume replication, protect cells from genomic instability and carcinogenesis. Fork remodeling includes DNA strand exchanges that result in annealing of newly synthesized strands (fork reversal), controlled DNA resection, and cleavage of DNA strands. Defects in major tumor suppressor genes BRCA1 and BRCA2, and a subset of the Fanconi Anemia genes have been shown to result in deregulation in fork remodeling, and most prominently, loss of kilobases of nascent DNA from stalled replication forks. This phenomenon has recently gained spotlight as a potential marker and mediator of chemo-sensitivity in cancer cells and, conversely, its suppression - as a hallmark of acquired chemo-resistance. Moreover, nascent strand degradation at forks is now known to also trigger innate immune response to self-DNA. An increasingly sophisticated molecular description of these events now points at a combination of unbalanced fork reversal and end-resection as a root cause, yet also reveals the multi-layered complexity and heterogeneity of the underlying processes in normal and cancer cells.
Collapse
Affiliation(s)
- Julia Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
69
|
Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L, Jia P, Dai X, Huang C, Ye P, Chai W. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress. Cell Rep 2017; 16:1300-1314. [PMID: 27487043 DOI: 10.1016/j.celrep.2016.06.077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/23/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance.
Collapse
Affiliation(s)
- Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Qing Zhou
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Olga Shiva
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Maria Fadri-Moskwik
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Leanne Whitmore
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Xueyu Dai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Chenhui Huang
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Ping Ye
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, 1000 E 23rd Street, Suite 370, Sioux Falls, SD 57105, USA; Department of Pharmacy Practice, South Dakota State University, Brookings, SD 57007, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA.
| |
Collapse
|
70
|
Xu Y, Ning S, Wei Z, Xu R, Xu X, Xing M, Guo R, Xu D. 53BP1 and BRCA1 control pathway choice for stalled replication restart. eLife 2017; 6:30523. [PMID: 29106372 PMCID: PMC5683755 DOI: 10.7554/elife.30523] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/04/2017] [Indexed: 12/29/2022] Open
Abstract
The cellular pathways that restart stalled replication forks are essential for genome stability and tumor prevention. However, how many of these pathways exist in cells and how these pathways are selectively activated remain unclear. Here, we describe two major fork restart pathways, and demonstrate that their selection is governed by 53BP1 and BRCA1, which are known to control the pathway choice to repair double-strand DNA breaks (DSBs). Specifically, 53BP1 promotes a fork cleavage-free pathway, whereas BRCA1 facilitates a break-induced replication (BIR) pathway coupled with SLX-MUS complex-mediated fork cleavage. The defect in the first pathway, but not DSB repair, in a 53BP1 mutant is largely corrected by disrupting BRCA1, and vice versa. Moreover, PLK1 temporally regulates the switch of these two pathways through enhancing the assembly of the SLX-MUS complex. Our results reveal two distinct fork restart pathways, which are antagonistically controlled by 53BP1 and BRCA1 in a DSB repair-independent manner.
Collapse
Affiliation(s)
- Yixi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Shaokai Ning
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zheng Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ran Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xinlin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mengtan Xing
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
71
|
Lemaçon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, You Z, Ira G, Zou L, Mosammaparast N, Vindigni A. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun 2017; 8:860. [PMID: 29038425 PMCID: PMC5643552 DOI: 10.1038/s41467-017-01180-5] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic sensitivity. Here we report that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment. The unprotected regressed arms of reversed forks are the entry point for MRE11 in BRCA-deficient cells. The CtIP protein initiates MRE11-dependent degradation, which is extended by the EXO1 nuclease. Next, we show that the initial limited resection of the regressed arms establishes the substrate for MUS81 in BRCA2-deficient cells. In turn, MUS81 cleavage of regressed forks with a ssDNA tail promotes POLD3-dependent fork rescue. We propose that targeting this pathway may represent a new strategy to modulate BRCA2-deficient cancer cell response to chemotherapeutics that cause fork degradation. BRCA proteins have emerged as key stabilizing factors for the maintenance of replication forks following replication stress. Here the authors describe how reversed replication forks are degraded in the absence of BRCA2, and a MUS81 and POLD3-dependent mechanism of rescue following the withdrawal of genotoxic agent.
Collapse
Affiliation(s)
- Delphine Lemaçon
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Annabel Quinet
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Joshua R Brickner
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660S. Euclid Ave., St Louis, MO, 63110, USA
| | - Stephanie Yazinski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660S. Euclid Ave., St Louis, MO, 63110, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA.
| |
Collapse
|
72
|
Federico MB, Campodónico P, Paviolo NS, Gottifredi V. ACCIDENTAL DUPLICATION: Beyond interstrand crosslinks repair: Contribution of FANCD2 and other Fanconi Anemia proteins to the replication of DNA. Mutat Res 2017:S0027-5107(17)30167-7. [PMID: 28966006 DOI: 10.1016/j.mrfmmm.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 11/30/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/ 10.1016/j.mrfmmm.2017.09.006. This duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Maria B Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Paola Campodónico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Natalia S Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
73
|
Abstract
Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under increased DNA replication stress.
Collapse
Affiliation(s)
- Luis Toledo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Kai John Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
74
|
Sotiriou SK, Kamileri I, Lugli N, Evangelou K, Da-Ré C, Huber F, Padayachy L, Tardy S, Nicati NL, Barriot S, Ochs F, Lukas C, Lukas J, Gorgoulis VG, Scapozza L, Halazonetis TD. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Mol Cell 2017; 64:1127-1134. [PMID: 27984746 PMCID: PMC5179496 DOI: 10.1016/j.molcel.2016.10.038] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/08/2016] [Accepted: 10/28/2016] [Indexed: 02/01/2023]
Abstract
Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Mammalian RAD52 is involved in the oncogene-induced DNA replication stress response Mammalian RAD52 functions in the repair of collapsed DNA replication forks Rad52 deficiency prolongs the lifespan of Apcmin/+ mice
Collapse
Affiliation(s)
- Sotirios K Sotiriou
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Irene Kamileri
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Natalia Lugli
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Konstantinos Evangelou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Caterina Da-Ré
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Florian Huber
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Sebastien Tardy
- School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Noemie L Nicati
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Samia Barriot
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
75
|
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 2017; 18:622-636. [PMID: 28811666 DOI: 10.1038/nrm.2017.67] [Citation(s) in RCA: 600] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| | - David Cortez
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| |
Collapse
|
76
|
Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R. Drugging the Cancers Addicted to DNA Repair. J Natl Cancer Inst 2017; 109:3832892. [PMID: 28521333 PMCID: PMC5436301 DOI: 10.1093/jnci/djx059] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dennie Jones
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
77
|
Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res 2017; 806:64-74. [PMID: 28779875 DOI: 10.1016/j.mrfmmm.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.
Collapse
|
78
|
Lai X, Broderick R, Bergoglio V, Zimmer J, Badie S, Niedzwiedz W, Hoffmann JS, Tarsounas M. MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells. Nat Commun 2017; 8:15983. [PMID: 28714477 PMCID: PMC5520020 DOI: 10.1038/ncomms15983] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/17/2017] [Indexed: 11/28/2022] Open
Abstract
Failure to restart replication forks stalled at genomic regions that are difficult to replicate or contain endogenous DNA lesions is a hallmark of BRCA2 deficiency. The nucleolytic activity of MUS81 endonuclease is required for replication fork restart under replication stress elicited by exogenous treatments. Here we investigate whether MUS81 could similarly facilitate DNA replication in the context of BRCA2 abrogation. Our results demonstrate that replication fork progression in BRCA2-deficient cells requires MUS81. Failure to complete genome replication and defective checkpoint surveillance enables BRCA2-deficient cells to progress through mitosis with under-replicated DNA, which elicits severe chromosome interlinking in anaphase. MUS81 nucleolytic activity is required to activate compensatory DNA synthesis during mitosis and to resolve mitotic interlinks, thus facilitating chromosome segregation. We propose that MUS81 provides a mechanism of replication stress tolerance, which sustains survival of BRCA2-deficient cells and can be exploited therapeutically through development of specific inhibitors of MUS81 nuclease activity.
Collapse
Affiliation(s)
- Xianning Lai
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ronan Broderick
- Division of Cancer Biology, Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Valérie Bergoglio
- Cancer Research Center of Toulouse, Université de Toulouse, Inserm, CNRS, UPS, Equipe labellisée Ligue Contre le Cancer, Laboratoire d’excellence Toulouse Cancer, 2 Avenue Hubert Curien, Toulouse 31037, France
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sophie Badie
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Wojciech Niedzwiedz
- Division of Cancer Biology, Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Jean-Sébastien Hoffmann
- Cancer Research Center of Toulouse, Université de Toulouse, Inserm, CNRS, UPS, Equipe labellisée Ligue Contre le Cancer, Laboratoire d’excellence Toulouse Cancer, 2 Avenue Hubert Curien, Toulouse 31037, France
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
79
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
80
|
Abstract
DNA replication and homologous recombination involve the formation of branched DNA structures that physically link chromosomes. Such DNA-based connections, which arise during S-phase, are typically disengaged prior to entry into mitosis, in order to ensure proper chromosome segregation. Exceptions can, however, occur: replication stress, or elevated levels of DNA damage, may cause cells to enter mitosis with unfinished replication as well as carrying recombination intermediates, such as Holliday junctions. Hence, cells are equipped with pathways that recognize and process branched DNA structures, and evolved mechanisms to enhance their function when on the verge of undergoing cell division. One of these pathways utilizes the structure-selective endonuclease Mus81, which is thought to facilitate the resolution of replication and recombination intermediates. Mus81 function is known to be enhanced upon entry into M phase in budding yeast and human cells. Based on recent findings, we discuss here an updated model of Mus81 control during the cell cycle.
Collapse
Affiliation(s)
- Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Zürich, Switzerland
| |
Collapse
|
81
|
Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017; 6:S875-S891. [PMID: 30574452 PMCID: PMC6298755 DOI: 10.21037/tcr.2017.06.02] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the fight against cancer. It is non-invasive and painless, and with advanced tumor imaging and beam control systems, radiation can be delivered to patients safely, generally with minor or no adverse side effects, accounting for its increasing use against a broad range of tumors. Tumors and normal cells respond to radiation-induced DNA damage by activating a complex network of DNA damage signaling and repair pathways that determine cell fate including survival, death, and genome stability. DNA damage response (DDR) proteins represent excellent targets to augment radiotherapy, and many agents that inhibit key response proteins are being combined with radiation and genotoxic chemotherapy in clinical trials. This review focuses on how insights into molecular mechanisms of DDR pathways are translated to small animal preclinical studies, to clinical studies of naturally occurring tumors in companion animals, and finally to human clinical trials. Companion animal studies, under the umbrella of comparative oncology, have played key roles in the development of clinical radiotherapy throughout its >100-year history. There is growing appreciation that rapid translation of basic knowledge of DNA damage and repair systems to improved radiotherapy practice requires a comprehensive approach that embraces the full spectrum of cancer research, with companion animal clinical trials representing a critical bridge between small animal preclinical studies, and human clinical trials.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P Allen
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Susan M LaRue
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
82
|
Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol 2017; 18:315-330. [PMID: 28327556 DOI: 10.1038/nrm.2016.177] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
83
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
84
|
A Mechanism for Controlled Breakage of Under-replicated Chromosomes during Mitosis. Dev Cell 2016; 39:740-755. [DOI: 10.1016/j.devcel.2016.11.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 09/27/2016] [Accepted: 11/19/2016] [Indexed: 01/12/2023]
|
85
|
Graziano S, Gonzalo S. Mechanisms of oncogene-induced genomic instability. Biophys Chem 2016; 225:49-57. [PMID: 28073589 DOI: 10.1016/j.bpc.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Abstract
Activating mutations in oncogenes promote uncontrolled proliferation and malignant transformation. Approximately 30% of human cancers carry mutations in the RAS oncogene. Paradoxically, expression of mutant constitutively active Ras protein in primary human cells results in a premature proliferation arrest known as oncogene-induced senescence (OIS). This is more commonly observed in human pre-neoplasia than in neoplastic lesions, and is considered a tumor suppressor mechanism. Senescent cells are still metabolically active but in a status of cell cycle arrest characterized by specific morphological and physiological features that distinguish them from both proliferating cells, and cells growth-arrested by other means. Although the molecular mechanisms by which OIS is established are not totally understood, the current view is that OIS in human cells is tightly linked to persistent activation of the DNA damage response (DDR) pathway, as a consequence of replication stress. Here we will highlight recent advances in our understanding of molecular mechanisms leading to hyper-replication stress in response to oncogene activation, and of the crosstalk between replication stress and persistent activation of the DDR. We will also discuss new evidence for DNA repair deficiencies during OIS, which might increase the genomic instability that drives senescence bypass and malignant transformation.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
86
|
Xing M, Wang X, Palmai-Pallag T, Shen H, Helleday T, Hickson ID, Ying S. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget 2016; 6:37638-46. [PMID: 26415217 PMCID: PMC4741954 DOI: 10.18632/oncotarget.5497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
The MUS81 protein belongs to a conserved family of DNA structure-specific nucleases that play important roles in DNA replication and repair. Inactivation of the Mus81 gene in mice has no major deleterious consequences for embryonic development, although cancer susceptibility has been reported. We have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81 is required for efficient replication fork progression during an unperturbed S-phase, and for recovery of productive replication following replication stalling. These results demonstrate essential roles for the MUS81 nuclease in maintenance of replication fork integrity.
Collapse
Affiliation(s)
- Meichun Xing
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory For Respiratory Diseases, Guangzhou, China
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ian D Hickson
- Center for Chromosome Stability and Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Songmin Ying
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
87
|
Root H, Larsen A, Komosa M, Al-Azri F, Li R, Bazett-Jones DP, Stephen Meyn M. FANCD2 limits BLM-dependent telomere instability in the alternative lengthening of telomeres pathway. Hum Mol Genet 2016; 25:3255-3268. [DOI: 10.1093/hmg/ddw175] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022] Open
|
88
|
Zhou X, DeLucia M, Ahn J. SLX4-SLX1 Protein-independent Down-regulation of MUS81-EME1 Protein by HIV-1 Viral Protein R (Vpr). J Biol Chem 2016; 291:16936-16947. [PMID: 27354282 DOI: 10.1074/jbc.m116.721183] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/22/2022] Open
Abstract
Evolutionarily conserved structure-selective endonuclease MUS81 forms a complex with EME1 and further associates with another endonuclease SLX4-SLX1 to form a four-subunit complex of MUS81-EME1-SLX4-SLX1, coordinating distinctive biochemical activities of both endonucleases in DNA repair. Viral protein R (Vpr), a highly conserved accessory protein in primate lentiviruses, was previously reported to bind SLX4 to mediate down-regulation of MUS81. However, the detailed mechanism underlying MUS81 down-regulation is unclear. Here, we report that HIV-1 Vpr down-regulates both MUS81 and its cofactor EME1 by hijacking the host CRL4-DCAF1 E3 ubiquitin ligase. Multiple Vpr variants, from HIV-1 and SIV, down-regulate both MUS81 and EME1. Furthermore, a C-terminally truncated Vpr mutant and point mutants R80A and Q65R, all of which lack G2 arrest activity, are able to down-regulate MUS81-EME1, suggesting that Vpr-induced G2 arrest is not correlated with MUS81-EME1 down-regulation. We also show that neither the interaction of MUS81-EME1 with Vpr nor their down-regulation is dependent on SLX4-SLX1. Together, these data provide new insight on a conserved function of Vpr in a host endonuclease down-regulation.
Collapse
Affiliation(s)
- Xiaohong Zhou
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
89
|
Ghamrasni SE, Cardoso R, Li L, Guturi KKN, Bjerregaard VA, Liu Y, Venkatesan S, Hande MP, Henderson JT, Sanchez O, Hickson ID, Hakem A, Hakem R. Rad54 and Mus81 cooperation promotes DNA damage repair and restrains chromosome missegregation. Oncogene 2016; 35:4836-45. [PMID: 26876210 DOI: 10.1038/onc.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 12/18/2022]
Abstract
Rad54 and Mus81 mammalian proteins physically interact and are important for the homologous recombination DNA repair pathway; however, their functional interactions in vivo are poorly defined. Here, we show that combinatorial loss of Rad54 and Mus81 results in hypersensitivity to DNA-damaging agents, defects on both the homologous recombination and non-homologous DNA end joining repair pathways and reduced fertility. We also observed that while Mus81 deficiency diminished the cleavage of common fragile sites, very strikingly, Rad54 loss impaired this cleavage to even a greater extent. The inefficient repair of DNA double-strand breaks (DSBs) in Rad54(-/-)Mus81(-/-) cells was accompanied by elevated levels of chromosome missegregation and cell death. Perhaps as a consequence, tumor incidence in Rad54(-/-)Mus81(-/-) mice remained comparable to that in Mus81(-/-) mice. Our study highlights the importance of the cooperation between Rad54 and Mus81 for mediating DNA DSB repair and restraining chromosome missegregation.
Collapse
Affiliation(s)
- S El Ghamrasni
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - R Cardoso
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - L Li
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - K K N Guturi
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - V A Bjerregaard
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Ageing, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Y Liu
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Ageing, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - S Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, Singapore
| | - M P Hande
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, Singapore
| | - J T Henderson
- Department of Pharmaceutical Sciences, Division of Biomolecular Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - O Sanchez
- Department of pathology, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - I D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Ageing, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - A Hakem
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - R Hakem
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
90
|
Técher H, Koundrioukoff S, Carignon S, Wilhelm T, Millot GA, Lopez BS, Brison O, Debatisse M. Signaling from Mus81-Eme2-Dependent DNA Damage Elicited by Chk1 Deficiency Modulates Replication Fork Speed and Origin Usage. Cell Rep 2016; 14:1114-1127. [PMID: 26804904 DOI: 10.1016/j.celrep.2015.12.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 11/10/2015] [Accepted: 12/19/2015] [Indexed: 11/20/2022] Open
Abstract
Mammalian cells deficient in ATR or Chk1 display moderate replication fork slowing and increased initiation density, but the underlying mechanisms have remained unclear. We show that exogenous deoxyribonucleosides suppress both replication phenotypes in Chk1-deficient, but not ATR-deficient, cells. Thus, in the absence of exogenous stress, depletion of either protein impacts the replication dynamics through different mechanisms. In addition, Chk1 deficiency, but not ATR deficiency, triggers nuclease-dependent DNA damage. Avoiding damage formation through invalidation of Mus81-Eme2 and Mre11, or preventing damage signaling by turning off the ATM pathway, suppresses the replication phenotypes of Chk1-deficient cells. Damage and resulting DDR activation are therefore the cause, not the consequence, of replication dynamics modulation in these cells. Together, we identify moderate reduction of precursors available for replication as an additional outcome of DDR activation. We propose that resulting fork slowing, and subsequent firing of backup origins, helps replication to proceed along damaged templates.
Collapse
Affiliation(s)
- Hervé Técher
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Stéphane Koundrioukoff
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Sandra Carignon
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Gaël A Millot
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Bernard S Lopez
- Institut de Cancérologie Gustave Roussy, CNRS UMR 8200 and Université Paris Sud, 94805 Villejuif, France
| | - Olivier Brison
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Michelle Debatisse
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France.
| |
Collapse
|
91
|
Böhm S, Szakal B, Herken BW, Sullivan MR, Mihalevic MJ, Kabbinavar FF, Branzei D, Clark NL, Bernstein KA. The Budding Yeast Ubiquitin Protease Ubp7 Is a Novel Component Involved in S Phase Progression. J Biol Chem 2016; 291:4442-52. [PMID: 26740628 DOI: 10.1074/jbc.m115.671057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
DNA damage must be repaired in an accurate and timely fashion to preserve genome stability. Cellular mechanisms preventing genome instability are crucial to human health because genome instability is considered a hallmark of cancer. Collectively referred to as the DNA damage response, conserved pathways ensure proper DNA damage recognition and repair. The function of numerous DNA damage response components is fine-tuned by posttranslational modifications, including ubiquitination. This not only involves the enzyme cascade responsible for conjugating ubiquitin to substrates but also requires enzymes that mediate directed removal of ubiquitin. Deubiquitinases remove ubiquitin from substrates to prevent degradation or to mediate signaling functions. The Saccharomyces cerevisiae deubiquitinase Ubp7 has been characterized previously as an endocytic factor. However, here we identify Ubp7 as a novel factor affecting S phase progression after hydroxyurea treatment and demonstrate an evolutionary and genetic interaction of Ubp7 with DNA damage repair pathways of homologous recombination and nucleotide excision repair. We find that deletion of UBP7 sensitizes cells to hydroxyurea and cisplatin and demonstrate that factors that stabilize replication forks are critical under these conditions. Furthermore, ubp7Δ cells exhibit an S phase progression defect upon checkpoint activation by hydroxyurea treatment. ubp7Δ mutants are epistatic to factors involved in histone maintenance and modification, and we find that a subset of Ubp7 is chromatin-associated. In summary, our results suggest that Ubp7 contributes to S phase progression by affecting the chromatin state at replication forks, and we propose histone H2B ubiquitination as a potential substrate of Ubp7.
Collapse
Affiliation(s)
- Stefanie Böhm
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Barnabas Szakal
- the Department of Molecular Oncology, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan 20139, Italy
| | - Benjamin W Herken
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Meghan R Sullivan
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael J Mihalevic
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Faiz F Kabbinavar
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Dana Branzei
- the Department of Molecular Oncology, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan 20139, Italy
| | - Nathan L Clark
- the Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Kara A Bernstein
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
92
|
Olivier M, Da Ines O, Amiard S, Serra H, Goubely C, White CI, Gallego ME. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis. THE PLANT CELL 2016; 28:74-86. [PMID: 26704385 PMCID: PMC4746687 DOI: 10.1105/tpc.15.00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 05/02/2023]
Abstract
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.
Collapse
Affiliation(s)
- Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Heïdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Chantal Goubely
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Maria E Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| |
Collapse
|
93
|
Pickett HA, Reddel RR. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol 2015; 22:875-80. [PMID: 26581522 DOI: 10.1038/nsmb.3106] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/01/2015] [Indexed: 02/08/2023]
Abstract
Alternative lengthening of telomeres (ALT) involves homology-directed telomere synthesis. This multistep process is facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture, including altered DNA sequence and decreased TRF2 saturation. Induction of telomere-specific DNA damage triggers homology-directed searches, and NuRD-ZNF827 protein-protein interactions provide a platform for the telomeric recruitment of homologous recombination (HR) proteins. Telomere lengthening proceeds by strand exchange and template-driven DNA synthesis, which culminates in dissolution of HR intermediates.
Collapse
Affiliation(s)
- Hilda A Pickett
- Telomere Length Regulation Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
94
|
Mayle R, Campbell IM, Beck CR, Yu Y, Wilson M, Shaw CA, Bjergbaek L, Lupski JR, Ira G. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science 2015; 349:742-7. [PMID: 26273056 DOI: 10.1126/science.aaa8391] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most spontaneous DNA double-strand breaks (DSBs) result from replication-fork breakage. Break-induced replication (BIR), a genome rearrangement-prone repair mechanism that requires the Pol32/POLD3 subunit of eukaryotic DNA Polδ, was proposed to repair broken forks, but how genome destabilization is avoided was unknown. We show that broken fork repair initially uses error-prone Pol32-dependent synthesis, but that mutagenic synthesis is limited to within a few kilobases from the break by Mus81 endonuclease and a converging fork. Mus81 suppresses template switches between both homologous sequences and diverged human Alu repetitive elements, highlighting its importance for stability of highly repetitive genomes. We propose that lack of a timely converging fork or Mus81 may propel genome instability observed in cancer.
Collapse
Affiliation(s)
- Ryan Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marenda Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Department of Pediatrics, and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Texas Children's Hospital, Houston, TX 77030, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
95
|
Blanco MG, Matos J. Hold your horSSEs: controlling structure-selective endonucleases MUS81 and Yen1/GEN1. Front Genet 2015; 6:253. [PMID: 26284109 PMCID: PMC4519697 DOI: 10.3389/fgene.2015.00253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Repair of DNA lesions through homologous recombination promotes the establishment of stable chromosomal interactions. Multiple helicases, topoisomerases and structure-selective endonucleases (SSEs) act upon recombining joint molecules (JMs) to disengage chromosomal connections and safeguard chromosome segregation. Recent studies on two conserved SSEs – MUS81 and Yen1/GEN1– uncovered multiple layers of regulation that operate to carefully tailor JM-processing according to specific cellular needs. Temporal restriction of SSE function imposes a hierarchy in pathway usage that ensures efficient JM-processing while minimizing reciprocal exchanges between the recombining DNAs. Whereas a conserved strategy of fine-tuning SSE functions exists in different model systems, the precise molecular mechanisms to implement it appear to be significantly different. Here, we summarize the current knowledge on the cellular switches that are in place to control MUS81 and Yen1/GEN1 functions.
Collapse
Affiliation(s)
- Miguel G Blanco
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela , Santiago de Compostela, Spain
| | - Joao Matos
- Institute of Biochemistry, Swiss Federal Institute of Technology in Zürich , Zürich, Switzerland
| |
Collapse
|
96
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
97
|
Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 2015; 16:207-20. [PMID: 25714681 DOI: 10.1038/nrm3935] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Kai J Neelsen
- 1] Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. [2] The Novo Nordisk Foundation Center for Protein Research, 2200 Copenhagen, Denmark
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
98
|
Kotsantis P, Jones RM, Higgs MR, Petermann E. Cancer therapy and replication stress: forks on the road to perdition. Adv Clin Chem 2015; 69:91-138. [PMID: 25934360 DOI: 10.1016/bs.acc.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deregulated DNA replication occurs in cancer where it contributes to genomic instability. This process is a target of cytotoxic therapies. Chemotherapies exploit high DNA replication in cancer cells by modifying the DNA template or by inhibiting vital enzymatic activities that lead to slowing or stalling replication fork progression. Stalled replication forks can be converted into toxic DNA double-strand breaks resulting in cell death, i.e., replication stress. While likely crucial for many cancer treatments, replication stress is poorly understood due to its complexity. While we still know relatively little about the role of replication stress in cancer therapy, technical advances in recent years have shed new light on the effect that cancer therapeutics have on replication forks and the molecular mechanisms that lead from obstructed fork progression to cell death. This chapter will give an overview of our current understanding of replication stress in the context of cancer therapy.
Collapse
Affiliation(s)
- Panagiotis Kotsantis
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rebecca M Jones
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eva Petermann
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
99
|
Ouyang J, Garner E, Hallet A, Nguyen HD, Rickman KA, Gill G, Smogorzewska A, Zou L. Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance. Mol Cell 2014; 57:108-22. [PMID: 25533185 DOI: 10.1016/j.molcel.2014.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/17/2014] [Accepted: 11/04/2014] [Indexed: 11/20/2022]
Abstract
SLX4, a coordinator of multiple DNA structure-specific endonucleases, is important for several DNA repair pathways. Noncovalent interactions of SLX4 with ubiquitin are required for localizing SLX4 to DNA interstrand crosslinks (ICLs), yet how SLX4 is targeted to other functional contexts remains unclear. Here, we show that SLX4 binds SUMO-2/3 chains via SUMO-interacting motifs (SIMs). The SIMs of SLX4 are dispensable for ICL repair but important for processing CPT-induced replication intermediates, suppressing fragile site instability, and localizing SLX4 to ALT telomeres. The localization of SLX4 to laser-induced DNA damage also requires the SIMs, as well as DNA end resection, UBC9, and MDC1. Furthermore, the SUMO binding of SLX4 enhances its interaction with specific DNA-damage sensors or telomere-binding proteins, including RPA, MRE11-RAD50-NBS1, and TRF2. Thus, the interactions of SLX4 with SUMO and ubiquitin increase its affinity for factors recognizing different DNA lesions or telomeres, helping to direct the SLX4 complex in distinct functional contexts.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth Garner
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Alexander Hallet
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kimberly A Rickman
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Grace Gill
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA.
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
100
|
Lecona E, Fernández-Capetillo O. Replication stress and cancer: it takes two to tango. Exp Cell Res 2014; 329:26-34. [PMID: 25257608 DOI: 10.1016/j.yexcr.2014.09.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022]
Abstract
Problems arising during DNA replication require the activation of the ATR-CHK1 pathway to ensure the stabilization and repair of the forks, and to prevent the entry into mitosis with unreplicated genomes. Whereas the pathway is essential at the cellular level, limiting its activity is particularly detrimental for some cancer cells. Here we review the links between replication stress (RS) and cancer, which provide a rationale for the use of ATR and Chk1 inhibitors in chemotherapy. First, we describe how the activation of oncogene-induced RS promotes genome rearrangements and chromosome instability, both of which could potentially fuel carcinogenesis. Next, we review the various pathways that contribute to the suppression of RS, and how mutations in these components lead to increased cancer incidence and/or accelerated ageing. Finally, we summarize the evidence showing that tumors with high levels of RS are dependent on a proficient RS-response, and therefore vulnerable to ATR or Chk1 inhibitors.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Fernández-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|