51
|
Chakraborty A, Tapryal N, Venkova T, Horikoshi N, Pandita RK, Sarker AH, Sarkar PS, Pandita TK, Hazra TK. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat Commun 2016; 7:13049. [PMID: 27703167 PMCID: PMC5059474 DOI: 10.1038/ncomms13049] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. Most adult mammalian cells prefer to repair double-strand DNA breaks though the classical nonhomologous end-joining pathway. Here the authors present evidence that a nascent RNA transcript can serve as a template to facilitate error-free repair.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Nisha Tapryal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Tatiana Venkova
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Altaf H Sarker
- Division of Life Sciences, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Partha S Sarkar
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Tapas K Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
52
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
53
|
Li J, Xu X. DNA double-strand break repair: a tale of pathway choices. Acta Biochim Biophys Sin (Shanghai) 2016; 48:641-6. [PMID: 27217474 DOI: 10.1093/abbs/gmw045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/15/2016] [Indexed: 11/15/2022] Open
Abstract
Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. DSB repair is critical for genome integrity, cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy. The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts. Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages, downstream effects, and distinct chromosomal histone marks. These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.
Collapse
Affiliation(s)
- Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
54
|
Mujoo K, Butler EB, Pandita RK, Hunt CR, Pandita TK. Pluripotent Stem Cells and DNA Damage Response to Ionizing Radiations. Radiat Res 2016; 186:17-26. [PMID: 27332952 PMCID: PMC4963261 DOI: 10.1667/rr14417.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise in regenerative medicine, disease modeling, functional genomics, toxicological studies and cell-based therapeutics due to their unique characteristics of self-renewal and pluripotency. Novel methods for generation of pluripotent stem cells and their differentiation to the specialized cell types such as neuronal cells, myocardial cells, hepatocytes and beta cells of the pancreas and many other cells of the body are constantly being refined. Pluripotent stem cell derived differentiated cells, including neuronal cells or cardiac cells, are ideal for stem cell transplantation as autologous or allogeneic cells from healthy donors due to their minimal risk of rejection. Radiation-induced DNA damage, ultraviolet light, genotoxic stress and other intrinsic and extrinsic factors triggers a series of biochemical reactions known as DNA damage response. To maintain genomic stability and avoid transmission of mutations into progenitors cells, stem cells have robust DNA damage response signaling, a contrast to somatic cells. Stem cell transplantation may protect against radiation-induced late effects. In particular, this review focuses on differential DNA damage response between stem cells and derived differentiated cells and the possible pathways that determine such differences.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - E. Brian Butler
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Raj K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| |
Collapse
|
55
|
Sadik H, Korangath P, Nguyen NK, Gyorffy B, Kumar R, Hedayati M, Teo WW, Park S, Panday H, Munoz TG, Menyhart O, Shah N, Pandita RK, Chang JC, DeWeese T, Chang HY, Pandita TK, Sukumar S. HOXC10 Expression Supports the Development of Chemotherapy Resistance by Fine Tuning DNA Repair in Breast Cancer Cells. Cancer Res 2016; 76:4443-56. [PMID: 27302171 DOI: 10.1158/0008-5472.can-16-0774] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022]
Abstract
Development of drug resistance is a major factor limiting the continued success of cancer chemotherapy. To overcome drug resistance, understanding the underlying mechanism(s) is essential. We found that HOXC10 is overexpressed in primary carcinomas of the breast, and even more significantly in distant metastasis arising after failed chemotherapy. High HOXC10 expression correlates with shorter recurrence-free and overall survival in patients with estrogen receptor-negative breast cancer undergoing chemotherapy. We found that HOXC10 promotes survival in cells treated with doxorubicin, paclitaxel, or carboplatin by suppressing apoptosis and upregulating NF-κB Overexpressed HOXC10 increases S-phase-specific DNA damage repair by homologous recombination (HR) and checkpoint recovery in cells at three important phases. For double-strand break repair, HOXC10 recruits HR proteins at sites of DNA damage. It enhances resection and lastly, it resolves stalled replication forks, leading to initiation of DNA replication following DNA damage. We show that HOXC10 facilitates, but is not directly involved in DNA damage repair mediated by HR. HOXC10 achieves integration of these functions by binding to, and activating cyclin-dependent kinase, CDK7, which regulates transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II. Consistent with these findings, inhibitors of CDK7 reverse HOXC10-mediated drug resistance in cultured cells. Blocking HOXC10 function, therefore, presents a promising new strategy to overcome chemotherapy resistance in breast cancer. Cancer Res; 76(15); 4443-56. ©2016 AACR.
Collapse
Affiliation(s)
- Helen Sadik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Preethi Korangath
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nguyen K Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balazs Gyorffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Rakesh Kumar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammad Hedayati
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Wen Teo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sunju Park
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hardik Panday
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Teresa Gonzalez Munoz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Otilia Menyhart
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nilay Shah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas
| | - Jenny C Chang
- Methodist Cancer Center, The Houston Methodist Research Institute, Houston, Texas
| | - Theodore DeWeese
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Howard Y Chang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas.
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
56
|
Schipler A, Mladenova V, Soni A, Nikolov V, Saha J, Mladenov E, Iliakis G. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res 2016; 44:7673-90. [PMID: 27257076 PMCID: PMC5027484 DOI: 10.1093/nar/gkw487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/19/2016] [Indexed: 01/04/2023] Open
Abstract
Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.
Collapse
Affiliation(s)
- Agnes Schipler
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Veronika Mladenova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Vladimir Nikolov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Janapriya Saha
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
57
|
Luo H, Shenoy A, Li X, Jin Y, Jin L, Cai Q, Tang M, Liu Y, Chen H, Reisman D, Wu L, Seto E, Qiu Y, Dou Y, Casero R, Lu J. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition. Cell Rep 2016; 15:2665-78. [DOI: 10.1016/j.celrep.2016.05.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
|
58
|
Udayakumar D, Pandita RK, Horikoshi N, Liu Y, Liu Q, Wong KK, Hunt CR, Gray NS, Minna JD, Pandita TK, Westover KD. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair. Radiat Res 2016; 185:527-38. [PMID: 27135971 DOI: 10.1667/rr14373.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.
Collapse
Affiliation(s)
- Durga Udayakumar
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Raj K Pandita
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Nobuo Horikoshi
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Yan Liu
- d Center for Thoracic Oncology, Dana Farber Cancer Institute and
| | - Qingsong Liu
- e Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kwok-Kin Wong
- d Center for Thoracic Oncology, Dana Farber Cancer Institute and
| | - Clayton R Hunt
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Nathanael S Gray
- e Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - John D Minna
- b Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Tej K Pandita
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | | |
Collapse
|
59
|
Palmieri D, Scarpa M, Tessari A, Uka R, Amari F, Lee C, Richmond T, Foray C, Sheetz T, Braddom A, Burd CE, Parvin JD, Ludwig T, Croce CM, Coppola V. Ran Binding Protein 9 (RanBP9) is a novel mediator of cellular DNA damage response in lung cancer cells. Oncotarget 2016; 7:18371-83. [PMID: 26943034 PMCID: PMC4951294 DOI: 10.18632/oncotarget.7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 01/27/2023] Open
Abstract
Ran Binding Protein 9 (RanBP9, also known as RanBPM) is an evolutionary conserved scaffold protein present both in the nucleus and the cytoplasm of cells whose biological functions remain elusive. We show that active ATM phosphorylates RanBP9 on at least two different residues (S181 and S603). In response to IR, RanBP9 rapidly accumulates into the nucleus of lung cancer cells, but this nuclear accumulation is prevented by ATM inhibition. RanBP9 stable silencing in three different lung cancer cell lines significantly affects the DNA Damage Response (DDR), resulting in delayed activation of key components of the cellular response to IR such as ATM itself, Chk2, γH2AX, and p53. Accordingly, abrogation of RanBP9 expression reduces homologous recombination-dependent DNA repair efficiency, causing an abnormal activation of IR-induced senescence and apoptosis. In summary, here we report that RanBP9 is a novel mediator of the cellular DDR, whose accumulation into the nucleus upon IR is dependent on ATM kinase activity. RanBP9 absence hampers the molecular mechanisms leading to efficient repair of damaged DNA, resulting in enhanced sensitivity to genotoxic stress. These findings suggest that targeting RanBP9 might enhance lung cancer cell sensitivity to genotoxic anti-neoplastic treatment.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Mario Scarpa
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Anna Tessari
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Rexhep Uka
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Foued Amari
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Cindy Lee
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Timothy Richmond
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Claudia Foray
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Tyler Sheetz
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Ashley Braddom
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Christin E. Burd
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Jeffrey D. Parvin
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Thomas Ludwig
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, 43210 Columbus, OH, USA
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, 43210 Columbus, OH, USA
| |
Collapse
|
60
|
Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:46-52. [PMID: 27234562 DOI: 10.1016/j.mrrev.2016.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
Dot1/DOT1L (disruptor of telomeric silencing-1) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 located within the globular domain of histone H3. Dot1 was initially identified by a genetic screen as a disruptor of telomeric silencing in Saccharomyces cerevisiae; further, it is the only known non-SET domain containing histone methyltransferase. Methylation of H3K79 is involved in the regulation of telomeric silencing, cellular development, cell-cycle checkpoint, DNA repair, and regulation of transcription. hDot1L-mediated H3K79 methylation appears to have a crucial role in transformation as well as disease progression in leukemias involving several oncogenic fusion proteins. This review summarizes the multiple functions of Dot1/hDOT1L in a range of cellular processes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India.
| |
Collapse
|
61
|
Mujoo K, Hunt CR, Horikoshi N, Pandita TK. A multifaceted role for MOF histone modifying factor in genome maintenance. Mech Ageing Dev 2016; 161:177-180. [PMID: 27038808 DOI: 10.1016/j.mad.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/19/2022]
Abstract
MOF (males absent on the first) was initially identified as a dosage compensation factor in Drosophila that acetylates lysine 16 of histone H4 (H4K16ac) and increased gene transcription from the single copy male X-chromosome. In humans, however, the ortholog of Drosophila MOF has been shown to interact with a range of proteins that extend its potential significance well beyond transcription. For example, recent results indicate MOF is an upstream regulator of the ATM (ataxia-telangiectasia mutated) protein, the loss of which is responsible for ataxia telangiectasia (AT). ATM is a key regulatory kinase that interacts with and phosphorylates multiple substrates that influence critical, cell-cycle control and DNA damage repair pathways in addition to other pathways. Thus, directly or indirectly, MOF may be involved in a wide range of cellular functions. This review will focus on the contribution of MOF to cellular DNA repair and new results that are beginning to examine the in vivo physiological role of MOF.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States.
| |
Collapse
|
62
|
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010099. [PMID: 26784169 PMCID: PMC4730341 DOI: 10.3390/ijms17010099] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Collapse
|
63
|
Abstract
Loss of function or mutation of the ataxia-telangiectasia mutated gene product (ATM) results in inherited genetic disorders characterized by neurodegeneration, immunodeficiency, and cancer. Ataxia-telangiectasia mutated (ATM) gene product belongs to the PI3K-like protein kinase (PIKKs) family and is functionally implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, cell-cycle control, and telomere maintenance. The ATM protein kinase is primarily activated in response to DNA double strand breaks (DSBs), the most deleterious form of DNA damage produced by ionizing radiation (IR) or radiomimetic drugs. It is detected at DNA damage sites, where ATM autophosphorylation causes dissociation of the inactive homodimeric form to the activated monomeric form. Interestingly, heat shock can activate ATM independent of the presence of DNA strand breaks. ATM is an integral part of the sensory machinery that detects DSBs during meiosis, mitosis, or DNA breaks mediated by free radicals. These DNA lesions can trigger higher order chromatin reorganization fuelled by posttranslational modifications of histones and histone binding proteins. Our group, and others, have shown that ATM activation is tightly regulated by chromatin modifications. This review summarizes the multiple approaches used to discern the role of ATM and other associated proteins in chromatin modification in response to DNA damage.
Collapse
|
64
|
Feng Y, Vlassis A, Roques C, Lalonde ME, González-Aguilera C, Lambert JP, Lee SB, Zhao X, Alabert C, Johansen JV, Paquet E, Yang XJ, Gingras AC, Côté J, Groth A. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J 2015; 35:176-92. [PMID: 26620551 DOI: 10.15252/embj.201591293] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/03/2015] [Indexed: 12/23/2022] Open
Abstract
During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1-binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins.
Collapse
Affiliation(s)
- Yunpeng Feng
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Arsenios Vlassis
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Céline Roques
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Cristina González-Aguilera
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | | | - Sung-Bau Lee
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xiaobei Zhao
- Bioinformatics Centre Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Constance Alabert
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Johansen
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Eric Paquet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Xiang-Jiao Yang
- Department of Medicine, McGill University Health Center, Montréal, QC, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Lavin MF, Kozlov S, Gatei M, Kijas AW. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor. Biomolecules 2015; 5:2877-902. [PMID: 26512707 PMCID: PMC4693261 DOI: 10.3390/biom5042877] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022] Open
Abstract
The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.
Collapse
Affiliation(s)
- Martin F Lavin
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Sergei Kozlov
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Magtouf Gatei
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Amanda W Kijas
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| |
Collapse
|
66
|
Abstract
MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA
| | - Hong Sun
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
67
|
Liu D, Wu D, Zhao L, Yang Y, Ding J, Dong L, Hu L, Wang F, Zhao X, Cai Y, Jin J. Arsenic Trioxide Reduces Global Histone H4 Acetylation at Lysine 16 through Direct Binding to Histone Acetyltransferase hMOF in Human Cells. PLoS One 2015; 10:e0141014. [PMID: 26473953 PMCID: PMC4608833 DOI: 10.1371/journal.pone.0141014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/02/2015] [Indexed: 01/30/2023] Open
Abstract
Histone post-translational modification heritably regulates gene expression involved in most cellular biological processes. Experimental studies suggest that alteration of histone modifications affects gene expression by changing chromatin structure, causing various cellular responses to environmental influences. Arsenic (As), a naturally occurring element and environmental pollutant, is an established human carcinogen. Recently, increasing evidence suggests that As-mediated epigenetic mechanisms may be involved in its toxicity and carcinogenicity, but how this occurs is still unclear. Here we present evidence that suggests As-induced global histone H4K16 acetylation (H4K16ac) partly due to the direct physical interaction between As and histone acetyltransferase (HAT) hMOF (human male absent on first) protein, leading to the loss of hMOF HAT activity. Our data show that decreased global H4K16ac and increased deacetyltransferase HDAC4 expression occurred in arsenic trioxide (As2O3)-exposed HeLa or HEK293T cells. However, depletion of HDAC4 did not affect global H4K16ac, and it could not raise H4K16ac in cells exposed to As2O3, suggesting that HDAC4 might not directly be involved in histone H4K16 de-acetylation. Using As-immobilized agarose, we confirmed that As binds directly to hMOF, and that this interaction was competitively inhibited by free As2O3. Also, the direct interaction of As and C2CH zinc finger peptide was verified by MAIDI-TOF mass and UV absorption. In an in vitro HAT assay, As2O3 directly inhibited hMOF activity. hMOF over-expression not only increased resistance to As and caused less toxicity, but also effectively reversed reduced H4K16ac caused by As exposure. These data suggest a theoretical basis for elucidating the mechanism of As toxicity.
Collapse
Affiliation(s)
- Da Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Donglu Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Linhong Zhao
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yang Yang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Jian Ding
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Liguo Dong
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Lianghai Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xiaoming Zhao
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun City, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun City, Jilin 130012, China
- * E-mail: (YC); (JJ)
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun City, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun City, Jilin 130012, China
- * E-mail: (YC); (JJ)
| |
Collapse
|
68
|
MOF maintains transcriptional programs regulating cellular stress response. Oncogene 2015; 35:2698-710. [PMID: 26387537 PMCID: PMC4893634 DOI: 10.1038/onc.2015.335] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 07/09/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022]
Abstract
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
Collapse
|
69
|
Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, Pandita RK, Charaka VK, Pandita TK, Kastan MB, Walker CL. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015; 17:1259-1269. [PMID: 26344566 PMCID: PMC4589490 DOI: 10.1038/ncb3230] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Peroxisomes are highly metabolic, autonomously replicating organelles that generate ROS as a by product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to reactive oxygen species (ROS), ATM signaling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser141, which promotes PEX5 mono-ubiquitination at K209, and recognition of ubiquitinated PEX5 by the autophagy adapter protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy.
Collapse
Affiliation(s)
- Jiangwei Zhang
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Angela Alexander
- Department of Experimental Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinhee Kim
- Korea Institute of Oriental Medicine, Dajeon, 305-811, South Korea
| | - Reid T Powell
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ruhee Dere
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | | | - Ji-Hoon Lee
- The Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
| | - Tanya T Paull
- The Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Vijaya K Charaka
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Michael B Kastan
- Departments of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105.,Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Cheryl Lyn Walker
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
70
|
Role of the Exocyst Complex Component Sec6/8 in Genomic Stability. Mol Cell Biol 2015; 35:3633-45. [PMID: 26283729 DOI: 10.1128/mcb.00768-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
The exocyst is a heterooctomeric complex well appreciated for its role in the dynamic assembly of specialized membrane domains. Accumulating evidence indicates that this macromolecular machine also serves as a physical platform that coordinates regulatory cascades supporting biological systems such as host defense signaling, cell fate, and energy homeostasis. The isolation of multiple components of the DNA damage response (DDR) as exocyst-interacting proteins, together with the identification of Sec8 as a suppressor of the p53 response, suggested functional interactions between the exocyst and the DDR. We found that exocyst perturbation resulted in resistance to ionizing radiation (IR) and accelerated resolution of DNA damage. This occurred at the expense of genomic integrity, as enhanced recombination frequencies correlated with the accumulation of aberrant chromatid exchanges. Sec8 perturbation resulted in the accumulation of ATF2 and RNF20 and the promiscuous accumulation of DDR-associated chromatin marks and Rad51 repairosomes. Thus, the exocyst supports DNA repair fidelity by limiting the formation of repair chromatin in the absence of DNA damage.
Collapse
|
71
|
Pandita TK. USP7 saves RIDDLE for the end. Cell Cycle 2015; 14:1999. [PMID: 26017280 DOI: 10.1080/15384101.2015.1049087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Tej K Pandita
- a Department of Radiation Oncology; The Houston Methodist Research Institute ; Houston , TX USA
| |
Collapse
|
72
|
Chun SG, Park H, Pandita RK, Horikoshi N, Pandita TK, Schwartz DL, Yordy JS. Targeted inhibition of histone deacetylases and hedgehog signaling suppress tumor growth and homologous recombination in aerodigestive cancers. Am J Cancer Res 2015; 5:1337-1352. [PMID: 26101701 PMCID: PMC4473314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023] Open
Abstract
Standard combined modality therapies for aerodigestive tract malignancies have suboptimal outcomes, and targeting cancer-specific molecular pathways in combination with radiation could improve the therapeutic ratio. Dysregulation of epigenetic modulators such as histone deacetylases (HDACs), and developmental morphogens such as the hedgehog (HH) pathway have been implicated in aerodigestive tumor progression and metastasis. We hypothesized that simultaneous targeting of HDACs and the HH-pathway mediator Smoothened (Smo) represents an opportunity to overcome therapeutic resistance in these cancers. We evaluated the effects of the HDAC inhibitor SAHA and Smo inhibitor GDC-0449 with radiation in multiple aerodigestive cancer cell lines. Isobologram analyses showed that SAHA and GDC-0449 synergistically suppressed cancer cell proliferation in vitro. SAHA and GDC-0449 cooperatively enhanced G0/G1 cell cycle arrest which was associated with up-regulation of p21(waf). GDC-0449 prevented SAHA-induced up-regulation of Gli-1 and Gli-2. Both Smo and Ptc-1 expression was cooperatively suppressed by SAHA and GDC-0449. The combination of SAHA and GDC-0449 induced radiation sensitization with 2 Gy as determined by colony formation assays and cytogenetic analyses, which correlated with higher residual γ-H2AX and 53BP1 foci. In mouse tumor xenografts of the SqCC/Y1 cell line, SAHA and GDC-0449 delayed tumor growth longer and prolonged survival more than either agent alone. In summary, we have identified synergistic effect of HDAC and HH signaling for radiosensitization to improve therapeutic outcomes for aerodigestive malignancies.
Collapse
Affiliation(s)
- Stephen G Chun
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
| | - Hyunsil Park
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
| | - Raj K Pandita
- Department of Radiation Oncology, Cancer Research Program, The Houston Methodist Research InstituteHouston, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Cancer Research Program, The Houston Methodist Research InstituteHouston, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Cancer Research Program, The Houston Methodist Research InstituteHouston, TX, USA
| | - David L Schwartz
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
| | - John S Yordy
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
- Anchorage and Valley Radiation Therapy CenterAnchorage, AK, USA
| |
Collapse
|
73
|
Pandita RK, Chow TT, Udayakumar D, Bain AL, Cubeddu L, Hunt CR, Shi W, Horikoshi N, Zhao Y, Wright WE, Khanna KK, Shay JW, Pandita TK. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs. Cancer Res 2015; 75:858-69. [PMID: 25589350 DOI: 10.1158/0008-5472.can-14-2289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proliferating mammalian stem and cancer cells express telomerase [telomerase reverse transcriptase (TERT)] in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA-binding protein SSB1, which has a critical role in DNA double-strand break (DSB) repair. Here, we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacts with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduces TERT interaction with telomeres and leads to G-overhang loss. Although SSB1 is recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relies upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. Cancer Res; 75(5); 858-69. ©2015 AACR.
Collapse
Affiliation(s)
- Raj K Pandita
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas
| | - Tracy T Chow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Durga Udayakumar
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Liza Cubeddu
- School of Science and Health, University of Western Sydney, Sydney, Australia
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei Shi
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yong Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas. Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
74
|
Saito Y, Zhou H, Kobayashi J. Chromatin modification and NBS1: their relationship in DNA double-strand break repair. Genes Genet Syst 2015; 90:195-208. [DOI: 10.1266/ggs.15-00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuichiro Saito
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University
| | - Hui Zhou
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University
| |
Collapse
|
75
|
Wang H, Adhikari S, Butler BE, Pandita TK, Mitra S, Hegde ML. A Perspective on Chromosomal Double Strand Break Markers in Mammalian Cells. JACOBS JOURNAL OF RADIATION ONCOLOGY 2014; 1:003. [PMID: 25614903 PMCID: PMC4299656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, USA
- Houston Methodist Neurological Institute, USA
| | - Sanjay Adhikari
- Department of Radiation Oncology, Houston Methodist Research Institute, USA
- Institute of Academic Medicine, Houston Methodist Hospital, Houston Texas 77030, USA
| | - Brian E. Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, USA
- Institute of Academic Medicine, Houston Methodist Hospital, Houston Texas 77030, USA
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Tej K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, USA
- Institute of Academic Medicine, Houston Methodist Hospital, Houston Texas 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, USA
- Institute of Academic Medicine, Houston Methodist Hospital, Houston Texas 77030, USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, USA
- Houston Methodist Neurological Institute, USA
- Institute of Academic Medicine, Houston Methodist Hospital, Houston Texas 77030, USA
- Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|