51
|
Fong CS, Ozaki K, Tsou MFB. PPP1R35 ensures centriole homeostasis by promoting centriole-to-centrosome conversion. Mol Biol Cell 2018; 29:2801-2808. [PMID: 30230954 PMCID: PMC6249868 DOI: 10.1091/mbc.e18-08-0525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centriole-to-centrosome conversion (CCC) safeguards centriole homeostasis by coupling centriole duplication with segregation, and is essential for stabilization of mature vertebrate centrioles naturally devoid of the geometric scaffold or the cartwheel. Here we identified PPP1R35, a putative regulator of the protein phosphatase PP1, as a novel centriolar protein required for CCC. We found that PPP1R35 is enriched at newborn daughter centrioles in S or G2 phase. In the absence of PPP1R35, centriole assembly initiates normally in S phase, but none of the nascent centrioles can form active centrosomes or recruit CEP295, an essential factor for CCC. Instead, all PPP1R35-null centrioles, although stable during their birth in interphase, become disintegrated after mitosis upon cartwheel removal. Surprisingly, we found that neither the centriolar localization nor the function of PPP1R35 in CCC requires the putative PP1-interacting motif. PPP1R35 is thus acting upstream of CEP295 to induce CCC for proper centriole maintenance.
Collapse
Affiliation(s)
- Chii Shyang Fong
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kanako Ozaki
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
52
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
53
|
Kovacs L, Chao-Chu J, Schneider S, Gottardo M, Tzolovsky G, Dzhindzhev NS, Riparbelli MG, Callaini G, Glover DM. Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nat Genet 2018; 50:1021-1031. [PMID: 29892014 PMCID: PMC6097609 DOI: 10.1038/s41588-018-0149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Abstract
We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.
Collapse
Affiliation(s)
| | - Jennifer Chao-Chu
- University of Cambridge, Cambridge, UK
- The University of Hong Kong, Hong Kong, China
| | | | - Marco Gottardo
- University of Siena, Siena, Italy
- Alexander von Humboldt Foundation Fellow, Center for Molecular Medicine and Institute for Biochemistry of the University of Cologne, Cologne, Germany
| | - George Tzolovsky
- University of Cambridge, Cambridge, UK
- Carl Zeiss Microscopy Ltd, ZEISS Group, Cambridge, UK
| | | | | | | | | |
Collapse
|
54
|
Joseph N, Al-Jassar C, Johnson CM, Andreeva A, Barnabas DD, Freund SMV, Gergely F, van Breugel M. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis. Cell Rep 2018; 23:2805-2818. [PMID: 29847808 PMCID: PMC5990496 DOI: 10.1016/j.celrep.2018.04.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles.
Collapse
Affiliation(s)
- Nimesh Joseph
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
55
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
56
|
Breslow DK, Hoogendoorn S, Kopp AR, Morgens DW, Vu BK, Kennedy MC, Han K, Li A, Hess GT, Bassik MC, Chen JK, Nachury MV. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat Genet 2018; 50:460-471. [PMID: 29459677 PMCID: PMC5862771 DOI: 10.1038/s41588-018-0054-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ-tubulin and ε-tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sascha Hoogendoorn
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam R Kopp
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brandon K Vu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret C Kennedy
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gaelen T Hess
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Ophthalmology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
57
|
Koch M, Umek W, Hanzal E, Mohr T, Seyfert S, Koelbl H, Mitulović G. Serum proteomic pattern in female stress urinary incontinence. Electrophoresis 2018; 39:1071-1078. [DOI: 10.1002/elps.201700423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Marianne Koch
- Clinical Division of General Gynecology and Gynecological Oncology; Department of Obstetrics and Gynecology; Medical University of Vienna; Vienna Austria
- Karl Landsteiner Society; St. Poelten Austria
| | - Wolfgang Umek
- Clinical Division of General Gynecology and Gynecological Oncology; Department of Obstetrics and Gynecology; Medical University of Vienna; Vienna Austria
- Karl Landsteiner Society; St. Poelten Austria
| | - Engelbert Hanzal
- Clinical Division of General Gynecology and Gynecological Oncology; Department of Obstetrics and Gynecology; Medical University of Vienna; Vienna Austria
| | - Thomas Mohr
- ScienceConsult- DI Thomas Mohr KG; Guntramsdorf Austria
| | - Sonja Seyfert
- Core Facility Proteomics; Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Heinz Koelbl
- Clinical Division of General Gynecology and Gynecological Oncology; Department of Obstetrics and Gynecology; Medical University of Vienna; Vienna Austria
| | - Goran Mitulović
- Core Facility Proteomics; Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| |
Collapse
|
58
|
Arquint C, Cubizolles F, Morand A, Schmidt A, Nigg EA. The SKP1-Cullin-F-box E3 ligase βTrCP and CDK2 cooperate to control STIL abundance and centriole number. Open Biol 2018; 8:170253. [PMID: 29445034 PMCID: PMC5830536 DOI: 10.1098/rsob.170253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023] Open
Abstract
Deregulation of centriole duplication has been implicated in cancer and primary microcephaly. Accordingly, it is important to understand how key centriole duplication factors are regulated. E3 ubiquitin ligases have been implicated in controlling the levels of several duplication factors, including PLK4, STIL and SAS-6, but the precise mechanisms ensuring centriole homeostasis remain to be fully understood. Here, we have combined proteomics approaches with the use of MLN4924, a generic inhibitor of SCF E3 ubiquitin ligases, to monitor changes in the cellular abundance of centriole duplication factors. We identified human STIL as a novel substrate of SCF-βTrCP. The binding of βTrCP depends on a DSG motif within STIL, and serine 395 within this motif is phosphorylated in vivo SCF-βTrCP-mediated degradation of STIL occurs throughout interphase and mutations in the DSG motif causes massive centrosome amplification, attesting to the physiological importance of the pathway. We also uncover a connection between this new pathway and CDK2, whose role in centriole biogenesis remains poorly understood. We show that CDK2 activity protects STIL against SCF-βTrCP-mediated degradation, indicating that CDK2 and SCF-βTrCP cooperate via STIL to control centriole biogenesis.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Fabien Cubizolles
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Agathe Morand
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
59
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
60
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
61
|
Wang JT, Kong D, Hoerner CR, Loncarek J, Stearns T. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. eLife 2017; 6:29061. [PMID: 28906251 PMCID: PMC5653238 DOI: 10.7554/elife.29061] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.
Collapse
Affiliation(s)
- Jennifer T Wang
- Department of Biology, Stanford University, Stanford, United States
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, Frederick, United States.,National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Christian R Hoerner
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, United States
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, Frederick, United States.,National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
62
|
Chen HY, Wu CT, Tang CJC, Lin YN, Wang WJ, Tang TK. Human microcephaly protein RTTN interacts with STIL and is required to build full-length centrioles. Nat Commun 2017; 8:247. [PMID: 28811500 PMCID: PMC5558016 DOI: 10.1038/s41467-017-00305-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Mutations in many centriolar protein-encoding genes cause primary microcephaly. Using super-resolution and electron microscopy, we find that the human microcephaly protein, RTTN, is recruited to the proximal end of the procentriole at early S phase, and is located at the inner luminal walls of centrioles. Further studies demonstrate that RTTN directly interacts with STIL and acts downstream of STIL-mediated centriole assembly. CRISPR/Cas9-mediated RTTN gene knockout in p53-deficient cells induce amplification of primitive procentriole bodies that lack the distal-half centriolar proteins, POC5 and POC1B. Additional analyses show that RTTN serves as an upstream effector of CEP295, which mediates the loading of POC1B and POC5 to the distal-half centrioles. Interestingly, the naturally occurring microcephaly-associated mutant, RTTN (A578P), shows a low affinity for STIL binding and blocks centriole assembly. These findings reveal that RTTN contributes to building full-length centrioles and illuminate the molecular mechanism through which the RTTN (A578P) mutation causes primary microcephaly. Mutations in many centriolar protein-encoding genes cause primary microcephaly. Here the authors show that human microcephaly protein RTTN directly interacts with STIL and acts downstream of STIL-mediated centriole assembly, contributing to building full-length centrioles
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Graduate Institution of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Ting Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Chieh-Ju C Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tang K Tang
- Graduate Institution of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
63
|
Novak ZA, Wainman A, Gartenmann L, Raff JW. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes. Dev Cell 2017; 37:545-57. [PMID: 27326932 PMCID: PMC4918730 DOI: 10.1016/j.devcel.2016.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic “centriole conversion” is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome. Cdk1 phosphorylates Sas-4 to initiate Polo/Plk1 recruitment to daughter centrioles Polo recruitment promotes Asterless (Asl) incorporation into daughter centrioles Asl incorporation licenses new centrioles to duplicate and organize centrosomes These observations help explain why centriole conversion is tied to mitosis
Collapse
Affiliation(s)
- Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
64
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
65
|
Ohta M, Desai A, Oegema K. How centrioles acquire the ability to reproduce. eLife 2017; 6. [PMID: 28271993 PMCID: PMC5342821 DOI: 10.7554/elife.25358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
A protein called SAS-7 is required for daughter centrioles to become mothers in C. elegans.
Collapse
Affiliation(s)
- Midori Ohta
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| |
Collapse
|
66
|
Fishman EL, Jo K, Ha A, Royfman R, Zinn A, Krishnamurthy M, Avidor-Reiss T. Atypical centrioles are present in Tribolium sperm. Open Biol 2017; 7:160334. [PMID: 28298310 PMCID: PMC5376708 DOI: 10.1098/rsob.160334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Typical centrioles are made of microtubules organized in ninefold symmetry. Most animal somatic cells have two centrioles for normal cell division and function. These centrioles originate from the zygote, but because the oocyte does not provide any centrioles, it is surprising that the zygotes of many animals are thought to inherit only one centriole from the sperm. Recently, in the sperm of Drosophila melanogaster, we discovered a second centriolar structure, the proximal centriole-like structure (PCL), which functions in the zygote. Whether the sperm of other insects has a second centriolar structure is unknown. Here, we characterized spermiogenesis in the red flour beetle, Tribolium castaneum Electron microscopy suggests that Tribolium has one microtubule-based centriole at the tip of the axoneme and a structure similar to the PCL, which lacks microtubules and lies in a cytoplasmic invagination of the nucleus. Immunostaining against the orthologue of the centriole/PCL protein, Ana1, also recognizes two centrioles near the nucleus during spermiogenesis: one that is microtubule-based at the tip of the axoneme, suggesting it is the centriole; and another that is more proximal and appears during early spermiogenesis, suggesting it is the PCL. Together, these findings suggest that Tribolium sperm has one microtubule-based centriole and one microtubule-lacking centriole.
Collapse
Affiliation(s)
- E L Fishman
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Kyoung Jo
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Andrew Ha
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Rachel Royfman
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Ashtyn Zinn
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| |
Collapse
|
67
|
Riparbelli MG, Gottardo M, Callaini G. Parthenogenesis in Insects: The Centriole Renaissance. Results Probl Cell Differ 2017; 63:435-479. [PMID: 28779329 DOI: 10.1007/978-3-319-60855-6_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
68
|
Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MFB. Spatial Control of Primary Ciliogenesis by Subdistal Appendages Alters Sensation-Associated Properties of Cilia. Dev Cell 2016; 39:424-437. [PMID: 27818179 PMCID: PMC5125554 DOI: 10.1016/j.devcel.2016.10.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 11/22/2022]
Abstract
Vertebrate cells can initiate ciliogenesis from centrioles at the cell center, near the Golgi, forming primary cilia confined or submerged in a deep narrow pit created by membrane invagination. How or why cells maintain submerged cilia is unclear. Here, by characterizing centriole subdistal appendages (sDAP) in cells exclusively growing submerged cilia, we found that a group of sDAP components localize to the centriole proximal end through the cohesion factor C-Nap1 and that sDAP function redundantly with C-Nap1 for submerged cilia maintenance. Loss of sDAP and C-Nap1 has no effect on cilia assembly, but it disrupts stable Golgi-cilia association and allows normally submerged cilia to fully surface, losing the deep membrane invagination. Intriguingly, unlike submerged cilia (stationary), surfaced cilia actively respond to mechanical stimuli with motions and can ectopically recruit Hedgehog signaling components in the absence of agonist. We propose that spatial control of ciliogenesis uncouples or specifies sensory properties of cilia.
Collapse
Affiliation(s)
- Gregory Mazo
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nadine Soplop
- Electron Microscopy Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Won-Jing Wang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Meng Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
69
|
Gottardo M, Callaini G, Riparbelli MG. Klp10A modulates the localization of centriole-associated proteins during Drosophila male gametogenesis. Cell Cycle 2016; 15:3432-3441. [PMID: 27764551 DOI: 10.1080/15384101.2016.1248005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in Klp10A, a microtubule-depolymerising Kinesin-13, lead to overly long centrioles in Drosophila male germ cells. We demonstrated that the loss of Klp10A modifies the distribution of typical proteins involved in centriole assembly and function. In the absence of Klp10A the distribution of Drosophila pericentrin-like protein (Dplp), Sas-4 and Sak/Plk4 that are restricted in control testes to the proximal end of the centriole increase along the centriole length. Remarkably, the cartwheel is lacking or it appears abnormal in mutant centrioles, suggesting that this structure may spatially delimit protein localization. Moreover, the parent centrioles that in control cells have the same dimensions grow at different rates in mutant testes with the mother centrioles longer than the daughters. Daughter centrioles have often an ectopic position with respect to the proximal end of the mothers and failed to recruit Dplp.
Collapse
Affiliation(s)
- Marco Gottardo
- a Department of Life Sciences , University of Siena , Siena , Italy
| | | | | |
Collapse
|
70
|
Tsuchiya Y, Yoshiba S, Gupta A, Watanabe K, Kitagawa D. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat Commun 2016; 7:12567. [PMID: 27562453 PMCID: PMC5007451 DOI: 10.1038/ncomms12567] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/13/2016] [Indexed: 01/05/2023] Open
Abstract
Centrioles surrounded by pericentriolar material (PCM) serve as the core structure of the centrosome. A newly formed daughter centriole grows into a functional mother centriole. However, the underlying mechanisms remain poorly understood. Here we show that Cep295, an evolutionarily conserved protein, is required for generation of a bona fide mother centriole organizing a functional centrosome. We find that Cep295 is recruited to the proximal centriole wall in the early stages of procentriole assembly. Cep295 then acts as a scaffold for the proper assembly of the daughter centriole. We also find that Cep295 binds directly to and recruits Cep192 onto the daughter centriole wall, which presumably endows the function of the new mother centriole for PCM assembly, microtubule-organizing centre activity and the ability for centriole formation. These findings led us to propose that Cep295 acts upstream of the conserved pathway for centriole formation and promotes the daughter-to-mother centriole conversion.
Collapse
Affiliation(s)
- Yuki Tsuchiya
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Satoko Yoshiba
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Akshari Gupta
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Koki Watanabe
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Daiju Kitagawa
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
71
|
Kim M, O'Rourke BP, Soni RK, Jallepalli PV, Hendrickson RC, Tsou MFB. Promotion and Suppression of Centriole Duplication Are Catalytically Coupled through PLK4 to Ensure Centriole Homeostasis. Cell Rep 2016; 16:1195-1203. [PMID: 27425613 PMCID: PMC4972634 DOI: 10.1016/j.celrep.2016.06.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022] Open
Abstract
PLK4 is the major kinase driving centriole duplication. Duplication occurs only once per cell cycle, forming one new (or daughter) centriole that is tightly engaged to the preexisting (or mother) centriole. Centriole engagement is known to block the reduplication of mother centrioles, but the molecular identity responsible for the block remains unclear. Here, we show that the centriolar cartwheel, the geometric scaffold for centriole assembly, forms the identity of daughter centrioles essential for the block, ceasing further duplication of the mother centriole to which it is engaged. To ensure a steady block, we found that the cartwheel requires constant maintenance by PLK4 through phosphorylation of the same substrate that drives centriole assembly, revealing a parsimonious control in which “assembly” and “block for new assembly” are linked through the same catalytic reaction to achieve homeostasis. Our results support a recently deduced model that the cartwheel-bound PLK4 directly suppresses centriole reduplication.
Collapse
Affiliation(s)
- Minhee Kim
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Brian P O'Rourke
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rajesh Kumar Soni
- Microchemistry and Proteomics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
72
|
Fong CS, Mazo G, Das T, Goodman J, Kim M, O'Rourke BP, Izquierdo D, Tsou MFB. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 2016; 5. [PMID: 27371829 PMCID: PMC4946878 DOI: 10.7554/elife.16270] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency. DOI:http://dx.doi.org/10.7554/eLife.16270.001
Collapse
Affiliation(s)
- Chii Shyang Fong
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gregory Mazo
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tuhin Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | | | - Minhee Kim
- BCMB Graduate Program, Weill Cornell Medical School, New York, United States
| | - Brian P O'Rourke
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Denisse Izquierdo
- BCMB Graduate Program, Weill Cornell Medical School, New York, United States
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,BCMB Graduate Program, Weill Cornell Medical School, New York, United States
| |
Collapse
|
73
|
Pimenta-Marques A, Bento I, Lopes CAM, Duarte P, Jana SC, Bettencourt-Dias M. A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science 2016; 353:aaf4866. [PMID: 27229142 DOI: 10.1126/science.aaf4866] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
An important feature of fertilization is the asymmetric inheritance of centrioles. In most species it is the sperm that contributes the initial centriole, which builds the first centrosome that is essential for early development. However, given that centrioles are thought to be exceptionally stable structures, the mechanism behind centriole disappearance in the female germ line remains elusive and paradoxical. We elucidated a program for centriole maintenance in fruit flies, led by Polo kinase and the pericentriolar matrix (PCM): The PCM is down-regulated in the female germ line during oogenesis, which results in centriole loss. Perturbing this program prevents centriole loss, leading to abnormal meiotic and mitotic divisions, and thus to female sterility. This mechanism challenges the view that centrioles are intrinsically stable structures and reveals general functions for Polo kinase and the PCM in centriole maintenance. We propose that regulation of this maintenance program is essential for successful sexual reproduction and defines centriole life span in different tissues in homeostasis and disease, thereby shaping the cytoskeleton.
Collapse
Affiliation(s)
- A Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal.
| | - I Bento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal.
| | - C A M Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - P Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - S C Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - M Bettencourt-Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal.
| |
Collapse
|
74
|
Affiliation(s)
- Jingyan Fu
- a Department of Genetics , University of Cambridge , Cambridge , UK
| | - David Glover
- a Department of Genetics , University of Cambridge , Cambridge , UK
| |
Collapse
|
75
|
Saurya S, Roque H, Novak ZA, Wainman A, Aydogan MG, Volanakis A, Sieber B, Pinto DMS, Raff JW. Drosophila Ana1 is required for centrosome assembly and centriole elongation. J Cell Sci 2016; 129:2514-25. [PMID: 27206860 PMCID: PMC4958303 DOI: 10.1242/jcs.186460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Centrioles organise centrosomes and cilia, and these organelles have an important role in many cell processes. In flies, the centriole protein Ana1 is required for the assembly of functional centrosomes and cilia. It has recently been shown that Cep135 (also known as Bld10) initially recruits Ana1 to newly formed centrioles, and that Ana1 then recruits Asl (known as Cep152 in mammals) to promote the conversion of these centrioles into centrosomes. Here, we show that ana1 mutants lack detectable centrosomes in vivo, that Ana1 is irreversibly incorporated into centrioles during their assembly and appears to play a more important role in maintaining Asl at centrioles than in initially recruiting Asl to centrioles. Unexpectedly, we also find that Ana1 promotes centriole elongation in a dose-dependent manner: centrioles are shorter when Ana1 dosage is reduced and are longer when Ana1 is overexpressed. This latter function of Ana1 appears to be distinct from its role in centrosome and cilium function, as a GFP–Ana1 fusion lacking the N-terminal 639 amino acids of the protein can support centrosome assembly and cilium function but cannot promote centriole over-elongation when overexpressed. Highlighted Article: Ana1 is a conserved centriole protein that we show is required for centrosome and cilium assembly and that also helps to promote centriole elongation in a dose-dependent manner.
Collapse
Affiliation(s)
- Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hélio Roque
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Adam Volanakis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - David Miguel Susano Pinto
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
76
|
A Cell-Free System for Real-Time Analyses of Centriole Disengagement and Centriole-to-Centrosome Conversion. Methods Mol Biol 2016. [PMID: 27193851 DOI: 10.1007/978-1-4939-3542-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Centriole or centrosome number in cycling cells is strictly maintained through coordinated duplication and segregation. Duplication is limited to once only per cell cycle by separating the assembly event that occurs in S/G2 phase from the two licensing events, centriole disengagement and centriole-to-centrosome conversion, both of which occurs in mitosis. In addition to duplication licensing, centriole-to-centrosome conversion also enables centrioles to associate with spindle poles and thereby to segregate equally during cell division. Centriole disengagement and centriole-to-centrosome conversion thus constitute the major regulatory module ensuring centrosome homeostasis in cycling cells. Using Xenopus egg extracts and purified engaged centrioles, we here describe an in vitro assay allowing us to synchronously induce the initiation of centriole disengagement and centrosome formation, pause the reaction anytime during the process, and more importantly, preserve "reaction intermediates" for further analyses.
Collapse
|
77
|
Chang CW, Hsu WB, Tsai JJ, Tang CJC, Tang TK. CEP295 interacts with microtubules and is required for centriole elongation. J Cell Sci 2016; 129:2501-13. [PMID: 27185865 PMCID: PMC4958302 DOI: 10.1242/jcs.186338] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Bin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chieh-Ju C Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
78
|
Cheung K, Senese S, Kuang J, Bui N, Ongpipattanakul C, Gholkar A, Cohn W, Capri J, Whitelegge JP, Torres JZ. Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a Regulator of Mammalian Katanin Microtubule-severing. Mol Cell Proteomics 2016; 15:1658-69. [PMID: 26929214 PMCID: PMC4858946 DOI: 10.1074/mcp.m115.056465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 11/24/2022] Open
Abstract
The Katanin family of microtubule-severing enzymes is critical for remodeling microtubule-based structures that influence cell division, motility, morphogenesis and signaling. Katanin is composed of a catalytic p60 subunit (A subunit, KATNA1) and a regulatory p80 subunit (B subunit, KATNB1). The mammalian genome also encodes two additional A-like subunits (KATNAL1 and KATNAL2) and one additional B-like subunit (KATNBL1) that have remained poorly characterized. To better understand the factors and mechanisms controlling mammalian microtubule-severing, we have taken a mass proteomic approach to define the protein interaction module for each mammalian Katanin subunit and to generate the mammalian Katanin family interaction network (Katan-ome). Further, we have analyzed the function of the KATNBL1 subunit and determined that it associates with KATNA1 and KATNAL1, it localizes to the spindle poles only during mitosis and it regulates Katanin A subunit microtubule-severing activity in vitro. Interestingly, during interphase, KATNBL1 is sequestered in the nucleus through an N-terminal nuclear localization signal. Finally KATNB1 was able to compete the interaction of KATNBL1 with KATNA1 and KATNAL1. These data indicate that KATNBL1 functions as a regulator of Katanin A subunit microtubule-severing activity during mitosis and that it likely coordinates with KATNB1 to perform this function.
Collapse
Affiliation(s)
- Keith Cheung
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Silvia Senese
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Jiaen Kuang
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ngoc Bui
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Chayanid Ongpipattanakul
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ankur Gholkar
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Whitaker Cohn
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Joseph Capri
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| | - Jorge Z Torres
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| |
Collapse
|
79
|
Fu J, Lipinszki Z, Rangone H, Min M, Mykura C, Chao-Chu J, Schneider S, Dzhindzhev NS, Gottardo M, Riparbelli MG, Callaini G, Glover DM. Conserved molecular interactions in centriole-to-centrosome conversion. Nat Cell Biol 2016; 18:87-99. [PMID: 26595382 PMCID: PMC4719191 DOI: 10.1038/ncb3274] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Abstract
Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.
Collapse
Affiliation(s)
- Jingyan Fu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Hélène Rangone
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Mingwei Min
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Charlotte Mykura
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jennifer Chao-Chu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sandra Schneider
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | | | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - David M. Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
80
|
Wang WJ, Acehan D, Kao CH, Jane WN, Uryu K, Tsou MFB. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. eLife 2015; 4. [PMID: 26609813 PMCID: PMC4709270 DOI: 10.7554/elife.10586] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022] Open
Abstract
Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm. DOI:http://dx.doi.org/10.7554/eLife.10586.001 Cells pass on their characteristics or “traits” to new generations in the form of DNA molecules. DNA provides the instructions to make proteins, which may then assemble into larger structures without using any external templates in a process called self-assembly. However, when a cell divides, DNA is not the only element that is passed on to the daughter cells; many large protein structures that have assembled in mother cells are also divided between the daughter cells. The daughter cells may then produce extra copies of these protein structures, but it is not known whether the pre-existing structures are involved in this process. Centrioles are complex structures made of proteins and play a crucial role in cell division. One of the main components of centrioles is a protein called SAS-6. Recent studies have shown that SAS-6 molecules can bind to each other to form “oligomers”. This process, which is called self-oligomerization, has been proposed to drive the formation of centrioles. Now, Wang et al. examine whether centrioles can form properly in cells when no other centrioles are present. The experiments show that centrioles can indeed form, but they are prone to structural errors. In contrast, centrioles that form in the presence of older centrioles are essentially free of errors. The experiments used human eye cells that were missing the gene that encodes SAS-6. These cells could not make centrioles, but when SAS-6 was re-introduced into these cells, new centrioles formed. Unexpectedly, re-introducing a mutant form of SAS-6 that cannot form oligomers into the cells still allowed new centrioles to form, which shows that self-oligomerization of SAS-6 is not essential for the assembly of centrioles. Together, Wang et al.’s findings challenge the idea that SAS-6 self-oligomerization is involved in the formation of centrioles, and suggest that preexisting centrioles may help to minimize errors in the formation of new centrioles. DOI:http://dx.doi.org/10.7554/eLife.10586.002
Collapse
Affiliation(s)
- Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Devrim Acehan
- Electron Microscopy Resource Center, The Rockefeller University, New York, United States
| | - Chien-Han Kao
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, The Rockefeller University, New York, United States
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
81
|
Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ. p53 protects against genome instability following centriole duplication failure. J Cell Biol 2015; 210:63-77. [PMID: 26150389 PMCID: PMC4494000 DOI: 10.1083/jcb.201502089] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure.
Collapse
Affiliation(s)
- Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yumi Uetake
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael Snyder
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
82
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
83
|
Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 2015; 209:863-78. [PMID: 26101219 PMCID: PMC4477857 DOI: 10.1083/jcb.201502088] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of STIL activates Plk4, and the subsequent phosphorylation of STIL by Plk4 primes the binding of STIL to SAS6 to promote centriole assembly. Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle–regulated accumulation of STIL.
Collapse
Affiliation(s)
- Tyler C Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
84
|
Fujita H, Yoshino Y, Chiba N. Regulation of the centrosome cycle. Mol Cell Oncol 2015; 3:e1075643. [PMID: 27308597 PMCID: PMC4905396 DOI: 10.1080/23723556.2015.1075643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix (PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells the centrosome duplicates once per cell cycle and its number and structure are highly regulated during each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defects in the regulation of centrosome duplication lead to a variety of human diseases, including cancer, through abnormal cell division and inappropriate chromosome segregation. At the end of mitosis the daughter centriole disengages from the mother centriole. This centriole disengagement is an important licensing step for centrosome duplication. In S phase, one new daughter centriole forms perpendicular to each centriole. The centrosome recruits further PCM proteins in the late G2 phase and the two centrosomes separate at mitotic entry to form a bipolar spindle. Here, we summarize research findings in the field of centrosome biology, focusing on the mechanisms of regulation of the centrosome cycle in human cells.
Collapse
Affiliation(s)
- Hiroki Fujita
- Laboratory of Cancer Biology, Graduate School of Life Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Japan; Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| |
Collapse
|
85
|
Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, Mitchell BJ, Desai A, Gahman TC, Shiau AK, Oegema K. Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 2015; 348:1155-60. [PMID: 25931445 DOI: 10.1126/science.aaa5111] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 11/02/2022]
Abstract
Centrioles are ancient organelles that build centrosomes, the major microtubule-organizing centers of animal cells. Extra centrosomes are a common feature of cancer cells. To investigate the importance of centrosomes in the proliferation of normal and cancer cells, we developed centrinone, a reversible inhibitor of Polo-like kinase 4 (Plk4), a serine-threonine protein kinase that initiates centriole assembly. Centrinone treatment caused centrosome depletion in human and other vertebrate cells. Centrosome loss irreversibly arrested normal cells in a senescence-like G1 state by a p53-dependent mechanism that was independent of DNA damage, stress, Hippo signaling, extended mitotic duration, or segregation errors. In contrast, cancer cell lines with normal or amplified centrosome numbers could proliferate indefinitely after centrosome loss. Upon centrinone washout, each cancer cell line returned to an intrinsic centrosome number "set point." Thus, cells with cancer-associated mutations fundamentally differ from normal cells in their response to centrosome loss.
Collapse
Affiliation(s)
- Yao Liang Wong
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - John V Anzola
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Robert L Davis
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Michelle Yoon
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Amir Motamedi
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Ashley Kroll
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chanmee P Seo
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Judy E Hsia
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Sun K Kim
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer W Mitchell
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian J Mitchell
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|