51
|
RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep 2018; 24:1747-1755. [DOI: 10.1016/j.celrep.2018.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/31/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
|
52
|
TCEA1 regulates the proliferative potential of mouse myeloid cells. Exp Cell Res 2018; 370:551-560. [PMID: 30009791 DOI: 10.1016/j.yexcr.2018.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/15/2023]
Abstract
Leukemia is a malignance with complex pathogenesis and poor prognosis. Discovery of noval regulators amenable to leukemia could be of value to gain insight into the pathogenesis, diagnosis and prognosis of leukemia. Here, we conducted a large-scale shRNA library screening for functional regulators in the development of myeloid cells in primary cells. We identified eighteen candidate regulators in the primary screening. Those genes cover a wide range of cellular functions, including gene expression regulation, intracellular signaling transduction, nucleotide excision repair, cell cycle control and transcription regulation. In both primary screening and validation, shRNAs targeting Tcea1, encoding the transcription elongation factor A (SII) 1, exhibited the greatest influence on the proliferative potential of cells. Knocking down the expression of Tcea1 in the 32Dcl3 myeloid cell line led to enhanced proliferation of myeloid cells and blockage of myeloid differentiation induced by G-CSF. In addition, silence of Tcea1 inhibited apoptosis of myeloid cells. Thus, Tcea1 was identified as a gene which can influence the proliferative potential, survival and differentiation of myeloid cells. These findings have implications for how transcriptional elongation influences myeloid cell development and leukemic transformation.
Collapse
|
53
|
Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML. Oncotarget 2018; 9:5703-5715. [PMID: 29464028 PMCID: PMC5814168 DOI: 10.18632/oncotarget.23655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Co-occurrence of Flt3ITD and TET2 mutations provoke an animal model of AML by epigenetic repression of Wnt pathway antagonists, including RUNX3, and by hyperexpression of ID1, encoding Wnt agonist. These affect HOXA over-expression and treatment resistance. A comparable epigenetic phenotype was identified among adult AML patients needing novel intervention. We chose combinations of targeted agents acting on distinct effectors, at the levels of both signal transduction and chromatin remodeling, in relapsed/refractory AML's, including Flt3ITD+ve, described with a signature of repressed tumor suppressor genes, involving Wnt antagonist RUNX3, occurring along with ID1 and HOXA over-expressions. We tracked patient response to combination of Flt3/Raf inhibitor, Sorafenib, and Vorinostat, pan-histone deacetylase inhibitor, without or with added Bortezomib, in consecutive phase I trials. A striking association of rapid objective remissions (near-complete, complete responses) was noted to accompany induced early pharmacodynamic changes within patient blasts in situ, involving these effectors, significantly linking RUNX3/Wnt antagonist de-repression (80%) and ID1 downregulation (85%), to a response, also preceded by profound HOXA9 repression. Response occurred in context of concurrent TET2 mutation/hypomorphy and Flt3ITD+ve mutation (83% of complete responses). Addition of Bortezomib to the combination was vital to attainment of complete response in Flt3ITD+ve cases exhibiting such Wnt pathway dysregulation.
Collapse
|
54
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
55
|
Krishnan V, Ito Y. RUNX3 loss turns on the dark side of TGF-beta signaling. Oncoscience 2017; 4:156-157. [PMID: 29344546 PMCID: PMC5769972 DOI: 10.18632/oncoscience.382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore-117599
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore-117599
| |
Collapse
|
56
|
Dasgupta Y, Golovine K, Nieborowska-Skorska M, Luo L, Matlawska-Wasowska K, Mullighan CG, Skorski T. Drugging DNA repair to target T-ALL cells. Leuk Lymphoma 2017; 59:1746-1749. [PMID: 29115896 DOI: 10.1080/10428194.2017.1397662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yashodhara Dasgupta
- a Department of Microbiology and Immunology, Fels Institute for Cancer Research & Molecular Biology , Temple University Lewis Katz School of Medicine , Philadelphia , PA , USA
| | - Konstantin Golovine
- a Department of Microbiology and Immunology, Fels Institute for Cancer Research & Molecular Biology , Temple University Lewis Katz School of Medicine , Philadelphia , PA , USA
| | - Margaret Nieborowska-Skorska
- a Department of Microbiology and Immunology, Fels Institute for Cancer Research & Molecular Biology , Temple University Lewis Katz School of Medicine , Philadelphia , PA , USA
| | - Li Luo
- b Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine , University of New Mexico , Albuquerque , NM , USA
| | - Ksenia Matlawska-Wasowska
- c Division of Pediatric Research, Department of Pediatrics , University of New Mexico Health Sciences Center , Albuquerque , NM , USA
| | - Charles G Mullighan
- d Department of Pathology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Tomasz Skorski
- a Department of Microbiology and Immunology, Fels Institute for Cancer Research & Molecular Biology , Temple University Lewis Katz School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
57
|
Krishnan V, Chong YL, Tan TZ, Kulkarni M, Bin Rahmat MB, Tay LS, Sankar H, Jokhun DS, Ganesan A, Chuang LSH, Voon DC, Shivashankar GV, Thiery JP, Ito Y. TGFβ Promotes Genomic Instability after Loss of RUNX3. Cancer Res 2017; 78:88-102. [DOI: 10.1158/0008-5472.can-17-1178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
|
58
|
Chuang LSH, Ito K, Ito Y. Roles of RUNX in Solid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:299-320. [PMID: 28299665 DOI: 10.1007/978-981-10-3233-2_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All RUNX genes have been implicated in the development of solid tumors, but the role each RUNX gene plays in the different tumor types is complicated by multiple interactions with major signaling pathways and tumor heterogeneity. Moreover, for a given tissue type, the specific role of each RUNX protein is distinct at different stages of differentiation. A regulatory function for RUNX in tissue stem cells points sharply to a causal effect in tumorigenesis. Understanding how RUNX dysregulation in cancer impinges on normal biological processes is important for identifying the molecular mechanisms that lead to malignancy. It will also indicate whether restoration of proper RUNX function to redirect cell fate is a feasible treatment for cancer. With the recent advances in RUNX research, it is time to revisit the many mechanisms/pathways that RUNX engage to regulate cell fate and decide whether cells proliferate, differentiate or die.
Collapse
Affiliation(s)
- Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599, Singapore
| | - Kosei Ito
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599, Singapore.
| |
Collapse
|
59
|
Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Shapiro VS. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1. Sci Rep 2017; 7:7018. [PMID: 28765611 PMCID: PMC5539328 DOI: 10.1038/s41598-017-07365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
iNKT cells are a unique lineage of T cells that recognize glycolipid presented by CD1d. In the thymus, they differentiate into iNKT1, iNKT2 and iNKT17 effector subsets, characterized by preferential expression of Tbet, Gata3 and ROR-γt and production of IFN-γ, IL-4 and IL-17, respectively. We demonstrate that the transcriptional regulator Runx1 is essential for the generation of ROR-γt expressing iNKT17 cells. PLZF-cre Runx1 cKO mice lack iNKT17 cells in the thymus, spleen and liver. Runx1-deficient iNKT cells have altered expression of several genes important for iNKT17 differentiation, including decreased expression of IL-7Rα, BATF and c-Maf and increased expression of Bcl11b and Lef1. However, reduction of Lef1 expression or introduction of an IL-7Rα transgene is not sufficient to correct the defect in iNKT17 differentiation, demonstrating that Runx1 is a key regulator of several genes required for iNKT17 differentiation. Loss of Runx1 leads to a severe decrease in iNKT cell numbers in the thymus, spleen and liver. The decrease in cell number is due to a combined decrease in proliferation at Stage 1 during thymic development and increased apoptosis. Thus, we describe a novel role of Runx1 in iNKT cell development and differentiation, particularly in orchestrating iNKT17 differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bryce Manso
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sinibaldo Romera Arocha
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd Iowa City, IA, 52242, USA
| | - Derek B Sant' Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Virginia Smith Shapiro
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
60
|
Azevedo AP, Silva SN, De Lima JP, Reichert A, Lima F, Júnior E, Rueff J. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms. Oncol Lett 2017; 13:4641-4650. [PMID: 28599464 PMCID: PMC5452988 DOI: 10.3892/ol.2017.6065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog (E. coli) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility.
Collapse
Affiliation(s)
- Ana P Azevedo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal.,Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Susana N Silva
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - João P De Lima
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Alice Reichert
- Department of Clinical Haematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Fernando Lima
- Department of Clinical Haematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Esmeraldina Júnior
- Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
61
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
62
|
Runx Family Genes in Tissue Stem Cell Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:117-138. [PMID: 28299655 DOI: 10.1007/978-981-10-3233-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.
Collapse
|
63
|
A Regulatory Role for RUNX1, RUNX3 in the Maintenance of Genomic Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:491-510. [PMID: 28299675 DOI: 10.1007/978-981-10-3233-2_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
All human cells are constantly attacked by endogenous and exogenous agents that damage the integrity of their genomes. Yet, the ensuing damage is mostly fixed and very rarely gives rise to genomic defects that promote cancer formation. This is due to the co-ordinated functioning of DNA repair proteins and checkpoint mechanisms that accurately detect and repair DNA damage to ensure genomic fitness. According to accumulating evidence, the RUNX family of transcription factors participate in the maintenance of genomic stability through transcriptional and non-transcriptional mechanisms. RUNX1 and RUNX3 maintain genomic integrity in a transcriptional manner by regulating the transactivation of apoptotic genes following DNA damage via complex formation with p53. RUNX1 and RUNX3 also maintain genomic integrity in a non-transcriptional manner during interstand crosslink repair by promoting the recruitment of FANCD2 to sites of DNA damage. Since RUNX genes are frequently aberrant in human cancer, here, we argue that one of the major modes by which RUNX inactivation promotes neoplastic transformation is through the loss of genomic integrity. In particular, there exists strong evidence that leukemic RUNX1-fusions such as RUNX1-ETO disrupt genomic integrity and induce a "mutator" phenotype during the early stages of leukemogenesis. Consistent with increased DNA damage accumulation induced by RUNX1-ETO, PARP inhibition has been shown to be an effective synthetic-lethal therapeutic approach against RUNX1-ETO expressing leukemias. Here, in this chapter we will examine current evidence suggesting that the tumor suppressor potential of RUNX proteins can be at least partly attributed to their ability to ensure high-fidelity DNA repair and thus prevent mutational accumulation during cancer progression.
Collapse
|
64
|
RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:265-282. [DOI: 10.1007/978-981-10-3233-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Neil JC, Gilroy K, Borland G, Hay J, Terry A, Kilbey A. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:247-264. [PMID: 28299662 DOI: 10.1007/978-981-10-3233-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The observation that the Runx genes act as targets for transcriptional activation by retroviral insertion identified a new family of dominant oncogenes. However, it is now clear that Runx genes are 'conditional' oncogenes whose over-expression is growth inhibitory unless accompanied by another event such as concomitant over-expression of MYC or loss of p53 function. Remarkably, while the oncogenic activities of either MYC or RUNX over-expression are suppressed while p53 is intact, the combination of both neutralises p53 tumour suppression in vivo by as yet unknown mechanisms. Moreover, there is emerging evidence that endogenous, basal RUNX activity is important to maintain the viability and proliferation of MYC-driven lymphoma cells. There is also growing evidence that the human RUNX genes play a similar conditional oncogenic role and are selected for over-expression in end-stage cancers of multiple types. Paradoxically, reduced RUNX activity can also predispose to cell immortalisation and transformation, particularly by mutant Ras. These apparently conflicting observations may be reconciled in a stage-specific model of RUNX involvement in cancer. A question that has yet to be fully addressed is the extent to which the three Runx genes are functionally redundant in cancer promotion and suppression.
Collapse
Affiliation(s)
- James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anne Terry
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
66
|
RUNX3 and p53: How Two Tumor Suppressors Cooperate Against Oncogenic Ras? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:321-332. [PMID: 28299666 DOI: 10.1007/978-981-10-3233-2_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RUNX family members play pivotal roles in both normal development and neoplasia. In particular, RUNX1 and RUNX2 are essential for determination of the hematopoietic and osteogenic lineages, respectively. RUNX3 is involved in lineage determination of various types of epithelial cells. Analysis of mouse models and human cancer specimens revealed that RUNX3 acts as a tumor suppressor via multiple mechanisms. p53-related pathways play central roles in tumor suppression through the DNA damage response and oncogene surveillance, and RUNX3 is involved in both processes. In response to DNA damage, RUNX3 facilitates p53 phosphorylation by the ATM/ATR pathway and p53 acetylation by p300. When oncogenes are activated, RUNX3 induces ARF, thereby stabilizing p53. Here, we summarize the molecular mechanisms underlying the p53-mediated tumor-suppressor activity of RUNX3.
Collapse
|
67
|
Pradhan A, Ustiyan V, Zhang Y, Kalin TV, Kalinichenko VV. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response. Oncotarget 2016; 7:1912-26. [PMID: 26625197 PMCID: PMC4811506 DOI: 10.18632/oncotarget.6422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/− mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells.
Collapse
Affiliation(s)
- Arun Pradhan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
68
|
Zhao L, So CWE. PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment. Exp Hematol 2016; 44:902-7. [PMID: 27473567 DOI: 10.1016/j.exphem.2016.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
Genomic instability is one of the most common and critical characteristics of cancer cells. The combined effect of replication stress and DNA damage repair defects associated with various oncogenic events drives genomic instability and disease progression. However, these DNA repair defects found in cancer cells can also provide unique therapeutic opportunities and form the basis of synthetic lethal targeting of solid tumors carrying BRCA mutations. Although the idea of utilizing synthetic lethality as a therapy strategy has been gaining momentum in various solid tumors, its application in leukemia still largely lags behind. In this article, we review recent advances in understanding the roles of the DNA damage response in acute myeloid leukemia and examine the potential therapeutic avenues of using poly (ADP-ribose) polymerase (PARP) inhibitors in AML treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- DNA Damage
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Genomic Instability
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oxidative Stress/drug effects
- PTEN Phosphohydrolase/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Synthetic Lethal Mutations/drug effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Lu Zhao
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK.
| |
Collapse
|
69
|
Affiliation(s)
- Linda Shyue Huey Chuang
- a Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine , Singapore
| | - Vaidehi Krishnan
- a Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine , Singapore
| | - Yoshiaki Ito
- a Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine , Singapore
| |
Collapse
|
70
|
Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression. Proc Natl Acad Sci U S A 2016; 113:6490-5. [PMID: 27217562 DOI: 10.1073/pnas.1523157113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Runt-related transcription factors (RUNX) are master regulators of development and major players in tumorigenesis. Interestingly, unlike most transcription factors, RUNX proteins are detected on the mitotic chromatin and apparatus, suggesting that they are functionally active in mitosis. Here, we identify key sites of RUNX phosphorylation in mitosis. We show that the phosphorylation of threonine 173 (T173) residue within the Runt domain of RUNX3 disrupts RUNX DNA binding activity during mitotic entry to facilitate the recruitment of RUNX proteins to mitotic structures. Moreover, knockdown of RUNX3 delays mitotic entry. RUNX3 phosphorylation is therefore a regulatory mechanism for mitotic entry. Cancer-associated mutations of RUNX3 T173 and its equivalent in RUNX1 further corroborate the role of RUNX phosphorylation in regulating proper mitotic progression and genomic integrity.
Collapse
|
71
|
Duncan VE, Ping Z, Varambally S, Peker D. Loss of RUNX3 expression is an independent adverse prognostic factor in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 58:179-184. [DOI: 10.1080/10428194.2016.1180686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
72
|
Damdinsuren A, Matsushita H, Ito M, Tanaka M, Jin G, Tsukamoto H, Asai S, Ando K, Miyachi H. FLT3-ITD drives Ara-C resistance in leukemic cells via the induction of RUNX3. Leuk Res 2015; 39:1405-13. [DOI: 10.1016/j.leukres.2015.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/23/2015] [Accepted: 09/06/2015] [Indexed: 12/11/2022]
|
73
|
Voon DCC, Hor YT, Ito Y. The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology 2015; 146:523-36. [PMID: 26399680 DOI: 10.1111/imm.12535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022] Open
Abstract
Among their diverse roles as transcriptional regulators during development and cell fate specification, the RUNX transcription factors are best known for the parts they play in haematopoiesis. RUNX proteins are expressed throughout all haematopoietic lineages, being necessary for the emergence of the first haematopoietic stem cells to their terminal differentiation. Although much progress has been made since their discoveries almost two decades ago, current appreciation of RUNX in haematopoiesis is largely grounded in their lineage-specifying roles. In contrast, the importance of RUNX to immunity has been mostly obscured for historic, technical and conceptual reasons. However, this paradigm is likely to shift over time, as a primary purpose of haematopoiesis is to resource the immune system. Furthermore, recent evidence suggests a role for RUNX in the innate immunity of non-haematopoietic cells. This review takes a haematopoiesis-centric approach to collate what is known of RUNX's contribution to the overall mammalian immune system and discuss their growing prominence in areas such as autoimmunity, inflammatory diseases and mucosal immunity.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Yoshiaki Ito
- Cancer Biology Programme, Cancer Science Institute of Singapore, Singapore
| |
Collapse
|
74
|
RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene 2015; 35:2664-74. [PMID: 26364597 DOI: 10.1038/onc.2015.338] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/11/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023]
Abstract
Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD-YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD-YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD-YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD-YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD-YAP oncogenic complex in gastric carcinogenesis.
Collapse
|
75
|
Ito K, Ito K. Resistance in the Ribosome: RUNX1, pre-LSCs, and HSPCs. Cell Stem Cell 2015; 17:129-31. [PMID: 26253196 PMCID: PMC4541802 DOI: 10.1016/j.stem.2015.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Therapeutic targeting of pre-leukemic stem cells (pre-LSCs) may be a viable strategy to eradicate residual disease and prevent leukemia relapse. Now in Cell Stem Cell, Cai et al. (2015) show that loss-of-function mutations in RUNX1 reduce ribosome biogenesis and provide pre-LSCs a selective advantage over normal hematopoietic cells through increased stress resistance.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center and Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
76
|
Mouse models for core binding factor leukemia. Leukemia 2015; 29:1970-80. [PMID: 26165235 DOI: 10.1038/leu.2015.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.
Collapse
|
77
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
78
|
Estécio MRH, Maddipoti S, Bueso-Ramos C, DiNardo CD, Yang H, Wei Y, Kondo K, Fang Z, Stevenson W, Chang KS, Pierce SA, Bohannan Z, Borthakur G, Kantarjian H, Garcia-Manero G. RUNX3 promoter hypermethylation is frequent in leukaemia cell lines and associated with acute myeloid leukaemia inv(16) subtype. Br J Haematol 2015; 169:344-51. [PMID: 25612675 DOI: 10.1111/bjh.13299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/08/2014] [Indexed: 01/15/2023]
Abstract
Correlative and functional studies support the involvement of the RUNX gene family in haematological malignancies. To elucidate the role of epigenetics in RUNX inactivation, we evaluated promoter DNA methylation of RUNX1, 2, and 3 in 23 leukaemia cell lines and samples from acute myeloid leukaemia (AML), acute lymphocytic leukaemia (ALL) and myelodysplatic syndromes (MDS) patients. RUNX1 and RUNX2 gene promoters were mostly unmethylated in cell lines and clinical samples. Hypermethylation of RUNX3 was frequent among cell lines (74%) and highly variable among patient samples, with clear association to cytogenetic status. High frequency of RUNX3 hypermethylation (85% of the 20 studied cases) was found in AML patients with inv(16)(p13.1q22) compared to other AML subtypes (31% of the other 49 cases). RUNX3 hypermethylation was also frequent in ALL (100% of the six cases) but low in MDS (21%). In support of a functional role, hypermethylation of RUNX3 was correlated with low levels of protein, and treatment of cell lines with the DNA demethylating agent, decitabine, resulted in mRNA re-expression. Furthermore, relapse-free survival of non-inv(16)(p13.1q22) AML patients without RUNX3 methylation was significantly better (P = 0·016) than that of methylated cases. These results suggest that RUNX3 silencing is an important event in inv(16)(p13.1q22) leukaemias.
Collapse
Affiliation(s)
- Marcos R H Estécio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 2014; 34:3483-92. [PMID: 25263451 DOI: 10.1038/onc.2014.305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor RUNX1 is a master regulator of hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Recent studies also highlight the importance of RUNX1 in solid tumors both as a tumor promoter and a suppressor. Given its central role in cancer development, RUNX1 is an excellent candidate for targeted therapy. A potential strategy to target RUNX1 is through modulation of its posttranslational modifications (PTMs). Numerous studies have shown that RUNX1 activity is regulated by PTMs, including phosphorylation, acetylation, methylation and ubiquitination. These PTMs regulate RUNX1 activity either positively or negatively by altering RUNX1-mediated transcription, promoting protein degradation and affecting protein interactions. In this review, we first summarize the available data on the context- and dosage-dependent roles of RUNX1 in various types of neoplasms. We then provide a comprehensive overview of RUNX1 PTMs from biochemical and biologic perspectives. Finally, we discuss how aberrant PTMs of RUNX1 might contribute to tumorigenesis and also strategies to develop anticancer therapies targeting RUNX1 PTMs.
Collapse
|